留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西藏冈底斯中段南缘叶巴岩群膝折构造及其地质意义

西洛郎杰 王根厚 曾庆高 冯翼鹏 次旦 韩宁 张培烈 魏延嵩 王伟屹

西洛郎杰, 王根厚, 曾庆高, 等, 2022. 西藏冈底斯中段南缘叶巴岩群膝折构造及其地质意义. 地质力学学报, 28 (3): 338-352. DOI: 10.12090/j.issn.1006-6616.2021163
引用本文: 西洛郎杰, 王根厚, 曾庆高, 等, 2022. 西藏冈底斯中段南缘叶巴岩群膝折构造及其地质意义. 地质力学学报, 28 (3): 338-352. DOI: 10.12090/j.issn.1006-6616.2021163
XILUO Langjie, WANG Genhou, ZENG Qinggao, et al., 2022. The kinks of the Yeba Group in the southern margin of the central Gangdese of Tibet and its geological significance. Journal of Geomechanics, 28 (3): 338-352. DOI: 10.12090/j.issn.1006-6616.2021163
Citation: XILUO Langjie, WANG Genhou, ZENG Qinggao, et al., 2022. The kinks of the Yeba Group in the southern margin of the central Gangdese of Tibet and its geological significance. Journal of Geomechanics, 28 (3): 338-352. DOI: 10.12090/j.issn.1006-6616.2021163

西藏冈底斯中段南缘叶巴岩群膝折构造及其地质意义

doi: 10.12090/j.issn.1006-6616.2021163
基金项目: 

西藏地勘局局管专项科研资金项目 42172259

国家自然科学基金项目 1212011221115

详细信息
    作者简介:

    西洛郎杰(1973—)男, 高级工程师, 从事区域地质调查和矿产勘查工作。E-mail: 741387328@qq.com

    通讯作者:

    王根厚(1963—), 男, 教授, 博士研究生导师, 从事构造地质学和区域构造研究。E-mail: wgh@cugb.edu.cn

  • 中图分类号: P548

The kinks of the Yeba Group in the southern margin of the central Gangdese of Tibet and its geological significance

Funds: 

the Specialized Scientific Research Fund of Geological and Mineral Exploration Development Bureau of Tibet Autonomous Region 42172259

National Natural Science Foundation of China 1212011221115

  • 摘要: 位于冈底斯南缘的叶巴岩群内发育着复杂的构造变形,是典型的构造转换带,已有证据表明这些复杂的构造变形与发育在叶巴岩群中的驱龙、甲玛等大型矿床的形成密切相关,其中大量发育的膝折构造是脆-韧性转换构造带中的代表。此次研究工作的主要对象为叶巴岩群内部的膝折构造,研究其分布特征、变形及扩容方式,分析其运动学特征及温度环境,结合构造变形时代探究其形成的大地构造背景。绿泥石温度计及方解石e双晶特征实验结果显示研究区膝折构造形成温度环境在170~299℃之间,表明研究区膝折构造形成的过程伴随着构造抬升。根据宏观露头及显微视域对于膝折构造的运动学特征分析,判断主压应力方向为自上而下(铅直向下),这一以垂向挤压的重力为主的主应力方向与该时期的冈底斯南缘大规模南北向滑覆构造的主压应力一致,研究结果认为发育于叶巴岩群内部的浅部膝折构造为25 Ma以来南拉萨地体伸展滑覆构造背景之下的变形作用的产物。

     

  • 图  1  拉萨地体大地构造位置图及研究区地质图

    BNS—班公-怒江缝合带;HFTB—喜马拉雅褶皱逆冲带;IYS—印度-雅江缝合带;MBT—主边界断裂;STDS—藏南拆离系
    a—拉萨地体大地构造简图;b—南冈底斯带达孜县—墨竹工卡县叶巴岩群地质简图(研究区地质图)

    Figure  1.  Simplified tectonic map of the Lhasa terrane and geologic map of the study area

    (a)Simplified tectonic map of the Lhasa terrane; (b) Simplified geologic map of Dazi-Mozhugongka in southern Gandese (the study area)
    BNS-Bangong-Nujiang suture zone; HFTB-Himalayan fold-thrust belt; IYS-Indus-Yarlu suture zone; MBT-Main boundary fault; STDS-Southern Tibet detachment system

    图  2  叶巴岩群膝折轴面及枢纽产状图

    极射持平投影图中蓝色—红色代表点密度逐渐增大

    Figure  2.  Attitudes in the axial surface and hinge of the kinks in the Yeba Group

    Color from blue to red in the Equal-area stereographic projections represents the gradual increase in point density

    图  3  膝折构造宏观特征

    a—多底沟组灰岩张裂脉;b—弯滑型膝折转折端;c—二云母片岩中指示自上而下滑覆的膝折构造

    Figure  3.  Macroscopic characteristics of kinks

    (a) Tensile vein in a limestone from the Duodigou formation; (b) Hinge zone in a flexural-slip kink; (c) Kinks in a two-mica schist indicating a top-down gliding nappe

    图  4  共轭膝折带及尖棱褶皱

    σ1—主应力
    a—二云母片岩中发育的共轭膝折带;b—共轭膝折带素描图;c—千枚岩发育的尖棱褶皱;d—尖棱褶皱素描图

    Figure  4.  Conjugate kink-band and angular fold

    (a) Conjugate kink-band developed in two-mica schist; (b)Sketch of conjugate kink-band; (c) Angular fold developed in phyllite; (d) Sketch of angular fold
    σ1-Principal stress

    图  5  膝折构造显微构造特征(照片均为单偏光下X-Z面定向薄片)

    σ1—主应力
    a—二云母片岩右旋膝折构造;b—右旋膝折;c—黑云母及白云母弯曲形成膝折;d—膝折构造改造S1面理;e—同构造变形绿泥石形成膝折构造;f—由共轭膝折构造递进变形形成的尖棱褶皱

    Figure  5.  Microstructural characteristics of kinks (All photos are X-Z plane oriented slices under single polarized light)

    (a) Dextral kinks of two-mica schist; (b) Dextral kinks; (c) Kinks formed by biotite and muscovite; (d) S1 foliation reconstructed by kinks; (e) Kinks formed by syntectonic deformed chlorite; (f) Angular fold formed by progressive deformation of conjugate kinks
    σ1-Principal stress

    图  6  膝折带内外岩层顺层滑动对膝折带内、外角关系的效果图

    α—膝折带边界与未旋转面之间的夹角;β—膝折边界与旋转面之间的夹角
    a—初始状态(β=α);b—膝折带外侧岩层滑动(βα);c—膝折带内侧岩层滑动(βα)

    Figure  6.  Diagram showing the bedding sliding of plane inside and outside the kink-band on the relationship between the inner and outer corners of the kinks

    (a) initial state (β=α); (b) Kinks with lateral rock slide (β > α); (c) Kinks with medial rock slide (β < α)
    α is the included angle between the kinks boundary and the non rotating surface, β is the included angle between the kinks boundary and the rotating surface

    图  7  膝折扩容类型

    Q—石英;Pl—长石;Chl—绿泥石;Mt—磁铁矿;α—膝折带边界与未旋转面之间的夹角;β—膝折边界与旋转面之间的夹角
    a—膝折显微构造特征(单偏光,X-Z面);b—膝折变形及扩容方式示意图(显微尺度);c—膝折宏观构造特征;d—膝折变形及扩容方式示意图(宏观尺度)

    Figure  7.  Modes of kink expansion

    (a) Microstructural characteristics of kinks (Single polarized light, X-Z plane); (b) Schematic diagram of kink deformation and expansion mode (microscale); (c) Macrostructural characteristics of kinks; (d) Schematic diagram of kink deformation and expansion mode (macroscale)
    Q-Quartz; Pl-Feldspar; Chl-Chlorite; Mt-Magnetite; α is the included angle between the kink boundary and the non-rotating surface, β is the included angle between the kink boundary and the rotating surface

    图  8  不同温度下方解石e双晶不同类型的显微示意图(据Ferrill et al., 2004修改)

    Figure  8.  Schematic diagram showing different types of calcite e-twins at different temperatures (modified from Ferrill et al., 2004)

    图  9  绿泥石变种分类图解

    Figure  9.  Classification diagram of chlorite variants

    图  10  BSE视域及显微尺度下的电子探针点位图

    Ab—钠长石;Bi—黑云母;Chl—绿泥石;Cal—方解石;Ep—绿帘石;Ttn—榍石;Q—石英
    a—X-Z面,BSE视域下的膝折构造(样品D2089-Db1); b—X-Z面,BSE视域下的膝折构造(样品PM002-35-Db1); c—X-Z面,单偏光视域下的膝折构造(样品D2089-Db1);d—X-Z面,单偏光视域下的膝折构造(样品PM002-35-Db1)

    Figure  10.  BSE-based images of electron probe point at a microscale

    (a) BSE-based image of kinks, sample D2089-Db1, X-Z plane; (b) BSE-based image of kinks, sample PM002-35-Db1, X-Z plane; (c) BSE-based image of kinks, sample D2089-Db1, X-Z plane; (d) BSE-based image of kinks, sample PM002-35-Db1, X-Z plane
    Ab-Albite; Bi-Biotite; Chl-Chlorite; Cal-Calcite; Ep-Epidote; Ttn-Titanite; Q-Quartz

    图  11  方解石e双晶显微照片(正交偏光,X-Z面)

    Cal—方解石
    a—发育Ⅰ型为主的e双晶;b—发育Ⅱ型为主的e双晶

    Figure  11.  Micrographs of calcite e-twins (Orthogonally polarized; X-Z plane)

    (a) E-twins dominated by type Ⅰ; (b) E-twins dominated by type Ⅱ

    图  12  藏南碰撞带结构构造剖面图(据赵文津等,2016修改)

    MCT—主中央逆冲断裂;MFT—主前缘逆冲断裂;MBT—主边界断裂;MHT—主喜马拉雅逆冲断裂(或拆离层);STDS—藏南拆离系

    Figure  12.  Structural profile of the southern Tibet collision zone (modified from Zhao et al., 2016)

    MCT-Main central thrust fault; MFT-Main front thrust fault; MBT-Main boundary fault; MHT-Main Himalayan thrust fault (detachment fault); STDS-Southern Tibet detachment system

    表  1  绿泥石电子探针数据和主要参数计算结果

    Table  1.   Electron probe data of chlorite and calculation results of main parameters

    样品号 D2083-Db-1-1 D2083-Db2-1-2 D2083-Db2-1-3 D2083-Db2-1-4 D2083-Db2-1-5 D3053-Db1-1-1 D3053-Db1-1-2 D3053-Db1-1-3 D3053-Db1-1-4 D3053-Db1-1-5 D3053-Db1-1-6 D3053-Db1-1-7
    单位:%
    SiO2 26.22 25.81 25.69 25.46 24.35 27.67 27.89 27.26 26.96 26.91 26.23 27.55
    TiO2 0.02 0.02 0.02 0.02 0.05 0.00 0.01 0.00 0.02 0.01 0.00 0.00
    Al2O3 16.37 15.31 17.33 16.25 15.30 15.84 16.01 15.48 15.61 15.46 14.89 15.99
    Cr2O3 0.05 0.05 0.06 0.01 0.06 0.08 0.18 0.17 0.00 0.11 0.14 0.02
    FeOT 37.36 37.19 37.59 38.29 37.62 29.13 29.14 29.26 28.54 29.08 29.07 28.39
    MnO 0.25 0.33 0.30 0.30 0.30 0.83 1.08 1.00 0.98 0.93 0.97 1.00
    MgO 6.29 7.10 6.01 5.67 5.74 12.75 12.76 12.60 12.66 12.35 12.17 12.81
    CaO 0.08 0.05 0.05 0.03 0.04 0.08 0.08 0.11 0.11 0.10 0.07 0.01
    Na2O 0.10 0.08 0.19 0.00 0.17 0.02 0.13 0.05 0.06 0.04 0.04 0.02
    K2O 0.08 0.02 0.01 0.00 0.03 0.02 0.01 0.01 0.01 0.00 0.01 0.01
    Total 86.83 85.97 87.25 86.02 83.65 86.45 87.29 85.94 84.95 85.00 83.59 85.81
    单位:×10-6
    Si 5.99 5.98 5.85 5.92 5.86 6.07 6.06 6.04 6.02 6.03 6.00 6.07
    Ti 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Al 4.41 4.18 4.65 4.45 4.34 4.10 4.10 4.04 4.11 4.08 4.02 4.15
    Cr 0.01 0.01 0.01 0.00 0.01 0.01 0.03 0.03 0.00 0.02 0.03 0.00
    Fe3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Fe2+ 7.14 7.20 7.16 7.44 7.57 5.34 5.30 5.42 5.33 5.45 5.56 5.23
    Mn 0.05 0.06 0.06 0.06 0.06 0.15 0.20 0.19 0.19 0.18 0.19 0.19
    Mg 2.14 2.45 2.04 1.96 2.06 4.17 4.13 4.16 4.22 4.12 4.15 4.21
    Ca 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.02 0.00
    Na 0.04 0.04 0.08 0.00 0.08 0.01 0.06 0.02 0.03 0.02 0.02 0.01
    K 0.02 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
    Total 19.83 19.95 19.86 19.85 20.00 19.88 19.90 19.94 19.93 19.93 19.99 19.86
    单位:℃
    AlIV 2.01 2.02 2.15 2.08 2.14 1.93 1.94 1.96 1.98 1.97 2.00 1.93
    AlVI 2.40 2.16 2.50 2.37 2.20 2.16 2.16 2.08 2.14 2.11 2.02 2.22
    T1 230.87 232.25 246.15 238.52 245.09 222.72 223.47 225.76 227.54 226.86 229.60 222.83
    T2 287.94 287.62 303.90 297.23 303.42 264.39 265.14 267.74 268.97 269.09 272.10 263.95
    T3 261.37 263.48 284.59 273.00 282.98 249.00 250.14 253.62 256.32 255.29 259.45 249.17
    T4 275.84 277.19 299.13 288.06 297.78 256.96 258.09 261.67 264.11 263.43 267.67 256.89
    注:AlIV—四次配位的Al原子数;AlVI—六次配位的Al原子数;T1-T4—公式(1)-(4)计算
    下载: 导出CSV
  • CATHELINEAU M, NIEVA D, 1985. A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system[J]. Contributions to Mineralogy and Petrology, 91(3): 235-244. doi: 10.1007/BF00413350
    CATHELINEAU M, 1988. Cation site occupancy in chlorites and illites as a function of temperature[J]. Clay Minerals, 23(4): 471-485. doi: 10.1180/claymin.1988.023.4.13
    CHANG C F, ZHENG L X, 1973. Tectonic features of the mount Jolmo Lungma region in southern Tibet, China[J]. Scientia Geologica Sinica, 8(1): 1-12. (in Chinese with English abstract)
    CHEN H, WANG H H, BAO G D, 2021. Detrital zircon age from the glacial and littoral deposit, Northern Victoria Land, Antarctica: Implications for the timing of magmatic activity of the Ross Orogeny on the Gondwana continental margin[J]. Journal of Geomechanics, 27(5): 796-808. (in Chinese with English abstract)
    CHEN W, MA C Q, BIAN Q J, et al., 2009. Evidences from geochemistry and zircon U-Pb geochronology of volcanic rocks of Yeba formation in Demingding Area, the east of middle Gangdise, Tibet[J]. Geological Science and Technology Information, 28(3): 31-40. (in Chinese with English abstract)
    CHENG N N, LIU Q, HOU Q L, et al., 2018. Discussions on the stress-chemical process of gold precipitation and metallogenic mechanism in shear zone type gold deposits[J]. Acta Petrologica Sinica, 34(7): 2165-2180. (in Chinese with English abstract)
    CHUNG S L, LIU D Y, JI J Q, et al., 2003. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet[J]. Geology, 31(11): 1021-1024. doi: 10.1130/G19796.1
    DEBON F, LE FORT P, SHEPPARD S M F, et al., 1986. The four plutonic belts of the Transhimalaya-Himalaya: A chemical, mineralogical, isotopic, and chronological synthesis along a Tibet-Nepal section[J]. Journal of Petrology, 27(1): 219-250. doi: 10.1093/petrology/27.1.219
    DING L, YUE Y H, CAI F L, et al., 2006. 40Ar/39Ar geochronology, geochemical and Sr-Nd-O isotopic characteristics of the High-Mg Ultrapotassic rocks in Lhasa block of Tibet: implications in the onset time and depth of NS-striking rift system[J]. Acta Geologica Sinica, 80(9): 1252-1261. (in Chinese with English abstract)
    DONG G C, MO X X, ZHAO Z D, et al., 2006. Magma mixing in middle part of Gangdise magma belt: Evidences from granitoid complex[J]. Acta Petrologica Sinica, 22(4): 835-844. (in Chinese with English abstract)
    DONG Y H, XU J F, ZENG Q G, et al., 2006. Is there a Neo-Tethys' subduction record earlier than arc volcanic rocks in the Sangri group?[J]. Acta Petrologica Sinica, 22(3): 661-668. (in Chinese with English abstract)
    DUAN J L, TANG J X, MASON R, et al., 2014. Zircon U-Pb age and deformation characteristics of the Jiama porphyry copper deposit, Tibet: implications for relationships between mineralization, structure and alteration[J]. Resource Geology, 64(4): 316-331. doi: 10.1111/rge.12043
    FENG Y P, WANG G H, MENG Y K, et al., 2020. Kinematics, strain patterns, rheology, and geochronology of Woka ductile shear zone: Product of uplift of Gangdese batholith and Great Counter Thrust activity[J]. Geological Journal, 55(11): 7251-7271. doi: 10.1002/gj.3977
    FERRILL D A, MORRIS A P, EVANS M A, et al., 2004. Calcite twin morphology: A low-temperature deformation geothermometer[J]. Journal of Structural Geology, 26(8): 1521-1529. doi: 10.1016/j.jsg.2003.11.028
    GENG Q R, PAN G T, WANG L Q, et al., 2006. Isotopic geochronology of the volcanic rocks from the Yeba Formation in the Gangdise zone, Xizang[J]. Sedimentary Geology and Tethyan Geology, 26(1): 1-7. (in Chinese with English abstract)
    HU D G, WU Z H, JIANG W, et al., 2004. Geochronological studies on the deformation and metamorphism of the Precambrian gabbro from the western area of Nam Co, northern Tibet[J]. Acta Petrologica Sinica, 20(3): 627-632. (in Chinese with English abstract)
    HUANG F, XU J F, CHEN J L, et al., 2015. Early Jurassic volcanic rocks from the Yeba Formation and Sangri Group: Products of continental marginal arc and intra-oceanic arc during the subduction of Neo-Tethys Ocean?[J]. Acta Petrologica Sinica, 31(7): 2089-2100. (in Chinese with English abstract)
    JI W Q, WU F Y, CHUNG S L, et al., 2009a. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 262(3-4): 229-245. doi: 10.1016/j.chemgeo.2009.01.020
    JI W Q, WU F Y, LIU C Z, et al., 2009b. Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet[J]. Science in China Series D: Earth Sciences, 52(9): 1240-1261. doi: 10.1007/s11430-009-0131-y
    JOHNSON A M, 1977. Styles of folding[M]. Netherlands: Elsevier Scientific Publishing Company.
    KRANIDIOTIS P, MACLEAN W H, 1987. Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec[J]. Economic Geology, 82(7): 1898-1911. doi: 10.2113/gsecongeo.82.7.1898
    MA S W, XU Z Q, ZHANG Z K, et al., 2016. Structural deformation and its constrains of mineralization of the Jiama copper-polymetallic deposit, southern Tibet[J]. Acta Petrologica Sinica, 32(12): 3781-3799. (in Chinese with English abstract)
    MA X X, XU Z Q, CHEN X J, et al., 2017. The origin and tectonic significance of the volcanic rocks of the Yeba formation in the Gangdese magmatic Belt, South Tibet[J]. Journal of Earth Science, 28(2): 265-282. doi: 10.1007/s12583-016-0925-8
    MA Y, 2017. Tectonic evolution of the Cretaceous back-arc basin in the middle-east segment of the south Gangdese, south Tibet[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    MA Y, XU Z Q, LI G W, et al., 2017. Crustal deformation of the Gangdese Cretaceous back-arc basin and formation of Proto-plateau, South Tibet[J]. Acta Petrologica Sinica, 33(12): 3861-3872. (in Chinese with English abstract)
    MELKA K, 1965. Proposal of chlorite classification. Vestník Ustredního Ústavu Geologického, 40: 23-29.
    MENG Y K, DONG H W, CONG Y, et al., 2016. The early-stage evolution of the Neo-Tethys Ocean: evidence from granitoids in the middle Gangdese batholith, southern Tibet[J]. Journal of Geodynamics, 94-95: 34-49. doi: 10.1016/j.jog.2016.01.003
    MENG Y K, XU Z Q, MA S W, et al., 2016. Deformational characteristics and geochronological constraints of Quxu ductile shear zone in middle Gangdese magmatic Belt, South Tibet[J]. Earth Science, 41(7): 1081-1098. (in Chinese with English abstract)
    MENG Y K, XU Z Q, 2017. Tectonic evolution of the southern region in the middle Gangdese batholith, Southern Tibet[J]. Acta Geoscientica Sinica, 38(S1): 15-18. (in Chinese with English abstract)
    MO X X, NIU Y L, DONG G C, et al., 2008. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet[J]. Chemical Geology, 250(1-4): 49-67. doi: 10.1016/j.chemgeo.2008.02.003
    MO X X, 2011. Magmatism and Evolution of the Tibetan Plateau[J]. Geological Journal of China Universities, 17(3): 351-367. (in Chinese with English abstract)
    MOLNAR P, PARDO-CASAS F, STOCK J, 1988. The Cenozoic and Late Cretaceous evolution of the Indian Ocean Basin: uncertainties in the reconstructed positions of the Indian, African and Antarctic plates[J]. Basin Research, 1(1): 23-40. doi: 10.1111/j.1365-2117.1988.tb00003.x
    NAJMAN Y, APPEL E, BOUDAGHER-FADEL M, et al., 2010. Timing of India-Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints[J]. Journal of Geophysical Research: Solid Earth, 115(B12): B12416. doi: 10.1029/2010JB007673
    PAN G T, MO X X, HOU Z Q, et al., 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution[J]. Acta Petrologica Sinica, 22(3): 521-533. (in Chinese with English abstract)
    PAN G T, WANG L Q, LI R S, et al., 2012. Tectonic evolution of the Qinghai-Tibet plateau[J]. Journal of Asian Earth Sciences, 53: 3-14. doi: 10.1016/j.jseaes.2011.12.018
    PATERSON M S, WEISS L E, 1966. Experimental deformation and folding in Phyllite[J]. GSA Bulletin, 77(4): 343-374. doi: 10.1130/0016-7606(1966)77[343:EDAFIP]2.0.CO;2
    RAMSAY J G, 1980. Shear zone geometry: A review[J]. Journal of Structural Geology, 2(1-2): 83-99. doi: 10.1016/0191-8141(80)90038-3
    SIBSON R H, 1977. Fault rocks and fault mechanisms[J]. Journal of the Geological Society, 133(3): 191-213. doi: 10.1144/gsjgs.133.3.0191
    SONG W J, HU D G, ZHANG X J, et al., 2012. Research on extraction of remote sensing alteration anomalies in Jiama copper deposit in Gangdise Metallogenic belt, Tibet[J]. Journal of Geomechanics, 18(3): 319-330. (in Chinese with English abstract)
    STEWART K G, ALVAREZ W, 1991. Mobile-hinge kinking in layered rocks and models[J]. Journal of Structural Geology, 13(3): 243-259. doi: 10.1016/0191-8141(91)90126-4
    TANG Y, WANG G H, FENG Y P, et al., 2022. Tectonostratigraphic properties and evolution of the Yeba volcanic arc in South Gangdese, Tibet[J]. Earth Science Frontiers, 29(1): 285-302. (in Chinese with English abstract)
    TAPPONNIER P, PELTZER G, LE DAIN A Y, et al., 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
    VERBEEK E R, 1978. Kink bands in the Somport slates, west-central Pyrenees, France and Spain[J]. GSA Bulletin, 89(6): 814-824. doi: 10.1130/0016-7606(1978)89<814:KBITSS>2.0.CO;2
    WANG E, KAMP P J, XU G Q, et al., 2015. Flexural bending of southern Tibet in a retro foreland setting[J]. Scientific Reports, 5: 12076. doi: 10.1038/srep12076
    WEI Y Q, 2017. Mesozoic volcanic and sedimentary rocks on the southern margin of Lhasa Terrane, southern Tibet: geochronology, geochemistry and tectonic implications[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    WU Z H, YE P S, HU D G, et al., 2003. Thrust system of the North Lhasa block[J]. Geological Review, 49(1): 74-80. (in Chinese)
    XIANG B W, ZHU G, WANG Y S, et al., 2007. Mineral deformation thermometer for mylonitization[J]. Advances in Earth Science, 22(2): 126-135. (in Chinese)
    XIONG Q W, CHEN J L, XU J F, et al., 2015. LA-ICP-MS zircon U-Pb geochronology, geochemical characteristics and genetic study of Yeba Formation lavas in Demingding area, southern Tibet[J]. Geological Bulletin of China, 34(9): 1645-1655. (in Chinese with English abstract)
    XU Z Q, DILEK Y, CAO H, et al., 2015. Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides[J]. Journal of Asian Earth Sciences, 105: 320-337. doi: 10.1016/j.jseaes.2015.01.021
    YE P S, 2004. Ophiolites and thrust system of middle Lhasa block[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
    ZENG Z C, LIU D M, ZE R Z X, et al., 2009. Geochemistry and tectonic setting of lavas in the Yeba formation in the eastern part of the Gangdise belt[J]. Journal of Jilin University (Earth Science Edition), 39(3): 435-445. (in Chinese with English abstract)
    ZHANG B, LI S F, ZHANG J J, et al., 2010. Kink, kink-band and conjugate kink-band: A probably potential new type of structural trap[J]. Natural Gas Industry, 30(2): 32-39, 71. (in Chinese with English abstract)
    ZHANG B, ZHANG Z P, ZHENG Y D, et al., 2012. Kink-band structure and its geophysical forward modeling[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 48(1): 105-115. (in Chinese with English abstract)
    ZHANG H W, LIU F Z, WANG J C, et al., 2022. Hazard assessment of debris flows in Kongpo Gyamda, Tibet based on FLO-2D numerical simulation[J]. Journal of Geomechanics, 28(3): 306-318, doi: 10.12090/j.issn.1006-6616.2021117. (in Chinese with English abstract)
    ZHANG J J, 2007. A review on the extensional structures in the northern Himalaya and southern Tibet[J]. Geological Bulletin of China, 26(6): 639-649. (in Chinese with English abstract)
    ZHANG J J, GUO L, 2007. Structure and geochronology of the southern Xainza-Dinggye rift and its relationship to the south Tibetan detachment system[J]. Journal of Asian Earth Sciences, 29(5-6): 722-736. doi: 10.1016/j.jseaes.2006.05.003
    ZHAO W J, 2016. A discussion on the regional tectonic-magmatic activity and the metallogensis of gangdise porphyry copper belt based on the deep structure of continent-continent collision belt in Southern Tibet[J]. Acta Geoscientica Sinica, 37(1): 7-24. (in Chinese with English abstract)
    ZHAO Z, HU D G, WU Z H, et al., 2012. Molybdenite Re-Os isotopic dating of Sangbujiala copper deposit in the south margin of the eastern Gangdese section, Tibet, and its geological implications[J]. Journal of Geomechanics, 18(2): 178-186. (in Chinese with English abstract)
    ZHENG Y D, WANG T, WANG X S, 2007a. The maximum effective moment criterion (MEMC) and related geological structures[J]. Earth Science Frontiers, 14(4): 49-60. (in Chinese with English abstract)
    ZHENG Y D, WANG T, WANG X S, 2007b. Theory and practice of the maximum effective moment criterion (MEMC)[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 43(2): 145-156. (in Chinese with English abstract)
    ZHONG K H, LI L, ZHOU H W, et al., 2012. Features of Jiama (Gyama)-Kajunguo Thrust-gliding Nappe tectonic system in Tibet[J]. Acta Geoscientia Sinica, 33(4): 411-423. (in Chinese with English abstract)
    ZHONG K H, YAO D, DUO J, et al., 2013. Structural features of Yeba Tectonite Group in Jiama (Gyama)-Qulong area of Tibet[J]. Acta Geoscientica Sinica, 34(1): 75-86. (in Chinese with English abstract)
    ZHU D C, PAN G T, CHUNG S L, et al., 2008. SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, southern Gangdese, South Tibet[J]. International Geology Review, 50(5): 442-471. doi: 10.2747/0020-6814.50.5.442
    ZHU D C, ZHAO Z D, NIU Y L, et al., 2011. The Lhasa Terrane: record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 301(1-2): 241-255. doi: 10.1016/j.epsl.2010.11.005
    ZHU D C, ZHAO Z D, NIU Y L, et al., 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau[J]. Gondwana Research, 23(4): 1429-1454. doi: 10.1016/j.gr.2012.02.002
    陈虹, 王宏晖, 包国栋, 2021. 冈瓦纳大陆边缘罗斯运动的岩浆活动时代: 来自北维多利亚地松散沉积物锆石年龄的证据[J]. 地质力学学报, 27(5): 796-808. doi: 10.12090/j.issn.1006-6616.2021.27.05.065
    陈炜, 马昌前, 边秋娟, 等, 2009. 西藏得明顶地区叶巴组火山岩地球化学特征和同位素U-Pb年龄证据[J]. 地质科技情报, 28(3): 31-40. doi: 10.3969/j.issn.1000-7849.2009.03.006
    程南南, 刘庆, 侯泉林, 等, 2018. 剪切带型金矿中金沉淀的力化学过程与成矿机理探讨[J]. 岩石学报, 34(7): 2165-2180. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201807021.htm
    丁林, 岳雅慧, 蔡福龙, 等, 2006. 西藏拉萨地块高镁超钾质火山岩及对南北向裂谷形成时间和切割深度的制约[J]. 地质学报, 80(9): 1252-1261. doi: 10.3321/j.issn:0001-5717.2006.09.003
    董国臣, 莫宣学, 赵志丹, 等, 2006. 冈底斯岩浆带中段岩浆混合作用: 来自花岗杂岩的证据[J]. 岩石学报, 22(4): 835-844. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604007.htm
    董彦辉, 许继峰, 曾庆高, 等, 2006. 存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?[J]. 岩石学报, 22(3): 661-668. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603015.htm
    耿全如, 潘桂棠, 王立全, 等, 2006. 西藏冈底斯带叶巴组火山岩同位素地质年代[J]. 沉积与特提斯地质, 26(1): 1-7. doi: 10.3969/j.issn.1009-3850.2006.01.001
    胡道功, 吴珍汉, 江万, 等, 2004. 藏北纳木错西缘前寒武纪辉长岩变质变形年代学研究[J]. 岩石学报, 20(3): 627-632. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200403026.htm
    黄丰, 许继峰, 陈建林, 等, 2015. 早侏罗世叶巴组与桑日群火山岩: 特提斯洋俯冲过程中的陆缘弧与洋内弧?[J]. 岩石学报, 31(7): 2089-2100. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201507022.htm
    马士委, 许志琴, 张忠坤, 等, 2016. 藏南甲玛铜多金属矿床构造变形及其对成矿的制约[J]. 岩石学报, 32(12): 3781-3799. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201612015.htm
    马元, 2017. 西藏南冈底斯中东段白垩纪弧后盆地构造演化[D]. 北京: 中国地质大学(北京).
    马元, 许志琴, 李广伟, 等, 2017. 藏南冈底斯白垩纪弧后盆地的地壳变形及初始高原的形成[J]. 岩石学报, 33(12): 3861-3872. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201712012.htm
    孟元库, 许志琴, 马士委, 等, 2016. 藏南冈底斯岩浆带中段曲水韧性剪切带的变形特征及其年代学约束[J]. 地球科学, 41(7): 1081-1098. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201607001.htm
    孟元库, 许志琴, 2017. 藏南冈底斯地体中段南缘构造演化[J]. 地球学报, 38(S1): 15-18. doi: 10.3975/cagsb.2017.s1.05
    莫宣学, 2011. 岩浆作用与青藏高原演化[J]. 高校地质学报, 17(3): 351-367. doi: 10.3969/j.issn.1006-7493.2011.03.001
    潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm
    宋晚郊, 胡道功, 张绪教, 等, 2012. 西藏冈底斯成矿带甲马段蚀变遥感异常信息提取研究[J]. 地质力学学报, 18(3): 319-330. doi: 10.3969/j.issn.1006-6616.2012.03.015
    唐宇, 王根厚, 冯翼鹏, 等, 2022. 西藏南冈底斯叶巴火山弧的构造-地层属性及其演化[J]. 地学前缘, 29(1): 285-302. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202201019.htm
    魏友卿, 2017. 西藏拉萨地体南缘中生代火山岩与碎屑沉积岩的年代学、地球化学及构造意义[D]. 北京: 中国地质大学(北京).
    吴珍汉, 叶培盛, 胡道功, 等, 2003. 拉萨地块北部逆冲推覆构造系统[J]. 地质论评, 49(1): 74-80. doi: 10.3321/j.issn:0371-5736.2003.01.011
    向必伟, 朱光, 王勇生, 等, 2007. 糜棱岩化过程中矿物变形温度计[J]. 地球科学进展, 22(2): 126-135. doi: 10.3321/j.issn:1001-8166.2007.02.002
    熊秋伟, 陈建林, 许继峰, 等, 2015. 拉萨地块南部得明顶地区叶巴组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其成因[J]. 地质通报, 34(9): 1645-1655. doi: 10.3969/j.issn.1671-2552.2015.09.006
    叶培盛, 2004. 拉萨地块中部蛇绿岩与逆冲推覆构造[D]. 北京: 中国地质科学院.
    曾忠诚, 刘德民, 泽仁扎西, 等, 2009. 西藏冈底斯东段叶巴组火山岩地球化学特征及其地质构造意义[J]. 吉林大学学报(地球科学版), 39(3): 435-445. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200903011.htm
    张波, 李生福, 张进江, 等, 2010. 膝褶、膝褶带、共轭膝褶带: 一种可能的新型油气构造样式[J]. 天然气工业, 30(2): 32-39, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201002006.htm
    张波, 张仲培, 郑亚东, 等, 2012. 膝褶带构造及其地球物理正演[J]. 北京大学学报(自然科学版), 48(1): 105-115. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201201015.htm
    张浩韦, 刘福臻, 王军朝, 等, 2022. 基于FLO-2D数值模拟的工布江达县城泥石流灾害危险性评价[J]. 地质力学学报, 28(3): 306-318, doi: 10.12090/j.issn.1006-6616.2021117.
    张进江, 2007. 北喜马拉雅及藏南伸展构造综述[J]. 地质通报, 26(6): 639-649. doi: 10.3969/j.issn.1671-2552.2007.06.003
    赵文津, 2016. 从藏南陆-陆碰撞带深部结构构造演化探讨斑岩铜矿的成岩成矿问题[J]. 地球学报, 37(1): 7-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201601002.htm
    赵珍, 胡道功, 吴珍汉, 等, 2012. 西藏冈底斯东段南缘桑布加拉辉钼矿Re-Os定年及地质意义[J]. 地质力学学报, 18(2): 178-186. doi: 10.3969/j.issn.1006-6616.2012.02.008
    郑亚东, 王涛, 王新社, 2007a. 最大有效力矩准则及相关地质构造[J]. 地学前缘, 14(4): 49-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200704005.htm
    郑亚东, 王涛, 王新社, 2007b. 最大有效力矩准则的理论与实践[J]. 北京大学学报(自然科学版), 43(2): 145-156. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200702000.htm
    钟康惠, 李磊, 周慧文, 等, 2012. 西藏甲玛-卡军果推-滑覆构造系特征[J]. 地球学报, 33(4): 411-423. doi: 10.3975/cagsb.2012.04.03
    钟康惠, 姚丹, 多吉, 等, 2013. 西藏甲玛-驱龙地区叶巴岩组构造学特征[J]. 地球学报, 34(1): 75-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201301010.htm
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  507
  • HTML全文浏览量:  181
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-03
  • 修回日期:  2022-03-26

目录

    /

    返回文章
    返回