留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青海昆仑河北地区岩浆活动、金矿成矿特征及找矿前景分析

焦和 康继祖 黄国彪 贾建团 彭建 鲁海峰 雷延祥

焦和, 康继祖, 黄国彪, 等, 2022. 青海昆仑河北地区岩浆活动、金矿成矿特征及找矿前景分析. 地质力学学报, 28 (3): 383-405. DOI: 10.12090/j.issn.1006-6616.2021159
引用本文: 焦和, 康继祖, 黄国彪, 等, 2022. 青海昆仑河北地区岩浆活动、金矿成矿特征及找矿前景分析. 地质力学学报, 28 (3): 383-405. DOI: 10.12090/j.issn.1006-6616.2021159
JIAO He, KANG Jizu, HUANG Guobiao, et al., 2022. Magmatism, metallogenic characteristics, and prospecting prediction for gold deposits in the north of Kunlun River area, Qinghai, China. Journal of Geomechanics, 28 (3): 383-405. DOI: 10.12090/j.issn.1006-6616.2021159
Citation: JIAO He, KANG Jizu, HUANG Guobiao, et al., 2022. Magmatism, metallogenic characteristics, and prospecting prediction for gold deposits in the north of Kunlun River area, Qinghai, China. Journal of Geomechanics, 28 (3): 383-405. DOI: 10.12090/j.issn.1006-6616.2021159

青海昆仑河北地区岩浆活动、金矿成矿特征及找矿前景分析

doi: 10.12090/j.issn.1006-6616.2021159
基金项目: 

中国地质调查局地质调查项目 1212011140113

详细信息
    作者简介:

    焦和(1983—), 男, 硕士, 高级工程师, 从事固体矿产勘查和研究工作。E-mail: 155148275@qq.com

    通讯作者:

    彭建(1982—), 男, 硕士, 高级工程师, 从事固体矿产勘查和研究工作。E-mail: 45889730@qq.com

  • 中图分类号: P611;P612

Magmatism, metallogenic characteristics, and prospecting prediction for gold deposits in the north of Kunlun River area, Qinghai, China

Funds: 

the Geological Survey Project of China Geological Survey 1212011140113

  • 摘要: 青海昆仑河北地区靠近昆中断裂带,经历早古生代、晚古生代—中生代多期岩浆活动,近年来自西至东陆续发现黑海北、拉陵灶火、苏海图、加祖它士西、向阳沟、加祖它士东、大灶火、黑刺沟等多个金矿床(点),形成一条东西长度近150 km长的成矿带。文章在总结带内金矿成矿基本特征基础上,选取黑海北金矿和加祖它士东金矿的赋矿围岩开展锆石U-Pb定年,结果显示黑海北硅化二长花岗岩锆石206Pb/238U加权平均年龄为443±8 Ma,形成于原特提斯洋向柴达木地块俯冲碰撞后伸展环境;加祖它士东的花岗闪长岩脉含有较多的继承锆石,锆石206Pb/238U加权平均年龄为250±1 Ma,继承锆石206Pb/238U加权平均年龄为420±2 Ma,加祖它士东花岗闪长岩侵位于古特提斯洋向北俯冲背景下的大陆弧构造环境。综合分析认为昆仑河北地区金矿成矿作用与早中生代三叠纪岩浆活动关系更为密切,其矿床类型存在造山型金矿与岩浆热液型金矿两种不同认识。昆仑河北地区土壤化探异常、低阻高极化激电异常、主要断裂(穿矿区)的次级断裂形成的蚀变破碎带等可以作为区内主要的找矿标志,推测该成矿带具有较大的找矿前景。

     

  • 图  1  研究区地质简图(a据Dong et al., 2018修改;b据王秉璋等,2008修改)

    a—研究区地质构造图;b—昆仑河北地区区域地质图(1—第四系;2—三叠系洪水川组;3—奥陶系纳赤台群;4—寒武纪变砂岩;5—金水口群;6—万宝沟群;7—三叠纪钾长花岗岩;8—三叠纪二长花岗岩;9—二叠纪花岗闪长岩;10—金矿床(点);11—逆断层;12—走滑断层;13—性质不明断层;14—背斜;15—向斜;16—地层产状)

    Figure  1.  Geological sketch of the study area (a is modified from Dong et al., 2018; b is modified from Wang et al., 2008)

    (a) Tectonic map of the study area; (b) Geological map of the northern Kunlun River area; 1-Quaternary; 2-Triassic Hongshuichuan Formation; 3-Ordovician Nachitai Group; 4-Cambrian metamorphic sandstone; 5-Jinshuikou Group; 6-Wanbaogou Group; 7-Triassic potassium feldspar granite; 8-Triassic monzonite granite; 9-Permian granodiorite; 10-Gold deposit (occurrence); 11-Reverse fault; 12-Strike-slip fault; 13-Unidentified fault; 14-Anticline; 15-Syncline; 16-Strata occurrence

    图  2  黑海北金矿床地质简图(底图据焦和等,2020修改)

    1—第四系;2—长石石英砂岩;3—砂质板岩;4—含砾岩屑砂岩;5—二长花岗岩;6—花岗闪长岩;7—闪长岩脉;8—蚀变破碎带及编号;9—逆冲断层;10—矿体及编号;11—矿化体

    Figure  2.  Geological map of the Heihaibei gold deposit (modified from Jiao et al., 2020)

    1-Quaternary; 2-Feldspathic quartz sandstone; 3-Sandy slate; 4-Pebbly lithic sandstone; 5-Monzonite granite; 6-Granodiorite; 7-Diorite vein; 8-Altered fracture zones and their numbers; 9-Thrust fault; 10-Orebodies and their numbers; 11-Mineralized bodies

    图  3  黑海北矿区04勘查线剖面图(底图据焦和等,2020修改)

    1—花岗岩;2—长石石英砂岩;3—断层;4—矿体;5—矿化体;6—褐铁矿化/黄铁矿化;7—硅化;8—破碎带;9—采样点;10—钻孔及编号

    Figure  3.  Profile map of No.04 exploration line in the Heihaibei mining area (modified from Jiao et al., 2020)

    1-Granite; 2-Feldspathic quartz sandstone; 3-Fault; 4-Orebodies; 5-Mineralized bodies; 6-Ferritization/; 7-Diorite vein; 8-Altered fracture zone and their numbers; 9-Thrust fault; 10-Orebodies and their numbers; 11-Mineralized bodies

    图  4  黑海北和加祖它士东金矿矿体矿石特征

    矿物代号:Qz—石英;Pl—斜长石;Amp—角闪石;Ser—绢云母;Py—黄铁矿
    a—黑海北矿区矿化破碎带野外照片;b—黑海北矿区典型硅化矿石;c—黑海北矿区硅化黄铁矿化花岗岩显微照片(反射光);d—黑海北矿区二长花岗岩;e—黑海北矿区二长花岗岩显微照片(透射,单偏光);f—加东矿区矿化破碎带野外照片;g—加东矿区含团块状黄铁矿矿石照片;h—加东矿区花岗闪长岩;i—加东矿区花岗闪长岩显微照片(透射,单偏光)。

    Figure  4.  Field pictures and micrographs showing the ore characteristics of the Heihaibei and Jiazutashidong gold deposits

    (a) Field picture of the mineralized fracture zone in the Heihaibei mining area; (b) Specimen of a typical silicified ore from the Heihaibei mining area; (c) Micrograph of a silicified pyritized granite in the Heihaibei mining area (reflection); (d) Field picture of a monzogranite from the Heihaibei mining area; (e) Micrograph of a monzogranite from the Heihaibei mining area (transmission, plane-polarized light); (f) Field picture of the mineralized fracture zone in the Jiazutashidong mining area; (g) Specimen of an agglomerated pyrite from the Jiazutashidong mining area; (h) Specimen of a granodiorite from the Jiazutashidong mining area; (i) Micrograph of a granodiorite from the Jiazutashidong mining area (transmission, plane-polarized light)
    Mineral code: Qz-Quartz; Pl-Plagioclase; Amp-Amphibole; Ser-Sericite; Py-Pyrite

    图  5  加祖它士东金矿床地质简图(底图据焦和等,2020修改)

    1—第四纪;2—三叠纪砂砾岩;3—含碳质板岩;4—灰岩夹板岩;5—绿片岩化安山岩;6—晚三叠纪花岗闪长岩;7—金矿体;8—蚀变破碎带及编号;9—逆冲断层;10—不整合接触

    Figure  5.  Geological map of the Jiazutashidong gold deposit (modified from Jiao et al., 2020)

    1-Quaternary; 2-Triassic glutenite; 3-Carbonaceous slate; 4-Limestone interbedded with slate; 5-Green schistized andesite; 6-Late Triassic granodiorite; 7-Gold orebody; 8-Altered fracture zone and its number; 9-Thrust fault; 10-Uunconformable contact

    图  6  加东矿区0勘探线剖面图(底图据焦和等,2020修改)

    1—第四系残坡积;2—砂砾岩;3—长石石英砂岩;4—炭质板岩;5—砂质板岩;6—安山岩;7—变余长石石英砂岩;8—灰岩;9—花岗闪长岩;10—断层;11—矿体;12—矿化体;13—采样点;14—钻孔及编号

    Figure  6.  Profile map of No.0 exploration line in the Jiazutashidong mining area (modified from Jiao et al., 2020)

    1-Quaternary residual slope accumulation; 2-Glutenite; 3-Feldspathic quartz sandstone; 4-Carbonaceous slate; 5-Sandy slate; 6-Andesite; 7-Palimpsest feldspathic quartz sandstone; 8-Limestone; 9-Granodiorite; 10-Fault; 11-Orebodies; 12-Mineralized bodies; 13-Sampling site; 14-Boreholes and their numbers

    图  7  测试样品锆石阴极发光照片及点位年龄

    Figure  7.  Zircon cathodoluminescence photos and point U-Pb ages of the samples

    图  8  黑海北二长花岗岩(HHB01)和加祖它士东花岗闪长岩(CY01)锆石U-Pb加权平均年龄图及和谐图

    Figure  8.  Zircon U-Pb weighted mean ages and concordia diagram of the Heihaibei monzonite (HHB01) and the Jiazutashidong granodiorite (CY01)

    图  9  昆仑河北地区1:5万化探异常图(底图据王秉章等,2008修改,图例同图 1)

    Figure  9.  1:50000 scale geochemical anomaly in the northern Kunlun River area (The source of the base map is modified from Wang et al., 2008, and the legends are the same as in Fig. 1)

    图  10  昆仑河北地区航磁异常图(底图据焦和等,2020修改)

    1—超基性岩类引起的异常;2—基性岩类引起的异常;3—中基性岩类引起的异常;4—酸性岩类引起的异常;5—中酸性岩类引起的异常;6—异常轴向

    Figure  10.  Aeromagnetic anomalies of the northern Kunlun River area (modified from Jiao et al., 2020)

    (1) Anomalies caused by ultra-basic rocks; (2) Anomalies caused by basic rocks; (3) Anomalies caused by intermediate-basic rocks; (4) Anomalies caused by acidic rocks; (5) Anomalies caused by intermediate-acid rocks; (6) Abnormal axial

    图  11  黑海北地区1:1万土壤测量异常分布图

    Figure  11.  1:10000 scale soil geochemical anomalies in the Heihaibei area

    图  12  黑海北00勘查线地物综合剖面图

    Figure  12.  Geological and geophysical comprehensive profile map of No.00 exploration line in the Heihaibei gold deposits

    表  1  昆仑河地区已发现金矿床(点)地质特征

    Table  1.   Geological characteristics of gold deposits discovered in the Kunlun River area

    矿床(点)名称 大灶火金矿 老道沟口金矿 没草沟金矿 铜金山金矿 黑海南金矿 黑刺沟金矿 黑海北金矿 苏海图金矿点 拉陵灶火金矿点 加祖它士西金矿点 加祖它士东金矿点 向阳沟金矿点
    矿化组合 Au Au-Pb Au Au-Cu Au Au Au Au Au Au Au Au
    围岩 二叠系马尔争组炭质千枚状板岩、三叠系洪水川组石英砂岩、岩屑砂岩 奥陶—志留系纳赤台群碎屑岩组灰绿色砂岩 下三叠统洪水川组长石砂岩、粉砂岩、板岩,奥陶—志留系纳赤台群碎屑岩 中新元古界万保沟群碳酸盐岩、下寒武统沙松乌拉组石英砂岩 中二叠统马尔争组与早—中三叠统昌马河组砂板岩接触带附近 奥陶—志留系纳赤台群碎屑岩组灰绿色砂岩 早志留二长花岗岩 奥陶系上统纳赤台群碎屑岩组灰绿色砂岩 奥陶系上统纳赤台群碎屑岩组灰绿色砂岩 中晚元古代万宝沟群灰白色硅质白云岩、暗绿灰色蚀变玄武岩夹白云岩、灰—灰绿色变长石砂岩夹粉砂岩 奥陶—志留系纳赤台群长石石英砂岩及泥质灰岩 中下三叠统洪水川组、晚寒武统沙松乌拉组碎屑岩
    岩浆岩 晚三叠世花岗闪长岩 矿区未见出露 少量花岗岩脉发育 矿点处岩浆岩不发育,矿点北侧晚三叠世斑状二长花岗岩发育 少量二长花岗岩 少量花岗岩脉发育 早志留二长花岗岩构造大量发育 矿区未见出露 矿区未见出露 发育大量花岗岩 发育大量花岗闪长岩脉 发育大量花岗岩
    控矿构造 北西西向构造破碎带受1条北西—南东向正断层控制,矿化产于宽约40 m的构造蚀变破碎带 受北西—南东向脆韧性断裂构造控制,矿区平卧褶皱发育 2条倾向南西的北西西向逆断层贯穿矿区,构造蚀变破碎带发育 昆中断裂带南侧北西西向、近东西向压扭性断裂构造发育 金矿体严格受断裂蚀变带控制,走向北西、北西西,矿体有分枝、复合与尖灭现象 2条近东西向压扭性断裂构造发育 区内发育2组断裂(F52、F53),呈近东西向延伸;F53断裂被后期二长花岗岩侵入破坏,形成含矿蚀变破碎带,是区内主要的控矿及容矿构造 主要断裂有3条,走向为北西、北西西向,与之相关的张裂隙大量发育 2条近东西向压扭性断裂构造发育 各方位断裂构造发育,主构造方向为近东西向压扭性断裂构造 区内构造活动强烈,主要分布4条主断裂构造,均为北西西向具挤压性质的逆断层,倾向北,具多期次活动特征 2条近东西向压扭性断裂构造发育
    矿体 呈北西西向带状展布,主矿带长约2.24 km,金矿体9条,厚度0.95~144.3 m不等,延伸长度达到478 m,品位1.6~12.5 g/t不等 呈透镜状断续产出,长大于350 m,宽1.0~3.7 m不等 呈北西西—南东东向透镜状、串珠状展布于黄褐色构造破碎带中,长大于1 km,宽10~40 m不等,厚0.6~10.2 m 呈透镜状、串珠状断续展布于强片理化蚀变带中,长度大于1.5 km,宽10~30 m不等 9条,其中主要矿体MⅡ-1和MⅡ-7、8、9;MⅡ-1呈似层状产出,走向约120°,视厚度为4.0 m 圈定金矿体7条,与断层走向基本一致 在近东西向Sb-1构造带中圈定金矿体11条,矿化体27条;矿体主要表现为地表整体品位高、厚度大、连续性好等特点;其中主矿体M3控制长度为660 m,控制斜深80~160 m不等,产状192°∠73°~86°,水平厚度4.90 m 在区内共发现金矿(化)点19处,圈定金矿化体13条(Au1~Au 13)、金矿体2条(M1和M2) 圈定3条含矿蚀变带,带内圈定金矿体13条;主矿体走向长度为480 m,控制斜深118~235 m不等,矿体平均真厚度为3.93 m,矿体北倾,倾角51°~60°,其形态为大透镜体状,展布方向为北西西向,地表未能揭露到该矿体 圈定规模较小的金矿体3条,金矿化体6条,长度一般在80 m以内,厚度2 m以内。 圈定1条宽17~22 m,长400米金矿化带,在该条矿化带中共圈定出金矿体2条,后期通过钻探工程验证,该条矿化带近直立;深部圈定厚大隐伏矿化带,在这条矿化带内圈定金矿体4条(M1、M2、M3、M4),长160~320 m,视厚度2~26.08 m 圈定金矿(化)体7条,宽0.55~6 m,长20~610 m,矿(化)体走向多数为北西西向,M6为北北西向
    矿石类型 构造蚀变岩型+石英脉型 石英脉型+蚀变岩型 蚀变岩型+石英脉型 蚀变岩型+石英脉型 蚀变岩型+石英脉型 构造蚀变岩型 石英脉型 石英脉型 蚀变岩型+石英脉型 构造蚀变岩型 蚀变岩型+石英脉型 蚀变岩型+石英脉型
    矿物组合 黄铁矿、褐铁矿、黄钾铁矾、方解石、绿泥石、高岭土 黄铁矿、方铅矿、褐铁矿 褐铁矿、孔雀石、黄铁矿 黄铁矿、黄铜矿、褐铁矿、石英、方解石 黄铁矿和毒砂为主,其余为少量的黄铜矿、孔雀石等 黄铁矿、方铅矿、褐铁矿 黄铁矿、褐铁矿、毒砂、黄铜矿、方铅矿、磁黄铁矿等 黄铁矿、方铅矿、褐铁矿 黄铁矿、黄铜矿、褐铁矿、石英、方解石 黄铁矿、方铅矿、褐铁矿 黄铁矿、黄铜矿、褐铁矿、石英、方解石 黄铁矿、褐铁矿、毒砂、黄铜矿、方铅矿、磁黄铁矿等
    矿物组构 他形—半自形粒状结构、鳞片变晶结构、碎裂结构,浸染状构造、细网脉状构造、团块状构造 自形—半自形粒状晶,局部他形粒状晶,细脉状、侵染状、团块状构造 他形粒状结构、交代残余结构,团块状构造、条带状构造 半自形—他形粒状结构,浸染状、块状构造 自形—半自形粒状结构、他形粒状结构、交代残余结构、反应边结构、交代网状结构 他形粒状结构、交代残余结构,团块状构造、条带状构造 区内肉眼可见矿石矿物主要为黄铁矿,粒状结构,呈他形—半自形粒状、偶见自形粒状结构,以细粒为主,粒径一般0.1~1mm 半自形—他形粒状结构,浸染状、块状构造 半自形—他形粒状结构,浸染状、块状构造 半自形—他形粒状结构,浸染状、块状构造 半自形—他形粒状结构,浸染状、块状构造 自形—半自形粒状结构、他形粒状结构、交代残余结构、反应边结构、交代网状结构
    矿体品位 Au 1.6~12.5 g/t Au 1.16~7.26 g/t;Pb 1.39%~6.36% Au 0.91~2.58 g/t,最高品位13 g/t Au 0.6~3.0 g/t,最高17 g/t;Cu 0.07%~1.11% 最高4.34 g/t 1.45~3.31 g/t,最高品位13.0 g/t 7.70 g/t,最高品位65.90 g/t 0.33~9.74 g/t最高品位27.6 g/t 平均品位2.23 g/t,最高品位5.43 g/t 最高品位6.34 g/t 1.14~3.55 g/t,最高品位7.88 g/t 1.56~11.1 g/t
    金赋存形态 主要以不可见金形式赋存于硫化物中 明金不发育,以超微粒形式赋存于黄铁矿中为主 以不可见金形式赋存于硫化物中 以独立矿物自然金和类质同象形式产出 以微细粒状态赋存在黄铁矿中 主要以不可见金形式赋存于硫化物中 以独立矿物自然金为主 以独立矿物自然金为主,局部可见明金 以不可见金形式赋存于硫化物中 主要以不可见金形式赋存于硫化物中 主要以不可见金形式赋存于硫化物中 主要以不可见金形式赋存于硫化物中
    围岩蚀变 硅化、碳酸盐化、绿泥石化 高岭土化 硅化,局部弱碳酸盐化、绿泥石化 碳酸盐化、硅化、绢云母化 硅化、黄铁矿化、绢云母化、碳酸盐化以及绿泥石化等 碳酸盐化、硅化、绢云母化 褐铁矿化、硅化、绢云母化、高岭土化 褐铁矿化、硅化、绢云母化 褐铁矿化、硅化、绢云母化、高岭土化 硅化、黄铁矿化、绢云母化、碳酸盐化以及绿泥石化等 褐铁矿化、硅化、绢云母化、高岭土化 褐铁矿化、硅化、绢云母化、高岭土化
    金金属量/t (333+334) 3.6 3.2 1.75 6.05(332+333) 4.88 1.7
    资料来源 冯李强,2017安海西等,2018 逯永卓等,2020 刘彩乐等,2018 李升阳等,2013 申浩,2016 冯李强,2017 黄国彪等,2021 拜红奎等,2019 黄国彪等,2019 潘存钢,2019 雷延祥等,2019 潘鑫等,2019
    下载: 导出CSV

    表  2  黑海北二长花岗岩(HHB01)和加祖它士东花岗闪长岩(CY01)锆石LA-ICPMS U-Pb同位素年龄测试结果

    Table  2.   Zircon LA-ICP-MS U-Pb data of the Heihaibei monzonite (HHB01) and the Jiazutashidong granodiorite (CY01)

    测点 含量/×10-6 同位素比值 同位素年龄/Ma
    Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
    黑海北HHB01
    1 33.83 130.78 388.42 0.0565 0.0013 0.5888 0.0153 0.0754 0.0009 478 52 470 10 469 6
    2 38.39 151.12 445.45 0.0566 0.0012 0.5329 0.0113 0.0682 0.0007 476 46 434 8 425 4
    3 46.06 194.54 529.60 0.0564 0.0010 0.5677 0.0119 0.0728 0.0009 478 41 457 8 453 5
    4 59.02 159.55 681.07 0.0550 0.0009 0.5593 0.0107 0.0736 0.0009 409 40 451 7 458 6
    5 40.12 180.06 447.24 0.0596 0.0017 0.5880 0.0226 0.0703 0.0009 591 63 470 15 438 5
    6 46.81 236.10 521.28 0.0553 0.0009 0.5266 0.0099 0.0689 0.0008 433 37 430 7 430 5
    7 20.68 104.75 231.99 0.0573 0.0013 0.5512 0.0139 0.0697 0.0010 506 48 446 9 434 6
    8 24.97 103.24 281.50 0.0572 0.0012 0.5636 0.0127 0.0715 0.0009 498 44 454 8 445 5
    9 33.59 141.62 379.61 0.0584 0.0011 0.5813 0.0123 0.0720 0.0008 546 39 465 8 448 5
    10 20.58 87.55 228.29 0.0579 0.0013 0.5755 0.0131 0.0726 0.0010 524 50 462 9 452 6
    11 31.82 181.33 348.26 0.0579 0.0013 0.5575 0.0128 0.0700 0.0008 528 46 450 8 436 5
    12 35.06 166.81 397.83 0.0589 0.0012 0.5575 0.0109 0.0689 0.0007 565 46 450 7 429 4
    13 50.56 216.94 543.65 0.0626 0.0012 0.6096 0.0102 0.0712 0.0008 695 47 483 6 444 5
    14 67.56 147.77 794.42 0.0570 0.0008 0.5644 0.0100 0.0716 0.0009 495 28 454 7 446 5
    15 25.13 103.23 286.54 0.0601 0.0013 0.5927 0.0159 0.0710 0.0009 609 45 473 10 442 6
    16 87.64 270.66 1065.25 0.0656 0.0010 0.5943 0.0107 0.0655 0.0006 794 32 474 7 409 4
    加祖它士东CY01
    1 22.96 240.36 443.52 0.0522 0.0013 0.2847 0.0075 0.0395 0.0004 295 56 254 6 250 3
    2 73.51 665.87 1433.60 0.0526 0.0008 0.2853 0.0048 0.0393 0.0004 322 35 255 4 248 2
    3 18.55 137.47 363.24 0.0531 0.0013 0.2929 0.0075 0.0401 0.0005 345 56 261 6 253 3
    4 26.73 195.03 538.01 0.0505 0.0012 0.2806 0.0068 0.0404 0.0004 217 86 251 5 255 3
    5 19.80 182.47 394.40 0.0502 0.0012 0.2698 0.0066 0.0390 0.0004 206 54 243 5 246 2
    6 9.61 92.07 185.65 0.0495 0.0021 0.2655 0.0111 0.0393 0.0006 169 94 239 9 249 3
    7 41.12 249.92 472.52 0.0565 0.0009 0.5226 0.0103 0.0668 0.0007 472 37 427 7 417 4
    8 16.48 80.51 195.72 0.0559 0.0014 0.5105 0.0132 0.0665 0.0008 456 54 419 9 415 5
    9 30.14 130.11 360.82 0.0572 0.0012 0.5298 0.0121 0.0670 0.0007 502 46 432 8 418 4
    10 20.37 87.85 238.74 0.0569 0.0015 0.5379 0.0153 0.0684 0.0008 487 57 437 10 426 5
    11 24.30 104.08 280.29 0.0564 0.0012 0.5343 0.0132 0.0685 0.0008 465 53 435 9 427 5
    12 31.37 136.90 363.56 0.0552 0.0011 0.5206 0.0112 0.0684 0.0008 420 44 426 7 426 5
    13 57.27 209.82 689.19 0.0556 0.0008 0.5179 0.0092 0.0672 0.0007 439 36 424 6 419 4
    14 29.27 152.32 341.28 0.0539 0.0010 0.4973 0.0103 0.0667 0.0007 369 43 410 7 416 4
    15 30.18 130.12 357.27 0.0554 0.0010 0.5157 0.0112 0.0673 0.0008 428 45 422 8 420 5
    下载: 导出CSV
  • A C Y, WANG Y Z, REN J Q, et al., 2002. Disintegration of the Wanbaogou Group and discovery of Early Cambrian strata in the East Kunlun area[J]. Geology in China, 30(2): 199-206. (in Chinese with English abstract)
    AN H X, HAN G, WU P F, et al., 2018. Deposit geological characteristics and prospecting potential of Dazaohuogou-Heicigou gold mine in Qinghai province[J]. Metal Mine, (9): 127-136. (in Chinese with English abstract)
    BAI H K, TIAN H J, HUANG G B, et al., 2019. Pre-investigation report of gold polymetallic deposits in the upper reaches of Suhaitu River(2014-2016), Golmud city, Qinghai province[R]. Golmud: Qaidam basin comprehensive geological and mineral exploration Institute of Qinghai province. (in Chinese)
    CHEN B L, DENG Y L, CHEN J L, et al., 2016. Two ore-controlling structure systems in Wulonggou gold orefield, Qinghai province and its expecting significance[J]. Geotectonica et Metallogenia, 40(2): 224-236. (in Chinese with English abstract)
    CHEN B L, 2019. Geological characteristics of the Wulonggou gold ore field and determination of metallogenic geological bodies in East Kunlun Mountains[J]. Acta Geologica Sinica, 93(1): 179-196. (in Chinese with English abstract)
    CHEN B L, WANG Y, HAN Y, et al., 2019. Metallogenic age of Yanjingou gold deposit in Wulonggou gold orefield, eastern Kunlun Mountains[J]. Mineral Deposits, 38(3): 541-556. (in Chinese with English abstract)
    CHEN G C, PEI X Z, LI R B, et al., 2020. Late Palaeozoic-Early Mesozoic tectonic-magmatic evolution and mineralization in the eastern section of the East Kunlun Orogenic Belt[J]. Earth Science Frontiers, 27(4): 33-48. (in Chinese with English abstract)
    CHEN J J, 2018. Paleozoic-Mesozoic tectono-magmatic evolution and gold mineralization in Gouli Area, east end of East Kunlun Orogen[D]. Wuhan: China University of Geosciences. (in Chinese with English abstract)
    DANG X Y, FAN G Z, LI Z M, et al., 2006. Typic deposit analysis in the Eastern Kunlun area, NW China[J]. Northwestern Geology, 39(2): 143-155. (in Chinese with English abstract)
    DING Q F, 2004. Metallogenesis and mineral resources assessment in eastern Kunlun orogenic Belt[D]. Changchun: Jilin University. (in Chinese with English abstract)
    DING Q F, WANG S K, WANG G, et al., 2013. Ore-forming fluid of the Guoluolongwa gold deposit in Dulan, Qinghai province[J]. Journal of Jilin University(Earth Science Edition), 43(2): 415-426. (in Chinese with English abstract)
    DONG Y P, HE D F, SUN S S, et al., 2018. Subduction and accretionary tectonics of the East Kunlun orogen, western segment of the Central China Orogenic System[J]. Earth-Science Reviews, 186: 231-261. doi: 10.1016/j.earscirev.2017.12.006
    FENG C Y, 2002. Multiple orogenic processes and mineralization of orogenic gold deposits in the east Kunlun orogen, Qinghai province[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)
    FENG C Y, ZHANG D Q, LI D X, et al., 2003. Sulfur and lead isotope geochemistry of the orogenic gold deposits in East Kunlun area, Qinghai province[J]. Acta Geoscient Ica Sinica, 24(6): 593-598. (in Chinese with English abstract)
    FENG C Y, LI D S, QU W J, et al., 2009. Re-Os isotopic dating of molybdenite from the suolajier skarn-type copper-molybdenum deposit of qimantage mountain in Qinghai province and its geological significance[J]. Rock and Mineral Analysis, 28(3): 223-227. (in Chinese with English abstract)
    FENG L Q, 2017. Geological and geochemical characteristics and ore genesis of the gold deposits in the Kunlun river district, Qinghai province[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    GAO Y B, 2013. The Intermediate-acid intrusive magmatism and mineralization in Qimantag, East Kunlun Moutains[D]. Beijing: Chang'an University. (in Chinese with English abstract)
    GUO Z F, DENG J F, XU Z Q, et al., 1998. Late Palaeozoic-Mesozoic intracontinental orogenic process and intermedate-acidic igneous rocks from the eastern Kunlun Mountains of Northwestern China[J]. Geoscience, 12(3): 344-352. (in Chinese with English abstract)
    HAN S F, ZHANG W S, 2004. Research on the third round of metallogenic prospect planning and prediction of prospecting target area, Qinghai province[R]. Xining, Qinghai Provincial Department of Land and Resources. (in Chinese)
    HAN Z H, SUN F Y, TIAN N, et al., 2021. Zircon U-Pb geochronology, geochemistry and geological implications of the early Paleozoic Wulanwuzhuer granites in the Qimantag, east Kunlun, China[J]. Earth Science, 46(1): 13-30. (in Chinese with English abstract)
    HE S Y, SHU S L, LIU Y L, et al., 2013. Summary of effective prospecting methods in Qimantag area, Qinghai province[J]. Mineral Deposits, 32(1): 187-194. (in Chinese with English abstract)
    HUANG G B, PENG J, WANG W H, et al., 2019. Metallogenic regularity and prospecting work deployment report of Lalingzaohuo gold deposit in Kunlun River area, Golmud city, Qinghai province[R]. Golmud: Qaidam basin comprehensive geological and mineral exploration Institute of Qinghai province. (in Chinese)
    HUANG G B, TIAN H J, LI C X, et al., 2020. Census report of Heihaibei gold mine in Golmud city, Qinghai province[R]. Golmud: Qaidam basin comprehensive geological and mineral exploration Institute of Qinghai province. (in Chinese)
    HUANG G B, MA W H, LI C Y, et al., 2021. Geological characteristics and prospecting prospects of Heihaibei Gold Deposit in Kunlunhe Area, Qinghai province[J]. Gold, 42(6): 26-30. (in Chinese with English abstract)
    JIAN K K, HE Y F, ZHAO D C, et al., 2020. Zircon U-Pb dating and geochemical characteristics of Zaohuogou Granitoids in the middle part of east Kunlun, China and their tectonic significance[J]. Journal of Earth Sciences and Environment, 42(5): 603-621. (in Chinese with English abstract)
    JIANG C F, 1992. Opening and closing tectonics in Kunlun[M]. Beijing: Geological Publishing House. (in Chinese)
    JIAO H, PENG J, WANG W H, et al., 2020. Metallogenic regularity and prospecting report of gold deposits in Kunlun River area, Golmud city, Qinghai province[R]. Golmud: Qaidam basin comprehensive geological and mineral exploration Institute of Qinghai province. (in Chinese)
    KANG J Z, Xu B B, XU W W, et al., 2014. Tungsten-tin mineralization characteristics of Kunlun river, and its relationship with early devonian granite[J]. China Mining Magazine, 23(2): 71-73. (in Chinese with English abstract)
    LEI Y X, LIU J B, PENG J, et al., 2019. Pre-investigation report of Jiazutaishixi gold-polymetallic mine in Golmud city, Qinghai province[R]. Golmud: Qaidam basin comprehensive geological and mineral exploration Institute of Qinghai province. (in Chinese)
    LI J C, 2017. Metallogenic regularity and metallogenic prognosis of gold deposit in the East Kunlun orogen, Qinghai province[D]. Xi'an: Chang'an University. (in Chinese with English abstract)
    LI S Y, LU H F, KANG J Z, et al., 2013. Exploring the geological characteristics and genesis of the Wanbaogou gold deposit in Golmud city, Qinghai province[J]. Earth, (9): 17, 82. (in Chinese with English abstract)
    LI W Y, 2010. Metallogenic characteristics and exploration countermeasures of Qimantage prospecting prospect[J]. Mineral Deposits, 29(S1): 16-17. (in Chinese)
    LI W Y, ZHANG Z W, GAO Y B, et al., 2011. Important metallogenic events and tectonic response of Qinling, Qilian and Kunlun orogenic belts[J]. Geology in China, 38(5): 1135-1149. (in Chinese with English abstract)
    LIU C L, LIU Y J, MO D S, et al., 2018. Prediction of deep halo prospecting of Heicigou gold deposit in Qinghai[J]. China' s Manganese Industry, 36(5): 28-33. (in Chinese with English abstract)
    LIU W, YANG X K, WANG S L, et al., 2014. Characteristics of ore-controlling structures of the Hutouya orefield in the Qimantage metallogenic belt, Qinghai province[J]. Geology in China, 41(1): 222-234. (in Chinese with English abstract)
    LIU W, YANG X K, JIANG W, et al., 2021. Analysis of the tectonic stress field in Hutouya copper polymetallic ore field, Qimantage of East Kunlun[J]. Northwestern Geology, 54(4): 100-112. (in Chinese with English abstract)
    LU L, WU Z H, HU D G, et al., 2010. Zircon U-Pb age for rhyolite of the Maoniushan Formation and its tectonic significance in the east Kunlun mountains[J]. Acta Petrologica Sinica, 26(4): 1150-1158. (in Chinese with English abstract)
    LIU Y S, HU Z C, ZONG K Q, et al., 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4
    LU Y H, WANG L, SHENG J H, et al., 2020. Formation age, geochemical characteristics, tectonic setting and gold mineralization of amphibole-rich mafic rocks of the Nagenglongwa gold deposit in the eastern part of the East Kunlun Orogenic Belt[J]. Gold, 41(11): 5-15. (in Chinese with English abstract)
    LU Y Z, WANG T S, ZHENG Y, et al., 2020. Metallogenic regularity and prospecting direction of gold and tungsten deposits in Kunlunhe area, Qinghai province[J]. Mineral Exploration, 11(10): 2109-2116. (in Chinese with English abstract)
    LUO Z H, DENG J F, CAO Y Q, et al., 1999. On late Paleozoic Early Mesozoic volcanism and regional tectonic evolution of Eastern Kunlun, Qinghai province[J]. Geoscience, 13(1): 51-56. (in Chinese with English abstract)
    MENG F C, ZHANG J X, CUI M H, 2013. Discovery of Early Paleozoic eclogite from the East Kunlun, western China and its tectonic significance[J]. Gondwana Research, 23(2): 825-836. doi: 10.1016/j.gr.2012.06.007
    MO X X, LUO Z H, DENG J F, et al., 2007. Granitoids and crustal growth in the East-Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 13(3): 403-414. (in Chinese with English abstract)
    PAN C G, WAN W T, LI C X, et al., 2019. Forecast report of Jiazutashixi gold polymetallic deposit, Golmud Qinghai Province[R]. Xining: Geological and Mineral Exploration Institute of Qinghai Province. (in Chinese)
    PAN G T, WANG L Q, ZHANG W P, et al., 2013. Tectonic map and description of Qinghai Tibet Plateau and its adjacent areas (1:1500000)[M]. Beijing: Geological Publishing House. (in Chinese)
    PAN T, BAI Y S, SUN F Y, et al., 2011. Metallogenic series and metallogenic prediction of nonferrous and precious metal minerals in East Kunlun area, Qinghai province[M]. Beijing: Geological Publishing House. (in Chinese)
    PAN X, QIAO J F, SUN T T, et al., 2019. Geological characteristics and prospecting signs of Xiangyanggou copper-gold polymetallic deposit, Qinghai Province[J]. China's Manganese Industry, 37(4): 61-65. (in Chinese with English abstract)
    SHEN H, 2016. Geochemical characteristics and ore genesis of the Heihainan gold deposit in Kunlunhe area, Qinghai[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    SHI L C, CAI H J, XU H Q, et al., 2017. Material composition characteristics of Naijtal Group in subduction accretion complex on the southern slope of East Kunlun Mountains[J]. Geological Bulletin of China, 36(2-3): 251-257. (in Chinese with English abstract)
    SUN F Y, CHEN G H, CHI X G, et al., 2003. Report of comprehensive research results of metallogenic regularity and prospecting direction in Xinjiang-Qinghai east Kunlun metallogenic belt[R]. Changchun: Geological survey research institute of Jilin Unversity. (in Chinese)
    TANG Y, FU L B, YANG B R, et al., 2017. Ore controlling regularities of fault in the Guoluolongwa lode gold deposit, east segment of Eastern Kunlun orogen[J]. Geological Science and Technology Information, 36(2): 160-167. (in Chinese with English abstract)
    WANG B Z, QI S S, DING X Q, et al., 2008. Mineral resource potential evaluation actual material drawing and construction structure drawing instruction (1:250000), Dazaohuo area, Qinghai province[R]. Xining: Geological Survey Institute of Qinghai province. (in Chinese)
    WANG S, FENG C Y, LI S J, et al., 2009. Zircon SHRIMP U-Pb dating of granodiorite in the Kaerqueka polymetallic ore deposit, Qimantage Mountain, Qinghai province, and its geological implications[J]. Geology in China, 36(1): 74-84. (in Chinese with English abstract)
    WU T X, ZHANG S N, AN R L, et al., 2009. Analysis of ore-bearing stratum at the gold mine within the east segment of the East kunlun in Qinghai province[J]. Mineral Resources and Geology, 23(5): 431-441. (in Chinese with English abstract)
    WU Y B, ZHENG Y F, 2004. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(15): 1554-1569. doi: 10.1007/BF03184122
    XIAO Y, FENG C Y, LI D X, et al., 2014. Chronology and fluid inclusions of the Guoluolongwa gold deposit in Qinghai Province[J]. Acta Geologica Sinica, 88(5): 895-902. (in Chinese with English abstract)
    XU W Y, ZHANG D Q, YAN S H, et al., 2001. Advances and prospecting of the mineral resources survey in Eastern Kunlun Area[J]. Chinese Geology, 28(1): 25-29. (in Chinese)
    YANG J S, ROBINSON P T, JIANG C F, et al., 1996. Ophiolites of the Kunlun Montains, China and their tectonic implications[J]. Tectonophysics, 258(1/2/3/4): 215-231.
    YANG J S, XU Z Q, LI H B, et al., 2005. The Paleo-Tethyan Volcanism and Plate Tectonic Regime in the A'nyemaqen Region of East Kunlun, Northern Tibet Plateau[J]. Acta Petrologica et Mineralogica, 24(5): 369-380. (in Chinese with English abstract)
    YANG S D, WU Z S, ZHAO C X, et al., 2013. Report on evaluation results of mineral resources potential in Qinghai province[R]. Xining: Bureau of Geological Exploration & Development of Qinghai Province. (in Chinese)
    YI P Q, WU Z S, ZHAO J W, et al., 2013. Report on research results of regional metallogenic law of important minerals in Qinghai province[R]. Xining: Bureau of Geological Exploration & Development of Qinghai Province. (in Chinese)
    YIN H F, ZHANG K X, 1998. Evolution and characteristics of the central orogenic belt[J]. Earth Science-Journal of China University of Geosciences, 23(5): 437-442. (in Chinese with English abstract)
    YUE W H, GAO J G, ZHOU J X, et al., 2013. LA-ICP-MS zircon U-Pb ages and lithogeochemistry of basic dykes in the Guoluolongwa Au ore field, Qinghai province, china[J]. Mineral Petrol, 33(3): 93-102. (in Chinese with English abstract)
    YU L, SUN F Y, BEIER C, et al., 2022. Geology, U-Pb geochronology and stable isotope geochemistry of the Heihaibei gold deposit inthe southern part of the Eastern Kunlun Orogenic Belt, China: a granitic intrusion-related gold deposit?[J]. Ore Geology Reviews, 144: 104859. doi: 10.1016/j.oregeorev.2022.104859
    YU M, FENG C Y, SANTOSH M, et al., 2017. The Qiman Tagh Orogen as a window to the crustal evolution in northern Qinghai-Tibet Plateau[J]. Earth-Science Reviews, 167: 103-123. doi: 10.1016/j.earscirev.2017.02.008
    ZHANG A K, MO X X, Li Y P, et al., 2010. New progress and significance in the Qimantage metallogenic belt prospecting, western Qinghai, China[J]. Geological Bulletin of China, 29(7): 1062-1074. (in Chinese with English abstract)
    ZHANG A K, LIU Z G, ZHANG D M, et al., 2020. Metallogenic model and discovery significance of the Chuakelaqian cryptoexplosion breccia type Pb-Zn deposit in the Qimantag metallogenic belt, Qinghai province[J]. Geological Bulletin of China, 39(2-3): 319-329. (in Chinese with English abstract)
    ZHANG D Q, DANF X Y, SHE H Q, et al., 2005. Ar-Ar dating of orogenic gold deposits in northern margin of Qaidam and East Kunlun Mountains and its geological significance[J]. Mineral Deposits, 24(2): 87-98. (in Chinese with English abstract)
    ZHANG D Q, WANG F C, SHE H Q, et al., 2007. Three-order ore-controlling structural system of orogenic gold deposits in the northern Qaidam margin- East Kunlun region[J]. Geology in China, 34(1): 92-100. (in Chinese with English abstract)
    ZHANG X T, YANG S D, 2007. Introduction to regional geology of Qinghai province[M]. Beijing: Geological Publishing House. (in Chinese)
    ZHANG Y L, HU D G, SHI Y R, et al., 2010. SHRIMP zircon U-Pb ages and tectonic significance of Maoniushan Formation volcanic rocks in East Kunlun orogenic belt, China[J]. Geological Bulletin of China, 29(11): 1614-1618. (in Chinese with English abstract)
    ZHANG Y T, 2018. Research on metallogenesis of gold deposits in the Wulongou ore concentration area, central segment of the East Kunlun Mountains, Qinghai province[D]. Changchun: Jilin University. (in Chinese with English abstract)
    阿成业, 王毅智, 任晋祁, 等, 2003. 东昆仑地区万保沟群的解体及早寒武世地层的新发现[J]. 中国地质, 30(2): 199-206. doi: 10.3969/j.issn.1000-3657.2003.02.014
    安海西, 韩光, 武鹏飞, 等, 2018. 青海大灶火沟—黑刺沟金矿矿床地质特征及找矿前景[J]. 金属矿山 (9): 127-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201809025.htm
    拜红奎, 田海军, 黄国彪, 等, 2019. 青海省格尔木市苏海图河上游金多金属矿预查报告(2014—2016年度)[R]. 格尔木: 青海省柴达木综合地质矿产勘查院.
    陈柏林, 邓元良, 陈建林, 等, 2016. 青海五龙沟金矿田两种控矿构造识别及其找矿意义[J]. 大地构造与成矿学, 40(2): 224-236. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201602005.htm
    陈柏林, 2019. 东昆仑五龙沟金矿田地质特征与成矿地质体厘定[J]. 地质学报, 93(1): 179-196. doi: 10.3969/j.issn.0001-5717.2019.01.011
    陈柏林, 王永, 韩玉, 等, 2019. 东昆仑五龙沟矿田岩金沟金矿床成矿时代新认识[J]. 矿床地质, 38(3): 541-556. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201903006.htm
    陈国超, 裴先治, 李瑞保, 等, 2020. 东昆仑造山带东段晚古生代—早中生代构造岩浆演化与成矿作用[J]. 地学前缘, 27(4): 33-48. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202004004.htm
    陈加杰, 2018. 东昆仑造山带东端沟里地区构造岩浆演化与金成矿[D]. 武汉: 中国地质大学.
    党兴彦, 范桂忠, 李智明, 等, 2006. 东昆仑成矿带典型矿床分析[J]. 西北地质, 39(2): 143-155. doi: 10.3969/j.issn.1009-6248.2006.02.009
    丁清峰, 2004. 东昆仑造山带区域成矿作用与矿产资源评价[D]. 长春: 吉林大学.
    丁清峰, 金圣凯, 王冠, 等, 2013. 青海省都兰县果洛龙洼金矿成矿流体[J]. 吉林大学学报(地球科学版), 43(2): 415-426. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201302011.htm
    丰成友, 2002. 青海东昆仑地区的复合造山过程及造山型金矿床成矿作用[D]. 北京: 中国地质科学院.
    丰成友, 张德全, 李大新, 等, 2003. 青海东昆仑造山型金矿硫、铅同位素地球化学[J]. 地球学报, 24(6): 593-598. doi: 10.3321/j.issn:1006-3021.2003.06.022
    丰成友, 李东生, 屈文俊, 等, 2009. 青海祁漫塔格索拉吉尔矽卡岩型铜钼矿床辉钼矿铼-锇同位素定年及其地质意义[J]. 岩矿测试, 28(3): 223-227. doi: 10.3969/j.issn.0254-5357.2009.03.006
    冯李强, 2017. 青海省昆仑河地区金矿床地质地球化学特征与矿床成因[D]. 北京: 中国地质大学(北京).
    高永宝, 2013. 东昆仑祁漫塔格地区中酸性侵入岩浆活动与成矿作用[D]. 西安: 长安大学.
    郭正府, 邓晋福, 许志琴, 等, 1998. 青藏东昆仑晚古生代末—中生代中酸性火成岩与陆内造山过程[J]. 现代地质, 12(3): 344-352. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ803.006.htm
    韩生福, 章午生, 2004. 青海省第三轮成矿远景区划研究及找矿靶区预测[R]. 西宁: 青海省国土资源厅.
    韩志辉, 孙丰月, 田楠, 等, 2021. 东昆仑祁漫塔格地区乌兰乌珠尔早古生代花岗岩锆石U-Pb年代学、地球化学及其地质意义[J]. 地球科学, 46(1): 13-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202101002.htm
    何书跃, 舒树兰, 刘永乐, 等, 2013. 青海祁漫塔格地区有效找矿方法总结[J]. 矿床地质, 32(1): 187-194. doi: 10.3969/j.issn.0258-7106.2013.01.014
    黄国彪, 彭建, 王伟虎, 等, 2019. 青海省格尔木市昆仑河地区拉陵灶火金矿成矿规律及找矿工作部署报告[R]. 格尔木: 青海省柴达木综合地质矿产勘查院.
    黄国彪, 田海军, 李成勋, 等, 2020. 青海省格尔木市黑海北金矿普查报告[R]. 格尔木: 青海省柴达木综合地质矿产勘查院.
    黄国彪, 马文虎, 李长印, 等, 2021. 青海昆仑河地区黑海北金矿床地质特征及找矿前景[J]. 黄金, 42(6): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ202106005.htm
    菅坤坤, 何元方, 赵端昌, 等, 2020. 东昆仑中段灶火沟花岗岩锆石U-Pb年代学、地球化学特征及其构造意义[J]. 地球科学与环境学报, 42(5): 603-621. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202005004.htm
    姜春发, 1992. 昆仑开合构造[M]. 北京: 地质出版社.
    焦和, 彭建, 王伟虎, 等, 2020. 青海省格尔木市昆仑河地区金矿成矿规律及找矿工作部署报告[R]. 格尔木: 青海省柴达木综合地质矿产勘查院.
    康继祖, 许贝贝, 薛万文, 2014. 青海昆仑河地区钨锡成矿特征及与早泥盆世花岗岩的关系[J]. 中国矿业, 23(2): 71-73, 98. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201412018.htm
    雷延祥, 刘久波, 彭建, 等, 2019. 青海省格尔木市加祖它士西金多金属矿预查报告[R]. 格尔木: 青海省柴达木综合地质矿产勘查院.
    李金超, 2017. 青海东昆仑地区金矿成矿规律及成矿预测[D]. 西安: 长安大学.
    李升阳, 鲁海峰, 康继祖, 2013. 探究青海省格尔木市万保沟金矿的地质特征及成因[J]. 地球 (9): 17, 82. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201704168.htm
    李文渊, 2010. 祁漫塔格找矿远景区成矿特征及其勘查对策[J]. 矿床地质, 29(S1): 16-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2010S1013.htm
    李文渊, 张照伟, 高永宝, 等, 2011. 秦祁昆造山带重要成矿事件与构造响应[J]. 中国地质, 38(5): 1135-1149. doi: 10.3969/j.issn.1000-3657.2011.05.002
    刘彩乐, 刘玉军, 莫东山, 等, 2018. 青海黑刺沟金矿床原生晕深部找矿预测[J]. 中国锰业, 36(5): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201805010.htm
    刘渭, 杨兴科, 王守良, 等, 2014. 青海省祁漫塔格矿带虎头崖矿田构造控矿特征[J]. 中国地质, 41(1): 222-234. doi: 10.3969/j.issn.1000-3657.2014.01.018
    刘渭, 杨兴科, 江万, 等, 2021. 东昆仑祁漫塔格虎头崖铜多金属矿田构造应力场分析[J]. 西北地质, 54(4): 100-112. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202104009.htm
    陆露, 吴珍汉, 胡道功, 等, 2010. 东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义[J]. 岩石学报, 26(4): 1150-1158. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201004013.htm
    卢寅花, 王力, 盛建华, 等, 2020. 东昆仑造山带东段那更龙洼金矿区富闪镁铁质岩形成时代、地球化学特征及其构造背景与金矿化关系[J]. 黄金, 41(11): 5-15. doi: 10.11792/hj202001102
    逯永卓, 王泰山, 郑英, 等, 2020. 青海昆仑河地区金钨矿床成矿规律及找矿方向[J]. 矿产勘查, 11(10): 2109-2116. doi: 10.3969/j.issn.1674-7801.2020.10.007
    罗照华, 邓晋福, 曹永清, 等, 1999. 青海省东昆仑地区晚古生代—早中生代火山活动与区域构造演化[J]. 现代地质, 13(1): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ901.007.htm
    莫宣学, 罗照华, 邓晋福, 等, 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 13(3): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
    潘存钢, 万文亭, 李成勋, 等, 2019. 青海省格尔木市加祖它土西金多金属矿预查报告[R]. 西宁: 青海省柴达木综合地质矿产勘查院.
    潘桂棠, 王立全, 张万平, 等, 2013. 青藏高原及邻区大地构造图及说明书(1:1500000)[M]. 北京: 地质出版社.
    潘彤, 拜永山, 孙丰月, 等, 2011. 青海省东昆仑地区有色、贵金属矿产成矿系列与成矿预测[M]. 北京: 地质出版社.
    潘鑫, 乔建峰, 孙婷婷, 等, 2019. 青海向阳沟铜金多金属矿地质特征及找矿标志[J]. 中国锰业, 37(4): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201904013.htm
    申浩, 2016. 青海昆仑河地区黑海南金矿床地球化学特征及成因探讨[D]. 北京: 中国地质大学(北京).
    史连昌, 才航加, 许海全, 等, 2017. 东昆仑南坡俯冲增生杂岩楔中纳赤台群物质组成特征[J]. 地质通报, 36(2-3): 251-257. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2017Z1008.htm
    孙丰月, 陈国华, 迟效国, 等, 2003. 新疆-青海东昆仑成矿带成矿规律和找矿方向综合研究成果报告[R]. 长春: 吉林大学地质调查研究院.
    唐洋, 付乐兵, 杨宝荣, 等, 2017. 东昆仑东段果洛龙洼脉状金矿床断裂构造控矿规律[J]. 地质科技情报, 36(2): 160-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201702021.htm
    王秉璋, 祁生胜, 丁西歧, 等, 2008. 青海省矿产资源潜力评价实际材料图·建造构造图说明书(1:250000)大灶火幅[R]. 西宁: 青海省地质调查院.
    王松, 丰成友, 李世金, 等, 2009. 青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U-Pb测年及其地质意义[J]. 中国地质, 36(1): 74-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901008.htm
    吴庭祥, 张绍宁, 安汝龙, 等, 2009. 青海东昆仑东段金矿区地层含矿性分析[J]. 矿产与地质, 23(5): 431-441. doi: 10.3969/j.issn.1001-5663.2009.05.006
    吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
    肖晔, 丰成友, 李大新, 等, 2014. 青海省果洛龙洼金矿区年代学研究与流体包裹体特征[J]. 地质学报, 88(5): 895-902. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201405007.htm
    徐文艺, 张德全, 阎升好, 等, 2001. 东昆仑地区矿产资源大调查进展与前景展望[J]. 中国地质, 28(1): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200101006.htm
    杨经绥, 许志琴, 李海兵, 等, 2005. 东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系[J]. 岩石矿物学杂志, 24(5): 369-380. doi: 10.3969/j.issn.1000-6524.2005.05.004
    杨生德, 吴正寿, 赵呈祥, 等, 2013. 青海省矿产资源潜力评价成果报告[R]. 西宁: 青海省地质矿产勘查开发局.
    易平乾, 吴正寿, 赵俊伟, 等, 2013. 青海省重要矿种区域成矿规律研究成果报告[R]. 西宁: 青海省地质矿产勘查开发局.
    殷鸿福, 张克信, 1998. 中央造山带的演化及其特点[J]. 地球科学: 中国地质大学学报, 23(5): 437-442. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX805.000.htm
    岳维好, 高建国, 周家喜, 2013. 青海果洛龙洼金矿基性岩脉锆石U-Pb年龄及岩石地球化学特征[J]. 矿物岩石, 33(3): 93-102. doi: 10.3969/j.issn.1001-6872.2013.03.014
    张爱奎, 莫宣学, 李云平, 等, 2010. 青海西部祁漫塔格成矿带找矿新进展及其意义[J]. 地质通报, 29(7): 1062-1074. doi: 10.3969/j.issn.1671-2552.2010.07.013
    张爱奎, 刘智刚, 张大明, 等, 2020. 青海祁漫塔格楚阿克拉千隐爆角砾岩型铅锌矿床成矿模式及发现意义[J]. 地质通报, 39(2-3): 319-329. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2020Z1014.htm
    张德全, 党兴彦, 佘宏全, 等, 2005. 柴北缘—东昆仑地区造山型金矿床的Ar-Ar测年及其地质意义[J]. 矿床地质, 24(2): 87-98. doi: 10.3969/j.issn.0258-7106.2005.02.001
    张德全, 王富春, 佘宏全, 等, 2007. 柴北缘—东昆仑地区造山型金矿床的三级控矿构造系统[J]. 中国地质, 34(1): 92-100. doi: 10.3969/j.issn.1000-3657.2007.01.014
    张雪亭, 杨生德, 2007. 青海省区域地质概论: 1:100万青海省地质图说明书[M]. 北京: 地质出版社.
    张耀玲, 胡道功, 石玉若, 等, 2010. 东昆仑造山带牦牛山组火山岩SHRIMP锆石U-Pb年龄及其构造意义[J]. 地质通报, 29(11): 1614-1618. doi: 10.3969/j.issn.1671-2552.2010.11.003
    张宇婷, 2018. 青海东昆仑中段五龙沟矿集区金矿成矿作用研究[D]. 长春: 吉林大学.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  577
  • HTML全文浏览量:  78
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 修回日期:  2022-05-11

目录

    /

    返回文章
    返回