留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2012年缅甸德贝金M 7.0地震及其地表破裂特征

常祖峰 张建国 申重阳 李春光 刘昌伟 王光明 于江

常祖峰, 张建国, 申重阳, 等, 2022. 2012年缅甸德贝金M 7.0地震及其地表破裂特征. 地质力学学报, 28 (2): 169-181. DOI: 10.12090/j.issn.1006-6616.2021161
引用本文: 常祖峰, 张建国, 申重阳, 等, 2022. 2012年缅甸德贝金M 7.0地震及其地表破裂特征. 地质力学学报, 28 (2): 169-181. DOI: 10.12090/j.issn.1006-6616.2021161
CHANG Zufeng, ZHANG Jianguo, SHEN Chongyang, et al., 2022. The 2012 Thabeikkjin (Myanmar) M 7.0 earthquake and its surface rupture characteristics. Journal of Geomechanics, 28 (2): 169-181. DOI: 10.12090/j.issn.1006-6616.2021161
Citation: CHANG Zufeng, ZHANG Jianguo, SHEN Chongyang, et al., 2022. The 2012 Thabeikkjin (Myanmar) M 7.0 earthquake and its surface rupture characteristics. Journal of Geomechanics, 28 (2): 169-181. DOI: 10.12090/j.issn.1006-6616.2021161

2012年缅甸德贝金M 7.0地震及其地表破裂特征

doi: 10.12090/j.issn.1006-6616.2021161
基金项目: 

国家自然科学基金 U2002211

国家国际科技合作专项 2015DFA21260

详细信息
    作者简介:

    常祖峰(1966—),男,硕士,研究员,从事活动构造研究。E-mail:zufch@163.com

  • 中图分类号: P315.2

The 2012 Thabeikkjin (Myanmar) M 7.0 earthquake and its surface rupture characteristics

Funds: 

the National Natural Science Foundation of China U2002211

the National Special Project for International Scientific and Technological Cooperatio 2015DFA21260

  • 摘要: 文章以地质地貌与地震遗迹野外调查获得的第一手资料为基础,重点介绍了实皆断裂的活动习性、2012年地震产生的建筑物破坏与地震地表破裂带特征。实皆断裂是一条规模宏大,以右旋走滑为主的全新世活动断裂,其水平滑动速率为18~20 mm/a。历史上沿实皆断裂曾发生10余次7级以上强震,迄今保留有1839年曼德勒因瓦M 8、1930年勃固M 7.3、1930年东吁M 7.3等地震遗迹。2012年德贝金M 7.0地震造成了佛塔、民用建筑等严重破坏,形成至少长45 km的地震地表破裂,包括塌岸、滑坡、地震断层等,震中烈度达Ⅸ度。在断层右旋走滑运动作用下,地裂缝呈现出有规律的左阶雁列,与实皆断裂走向的夹角一般为20°~30°;规模较大的地裂缝多呈“S”型。地裂缝有规律的左阶雁列和被断错的地物标志,指示地震地表破裂具明显的右旋走滑性质。2012年地震造成的右旋位错量一般为40~90 cm,最大位错达102 cm。地震地表破裂特征和震源机制解结果一致地表明,此次地震的发震构造为实皆活动断裂。

     

  • 图  1  实皆断裂与历史地震分布图

    Figure  1.  Map of the Sagaing fault and historical earthquake distribution

    图  2  1839年曼德勒因瓦M 8地震中建筑物破坏遗迹

    a—亚达纳-希米塔建筑群墙体裂缝;b—亚达纳-希米塔建筑地震后留下的立柱;c—巴加亚修道院墙体裂缝,有的呈X型;d—因震陷而导致的巴加亚修道院围墙变形

    Figure  2.  Ruins of the buildings destroyed by the 1839 M 8 earthquake in Innwa, Mandalay

    (a) Cracks in the walls of Yadana Hsemee Pagoda complex; (b) Columns of Yadana Hsemee Pagoda complex after the earthquake; (c) Cracks in the walls of Bagaya Monastery, and some are X-shaped; (d) Deformation of the wall of Bagaya Monastery caused by earthquake subsidence

    图  3  1930年勃固M 7.3地震中建筑破坏遗迹

    a—地震造成的民用建筑破坏情况;b—某寺庙的圆柱形建筑坍塌

    Figure  3.  Ruins of the buildings destoryed by the 1930 Bago M 7.3 earthquake

    (a) Damage to civil buildings; (b) The collapsed cylindrical building of a temple

    图  4  1930年东吁M 7.3地震形成的断层槽地

    a—断层槽地照片,镜向北东;b—断层槽地素描图,面向北东

    Figure  4.  Fault trough formed by the 1930 Phyu M 7.3 earthquake

    (a) Photo of a fault trough, view to northeast; (b)Sketch of a fault trough, view to northeast

    图  5  建筑物破坏情况(照片来自缅甸地震委员会; http://searg.rhul.ac.uk/current_research/plate_tectonics/www.news.cn)

    a—马累镇佛塔破坏;b—萨贝纳戈镇佛塔破坏;c—马累镇砖木结构的房屋歪斜;d—德贝金镇砖木结构破坏;e—易欣村寺庙建筑破坏;f—库勒镇钢结构大桥坍塌;g—江心岛上的一座钢筋混凝土庙宇破坏;h—萨贝纳戈镇北佛塔顶部破坏

    Figure  5.  Damage to the buildings (Photos from Myanmar earthquake Commission; http://searg.rhul.ac.uk/current_research/plate_tectonics/and www.news.cn)

    (a) A pagoda in Male town; (b)A pagoda in Sabeanago town; (c) A crooked half-timber house in Male town; (d) A half-timber house in Thabeikkjin town; (e) A temple building in Yee Shin Village; (f) A steel bridge in Kule town; (g) A reinforced concrete temple on an ait; (h) The top of a pagoda in the north of Sabeanago town

    图  6  塌岸与滑坡地表破坏(照片引自缅甸地震委员会;http://searg.rhul.ac.uk/current_research/plate_tectonics/)

    a—德贝金南伊洛瓦底江塌岸,镜向东;b—上帕那北滑坡,镜向东南;c—萨贝纳戈镇的地震塌陷,镜向东南

    Figure  6.  River bank collapses and landslides(Photos from Myanmar Earthquake Commission, http://searg.rhul.ac.uk/current_research/plate_tectonics/)

    (a) Irrawaddy River bank collapse in the south of Thabeikkjin town, view to east; (b) Landslide in the north of upper Ponna, view to southeast; (c)Earthquake collapse in Sabeanago town, view to southeast

    图  7  剪切破裂

    a—德贝金左阶斜列的地裂缝,镜向北西;b—德贝金南地裂缝,单条长度4m,镜向东;c—德贝金地裂缝,镜向南东;d—德贝金雁行排列的地裂缝,镜向北西;e—德贝金南拉分盆地边缘雁行排列的地裂缝,一侧拉开下陷,另一侧隆起,镜向南东(米尺长25 cm);f—德贝金地裂缝细部特征,拉张,镜向南(记录本长20 cm);g—德贝金南地裂缝细部特征,拉张,镜向北;h—鼓丘形成机制,镜向北(米尺长25 cm)

    Figure  7.  Field photos of shear ruptures in Thabeikkjin

    (a) The left-step en echelon ground fissures, view to northwest; (b) The ground fissures in the south with each single length of 4 m, view to east; (c) The ground fissures, view to southeast; (d)The en echelon ground fissures, view to northwest; (e) The en echelon ground fissures on the edge of a pull-apart basin in the south, one side is pulled open and sunk while the other is uplifted, view to southeast (Length of the ruler is 25 cm); (f) Detailed features of a pull-apart ground fissure, view to south (Length of the record book is 20 cm); (g) Detailed characteristics of a pull-apart ground fissure in the south, view to north; (h) Formation mechanism of bulge, view to north (Length of the ruler is 25 cm)

    图  8  德贝金一带的地裂缝及细部放大图

    Figure  8.  Enlarged drawings showing details of the ground fissures around Thabeikkjin

    图  9  断层产生的右旋位错与地震楔

    a—德贝金田埂(宽30 cm)同步右旋位错10 cm,镜向东;b—房屋立柱右旋位错30 cm,镜向东;c—德贝金地裂缝,右旋位错4 cm;d—库勒房屋多条裂缝右旋位错2~3 cm,镜向北;e—德贝金江边地震断层(已钙质充填),总的右旋位错13 cm,镜向东;f—湖边阶地中断层,镜向南;g—湖边阶地中地震楔,镜向南

    Figure  9.  Field photos showing the dextral dislocations and the seismic wedge produced by seismic fault

    (a) An ~10 cm synchronized dextral displacement of ploughed furrows (~30 cm wide), view to east; (b) 30 cm dextral displacement of the house post, view to east; (c) A ground fissure with ~4 cm dextral displacement; (d) Dextral displacements of 2~3 cm occur on multiple house cracks at Kule, view to east; (e) Seismic fault (filled with calcium) at the riverside of Thabeikkjin, with a total dextral displacement of 13 cm, view to east; (f) Fault in lakeside terrace, view to south; (g) Seismic wedge in lakeside terrace, view to south

    图  10  地震地表破裂带展布图及位错量

    a—地震地表破裂带展布图(红线为地震地表破裂带);b—位错量曲线

    Figure  10.  Map showing the distribution of seismic surface fracture zone (a) and displacement curve diagram (b)

    图  11  萨贝纳戈伊洛瓦底江边张性破裂(镜向南)

    Figure  11.  Tensile rupture along the Irrawaddy River in Sabeanago (view to south)

  • ACHARYYA S K, RAY K K, SENGUPTA S, 1991. The Naga hills and Andaman ophiolite belt, their setting, nature and collisional emplacement history[J]. Physics and Chemistry of the Earth, 18: 293-315. doi: 10.1016/0079-1946(91)90006-2
    AKILAN A, BALAJI S, PADHY S, et al., 2016. The plate kinematics of Burmese micro-plate relative to its surroundings[J]. Arabian Journal of Geosciences, 9(5): 333. doi: 10.1007/s12517-016-2345-6
    BERTRAND G, RANGIN C, MALUSKI H, et al., 2001. Diachronous cooling along the Mogok Metamorphic Belt (Shan scarp, Myanmar): the trace of the northward migration of the Indian syntaxis[J]. Journal of Asian Earth Sciences, 19(5): 649-659. doi: 10.1016/S1367-9120(00)00061-4
    CHANG Z F, CHANG H, ZANG Y, et al., 2016. Recent active features of Weixi-Qiaohou fault and its relationship with the Honghe fault[J]. Journal of Geomechanics, 22(3): 517-530. (in Chinese with English abstract) http://qikan.cqvip.com/Qikan/Article/Detail?id=671161799
    CHANG Z F, CHANG H, LI J L, et al., 2021. Holocene activity and Paleoearthquakes of the Weixi-Qiaohou fault[J]. Seismology and Geology, 43(4): 881-898. (in Chinese with English abstract)
    CURRAY J R, 2005. Tectonics and history of the Andaman Sea region[J]. Journal of Asian Earth Sciences, 25(1): 187-232. doi: 10.1016/j.jseaes.2004.09.001
    GUO S M, JI F J, XIANG H F, et al., 2001. The Honghe active fault zone[M]. Beijing: China Ocean Press. (in Chinese)
    HALL R, 2012. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean[J]. Tectonophysics, 570-571: 1-41. doi: 10.1016/j.tecto.2012.04.021
    HURUKAWA N, MAUNG P M, 2011. Two seismic gaps on the Sagaing Fault, Myanmar, derived from relocation of historical earthquakes since 1918[J]. Geophysical Research Letters, 38(1): L01310.
    KUNDU B, GAHALAUT V K, 2012. Earthquake occurrence processes in the Indo-Burmese wedge and Sagaing fault region[J]. Tectonophysics, 524-525: 135-146. doi: 10.1016/j.tecto.2011.12.031
    LE DAIN A Y, TAPPONNIER P, MOLNAR P, 1984. Active faulting and tectonics of Burma and surrounding regions[J]. Journal of Geophysical Research: Solid Earth, 89(B1): 453-472. doi: 10.1029/JB089iB01p00453
    LICHT A, FRANCE-LANORD C, REISBERG L, et al., 2013. A palaeo Tibet-Myanmar connection? Reconstructing the Late Eocene drainage system of central Myanmar using a multi-proxy approach[J]. Journal of the Geological Society, 170(6): 929-939. doi: 10.1144/jgs2012-126
    MAURIN T, MASSON F, RANGIN C, et al., 2010. First global positioning system results in northern Myanmar: constant and localized slip rate along the Sagaing fault[J]. Geology, 38(7): 591-594. doi: 10.1130/G30872.1
    MITCHELL A H G, 1993. Cretaceous-Cenozoic tectonic events in the Western Myanmar (Burma)-Assam region[J]. Journal of the Geological Society, 150(6): 1089-1102. doi: 10.1144/gsjgs.150.6.1089
    MITCHELL A, HTAY M T, HTUN K M, et al., 2007. Rock relationships in the Mogok metamorphic belt, Tatkon to Mandalay, central Myanmar[J]. Journal of Asian Earth Sciences, 29(5-6): 891-910. doi: 10.1016/j.jseaes.2006.05.009
    MORLEY C K, 2004. Nested strike-slip duplexes, and other evidence for Late Cretaceous-Palaeogene transpressional tectonics before and during India-Eurasia collision, in Thailand, Myanmar and Malaysia[J]. Journal of the Geological Society, 161(5): 799-812. doi: 10.1144/0016-764903-124
    NIELSEN C, CHAMOT-ROOKE N, RANGIN C, 2004. From partial to full strain partitioning along the Indo-Burmese hyper-oblique subduction[J]. Marine Geology, 209(1-4): 303-327. doi: 10.1016/j.margeo.2004.05.001
    RAJU K A K, RAMPRASAD T, RAO P S, et al., 2004. New insights into the tectonic evolution of the Andaman basin, northeast Indian Ocean[J]. Earth and Planetary Science Letters, 221(1-4): 145-162. doi: 10.1016/S0012-821X(04)00075-5
    RANGIN C, BERTRAND G, CHAMOT-ROOKE N, 2002. Tectonics of the India/Eurasia oblique collision in Myanmar: Evidences from superimposed Cenozoic ductile and brittle fabrics[C]//17th geological HKT workshop. Gangtok.
    RANGIN C, MAURIN T, MASSON F, 2013. Combined effects of Eurasia/Sunda oblique convergence and East-Tibetan crustal flow on the active tectonics of Burma[J]. Journal of Asian Earth Sciences, 76: 185-194. doi: 10.1016/j.jseaes.2013.05.018
    SEARLE M P, NOBLE S R, COTTLE J M, et al., 2007. Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U-Th-Pb dating of metamorphic and magmatic rocks[J]. Tectonics, 26(3): TC3014, doi: 10.1029/2006TC002083.
    SEARLE M P, MORLEY C K, 2011. Tectonic and thermal evolution of Thailand in the regional context of SE Asia[M]//RIDD M F, BARBER A J, CROW M J. The geology of Thailand. London: Geological Society of London: 539-572.
    State Administration for Market Regulation, Standardization Administration of the People's Republic of China, 2020. The Chinese seismic intensity scale: GB/T 17742-2020[S]. Beijing: Standards Press of China. (in Chinese)
    SOCQUET A, PUBELLIER M, 2005. Cenozoic deformation in western Yunnan (China-Myanmar border)[J]. Journal of Asian Earth Sciences, 24(4): 495-515. doi: 10.1016/j.jseaes.2004.03.006
    SOCQUET A, VIGNY C, CHAMOT-ROOKE N, et al., 2006. India and Sunda plates motion and deformation along their boundary in Myanmar determined by GPS[J]. Journal of Geophysical Research: Solid Earth, 111(B5): B05406.
    SONG F M, WANG Y P, YU W X, et al., 1998. The Xiaojiang active fault zone[M]. Beijing: Seismological Press: 16-168. (in Chinese)
    TSUTSUMI H, SATO T, 2009. Tectonic geomorphology of the Southernmost Sagaing Fault and surface rupture associated with the May 1930 Pegu (Bago) earthquake, Myanmar[J]. Bulletin of the Seismological Society of America, 99(4): 2155-2168. doi: 10.1785/0120080113
    TUN S T, WANG Y, KHAING S N, et al., 2014. Surface ruptures of the Mw 6.8 March 2011 Tarlay earthquake, Eastern Myanmar[J]. Bulletin of the Seismological Society of America, 104(6): 2915-2932. doi: 10.1785/0120130321
    VIGNY C, SOCQUET A, RANGIN C, et al., 2003. Present-day crustal deformation around Sagaing fault, Myanmar[J]. Journal of Geophysical Research: Solid Earth, 108(B11): 2533. doi: 10.1029/2002JB001999
    WALLACE R E, 1998. The geology of earthquakes[J]. Eos, Transactions American Geophysical Union, 79(9): 115.
    WANG Y, SIEH K, TUN S T, et al., 2014. Active tectonics and earthquake potential of the Myanmar region[J]. Journal of Geophysical Research: Solid Earth, 119(4): 3767-3822. doi: 10.1002/2013JB010762
    XIANG H F, HAN Z J, GUO S M, et al., 2004. Large-scale dextral strike-slip movement and asociated tectonic deformation along the red-river fault zone[J]. Seismology and Geology, 26(4): 597-610. (in Chinese with English abstract)
    常祖峰, 常昊, 臧阳, 等, 2016. 维西-乔后断裂新活动特征及其与红河断裂的关系[J]. 地质力学学报, 22(3): 517-530. doi: 10.3969/j.issn.1006-6616.2016.03.009
    常祖峰, 常昊, 李鉴林, 等, 2021. 维西-乔后断裂全新世活动与古地震[J]. 地震地质, 43(4): 881-898. doi: 10.3969/j.issn.0253-4967.2021.04.009
    国家市场监督管理总局, 国家标准化管理委员会, 2020. 中国地震烈度表: GB/T 17742-2020[S]. 北京: 中国标准出版社.
    虢顺民, 计凤桔, 向宏发, 等, 2001. 红河活动断裂带[M]. 北京: 海洋出版社.
    宋方敏, 汪一鹏, 俞维贤, 等, 1998. 小江活动断裂带[M]. 北京: 地震出版社: 16-168.
    向宏发, 韩竹军, 虢顺民, 等, 2004. 红河断裂带大型右旋走滑运动与伴生构造地貌变形[J]. 地震地质, 26(4): 597-610. doi: 10.3969/j.issn.0253-4967.2004.04.006
  • 加载中
图(11)
计量
  • 文章访问数:  425
  • HTML全文浏览量:  160
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-27
  • 修回日期:  2022-01-20

目录

    /

    返回文章
    返回