A study of factors influencing activation energy of different types of source rocks in the Laizhou Bay Sag, Bohai Sea
-
摘要: 选取不同干酪根类型的低熟烃源岩作为剖析对象,从干酪根类型、干酪根中有机硫含量、可溶有机质和黏土矿物对烃源岩活化能的影响进行研究,结果表明:Ⅱ1和Ⅰ干酪根活化能分布范围窄,Ⅱ2和Ⅲ干酪根活化能分布范围宽,干酪根平均活化能Ⅲ>Ⅱ2>Ⅰ>Ⅱ1;有机硫含量高的干酪根平均活化能低,有机硫对烃源岩生烃起催化作用;可溶有机质的存在影响烃源岩平均活化能的大小和分布特征,可溶有机质分布在活化能低值区间,对烃源岩生烃起催化作用;烃源岩黏土矿物中伊/蒙混层含量高,平均活化能高;伊利石含量高,平均活化能低,伊利石对烃源岩生烃起催化作用。Abstract: In this article, low-maturity source rocks of different kerogen types from the Laizhou Bay Sag are selected to study the correlation of activation energy with kerogen type, organic sulfur content in kerogen, soluble organic matter and clay minerals. The correlation analyses show that activation energy of TypeⅡ1 and TypeⅠ kerogens cover a wide distribution range, while TypeⅡ2 and Type Ⅲ a narrow one, and the average activation energy of kergens follows that Type Ⅲ>TypeⅡ2>TypeⅠ>TypeⅡ1; As the content of organic sulfur in kerogen increases, the average activation energy decreases, and organic sulfur of kerogen plays a catalytic role in hydrocarbon generation; Soluble organic matter affects the size and distribution characteristics of the average activation energy, and it distributes in the interval of low activation energy. It also plays a catalytic role in hydrocarbon generation. The content of Aemon mixed layer in clay minerals of source rock is positively correlated with the average activation energy, while illite shows a negative correlation with the average activation energy, working as a catalyst for hydrocarbon generation as well.
-
Key words:
- kerogen type /
- average activation energy /
- dissoluble organic matter /
- organic sulfur /
- clay minerals
-
图 2 不同类型干酪根活化能分布图
a—Ⅰ型干酪根活化能分布范围;b—Ⅱ1型干酪根活化能分布范围;c—Ⅱ2型干酪根活化能分布范围;d—Ⅲ型干酪根活化能分布范围
Figure 2. Activation energy distribution ranges in different types of kerogens
(a)Activation energy range of Ⅰ type of kerogen; (b)Activation energy range of Ⅱ1 type of kerogen; (c)Activation energy range of Ⅱ2 type of kerogen; (d)Activation energy range of Ⅲ type of kerogen
表 1 不同类型烃源岩地球化学数据
Table 1. Geochemical data of different types of source rocks
编号 样品类型 RO/ % S1/ (mg/g) TOC/ % HI/ (mg/g) S1+S2/ (mg/g) H/C O/C 腐泥组/ % 壳质组/ % 镜质组+ 惰质组/% 类型指数 干酪根类型 1 岩屑 0.40 0.13 0.30 233 0.83 / / 3 41 56 -21 Ⅲ 2 岩屑 0.45 0.21 0.66 208 1.58 0.88 0.22 8 73 19 29 Ⅱ2 3 岩屑 0.54 1.73 2.37 423 11.76 0.99 0.15 68 23 9 72 Ⅱ1 4 岩屑 0.61 1.77 3.50 546 20.89 1.17 0.12 76 21 3 84 Ⅰ 5 岩屑 0.60 1.36 4.43 598 27.83 1.07 0.11 50 46 4 70 Ⅱ1 6 岩屑 0.49 3.10 5.39 713 41.53 1.26 0.06 92 7 1 95 Ⅰ 表 2 不同类型干酪根活化能数据
Table 2. Activation energy data of different types of unextracted source rocks
编号 干酪根类型 Emin-max/ (kJ/mol) 干酪根平均活化能/ (kJ/mol) RO/ % 1 Ⅲ 205~322 268 0.4 2 Ⅱ2 159~284 261 0.45 3 Ⅱ1 142~217 209 0.54 4 Ⅰ 213~230 227 0.61 5 Ⅱ1 147~220 218 0.6 6 Ⅰ 219~241 237 0.49 表 3 不同类型烃源岩氯仿沥青“A”含量与抽提前后活化能数据
Table 3. Chloroform asphatt "A" values and activation energy values before and after the extraction in different types of source rocks
编号 干酪根类型 Emin-maxSE/(kJ/mol) Emin-max/(kJ/mol) Emin-max/′(kJ/mol) 平均活化能/(kJ/mol) 氯仿沥青“A”/% 可溶有机质 未抽提 抽提后 未抽提 抽提后 1 Ⅲ 197~212 197~322 212~330 243 255 0.09 2 Ⅱ2 117~134 117~235 134~251 229 251 0.08 3 Ⅱ1 138~189 138~214 189~231 192 201 0.28 4 Ⅰ 176~219 176~226 219~234 200 220 0.44 5 Ⅱ1 147~210 147~210 210~222 198 210 0.37 6 Ⅰ 184~218 184~226 218~230 211 228 0.47 表 4 不同类型干酪根活化能与干酪根有机硫含量
Table 4. Activation energy values and kerogen organic sulfur contents in different types of kerogens
编号 干酪根类型 干酪根硫含量/% 抽提后干酪根平均活化能/(kJ/mol) 1 Ⅲ 2.2 268 2 Ⅱ2 2.6 261 3 Ⅱ1 7.7 209 4 Ⅰ 10.3 227 5 Ⅱ1 11.3 218 6 Ⅰ 10.1 237 表 5 不同类型烃源岩活化能与黏土矿物含量
Table 5. Activation energy values and clay mineral contents in different types of source rocks
编号 干酪根类型 蒙脱石/ % 高岭石/ % 绿泥石/ % 伊利石/ % 伊/蒙混层/ % 抽提可溶有机质后烃源岩平均活化能/(kJ/mol) 抽提后干酪根平均活化能/(kJ/mol) 1 Ⅲ 0 5 4 30 61 255 268 2 Ⅱ2 0 7 7 29 57 251 261 3 Ⅱ1 0 7 4 36 53 201 209 4 Ⅰ 0 4 2 42 52 220 227 5 Ⅱ1 0 5 3 37 55 210 218 6 Ⅰ 0 9 3 33 55 228 237 -
BASKIN D K, PETER K E, 1992. Early generation characteristics of a sulfur-rich Monterey kerogen[J]. AAPG Bulletin, 76(1): 1-13. DONG Z L, LI X Q, YANG J, et al., 2015. An experimental study on coal measures source rock gas generation thermal simulation[J]. Coal Geology of China, 27(6): 12-17, 34. (in Chinese with English abstract) GUO G A, CHEN Y C, ZHANG D S, et al., 2005. Studying the characteristic of the hydrocarbon generation of dark mud and coals by thermosimulation in Jurassic of Turpan-Hami Basin[J]. Journal of Southwest Petroleum Institute, 27(4): 13-15. (in Chinese with English abstract) GUO R T, YANG F L, 2002. Inquisition to the hydrocarbon generation mechanism for algal organic matter[J]. Journal of Tongji University, 30(1): 41-45. (in Chinese with English abstract) GUO S B, MAO W J, MA X, 2017. Thermal simulation experiment study of the hydrocarbon generation characteristics of low maturity shale[J]. Earth Science Frontiers, 24(6): 365-369. (in Chinese with English abstract) HE C, ZHENG L J, WANG Q, et al., 2021. Experimental development and application of source rock thermal simulation for hydrocarbon generation and expulsion[J]. Petroleum Geology & Experiment, 43(5): 862-870. (in Chinese with English abstract) HE K, ZHANG S C, WANG X M, et al., 2014. Hydrocarbon generation kinetics of type-Ⅰ organic matters in the Cretaceous lacustrine sequences, Songliao Basin[J]. Oil & Gas Geology, 35(1): 42-49. (in Chinese with English abstract) HU H J, JIANG Y L, LIU J D, et al., 2019. Dynamic accumulation process of coal-formed gas in Wenliu area, Dongpu depression[J]. Journal of Geomechanics, 25(2): 215-222. (in Chinese with English abstract) HU J J, TANG Y J, HE D X, et al., 2020. Comparison and exploration of hydrocarbon expulsion patterns of different types of source rocks[J]. Journal of Geomechanics, 26(6): 941-951. (in Chinese with English abstract) HUANG D F, 1996. Advances in hydrocarbon generation theory-(Ⅰ) immature oils and generating hydrocarbon and evolutionary model[J]. Advance in Earth Sciences, 11(4): 327-335. (in Chinese with English abstract) HUANG D F, ZHANG D J, WANG P R, et al., 2003. Genetic mechanism and accumulation condition of immature oil in China[M]. Beijing: Petroleum Industry Press. (in Chinese) JIANG Q G, WANG Q, CHENG Q Q, et al., 2005. Discussion on the kinetic characteristics of hydrocarbon generation of different maceral source rocks[J]. Petroleum Geology & Experiment, 27(5): 512-518, 533. (in Chinese with English abstract) JIANG Q G, WANG Y B, QIN J Z, et al., 2009. Kinetic study on hydrocarbon generation mechanism of modern organisms[J]. Acta Sedimentologica Sinica, 27(3): 546-550. (in Chinese with English abstract) JIN Q, QIAN J L, HUANG X H, 1986. Study on thermal degradation kinetics of source rock kerogen and quantitative estimation of hydrocarbon transformation[J]. Acta Petrolei Sinica, 7(3): 11-19. (in Chinese with English abstract) JOHNS W D, SHIMOYAMA A, 1972. Clay minerals and petroleum-forming reactions during burial and diagenesis[J]. AAPG Bulletin, 56(11): 2160-2167. LI Z, 1992. On the catalysis of clay minerals in the process of oil and gas generation[J]. Experimental Petroleum Geology, 14(1): 59-63. (in Chinese with English abstract) LIU H P, ZHANG Z L, CHEN J J, et al., 2006. Hydrolysis and hydrocarbon generation kinetics of fatty acid ester catalyzed by source rocks of Dongying depression at low temperature[J]. Journal of China University of Petroleum, 30(6): 112-116. (in Chinese with English abstract) LU S F, WANG M, WANG Y W, et al., 2006. Comparison of simulation results from the closed and open experimental systems and its significance[J]. Acta Sedimentologica Sinica, 24(2): 282-288. (in Chinese with English abstract) MA Z L, TAN J Q, ZHAO H, et al., 2020. Organic geochemistry and geological significance of oil seepage from the Devonian of Luquan area, Yunnan Province[J]. Journal of Geomechanics, 26(6): 952-960. (in Chinese with English abstract) MENG Q Q, QIN J Z, LIU W B, et al., 2008. Experimental study on hydrocarbon generation of multi-cellular benthic macro alga[J]. Acta Petrolei Sinica, 29(6): 822-826. (in Chinese with English abstract) ORR W L, 1986. Kerogen/asphaltene/sulfur relationships in sulfur-rich Monterey oils[J]. Organic Geochemistry, 10(1-3): 499-516. doi: 10.1016/0146-6380(86)90049-5 PAN C C, GENG A S, ZHONG N N, et al., 2006. The effects of minerals and water on hydrocarbon generation from Kerogen: Ⅲ. Steranes and triterpane generation and maturation[J]. Acta Geologica Sinica, 80(3): 446-453. (in Chinese with English abstract) SHEN Z M, ZHOU G J, HONG Z H, 1998. Discussion on relationships of organic sulfur in continental deposit low-mature source rocks and kinetics of pyrolysis hydrocarbon generation[J]. Acta Sedimentologica Sinica, 16(4): 133-139. (in Chinese with English abstract) SHEN Z M, 1999. Some kinetic characteristics of hydrocarbon generation of soluable organic matter in low-mature source rocks[J]. Geological Review, 45(1): 85-91. (in Chinese with English abstract) SHEN Z M, CHEN Y C, 2002. Discussion about influential factors of average activation energy of source rocks[J]. Journal of Chengdu University of Technology, 29(6): 600-604. (in Chinese with English abstract) SU A, CHEN H H, CHEN X, et al., 2018. The characteristics of low permeability reservoirs, gas origin, generation and charge in the central and western Xihu depression, East China Sea Basin[J]. Journal of Natural Gas Science and Engineering, 53: 94-109. doi: 10.1016/j.jngse.2018.01.034 TANG Q Y, ZHANG M J, ZHANG T W, et al., 2013. A review on pyrolysis experimentation on hydrocarbon generation[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 35(1): 52-62. (in Chinese with English abstract) TISSOT B P, PELET R, UNGERER P H, 1987. Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation[J]. AAPG Bulletin, 71(12): 1445-1466. WANG F T, GUO S B, MAO W J, et al., 2018. Evolution of clay mineral and the division of diagenesis stages in Mud Shale based on thermal simulation[J]. Science Technology and Engineering, 18(12): 174-179. (in Chinese with English abstract) WANG G C, 2009. The factors influencing the measurement results of vitrinite reflectance and revise[J]. Inner Mongolia Petrochemical Industry, 35(12): 59-61. (in Chinese with English abstract) WANG K F, ZHANG Y L, WU G X, et al., 1994. Study on the thermal simulation for generating oil by Pediastrum[J]. Journal of Tongji University, 22(2): 184-191. (in Chinese with English abstract) WANG N, LI R G, WANG X Z, et al., 2016. Pyrolytic study on the gas-generating process of transitional shale[J]. Natural Gas Geoscience, 27(1): 189-197. (in Chinese with English abstract) WANG T G, ZHONG N N, HOU D J, et al., 1995. Genetic mechanism and occurrence of immature hydrocarbon[M]. Beijing: Petroleum Industry Press: 168-174. (in Chinese) WANG Z C, MI J K, LI X Q, et al., 2009. Current situation and problems of simulation experiment approach of hydrocarbon generation[J]. Natural Gas Geoscience, 20(4): 592-597. (in Chinese with English abstract) XU L H, CHEN J F, LU S F, et al., 2008. Study on hydrocarbon-generating history of hydrocarbon source rock in Upper Permain E. Sichuan basin with hydrocarbon-generating kinetics[J]. Journal of Jilin University (Earth Science Edition), 38(4): 594-599. (in Chinese with English abstract) ZHANG Z H, GAO X Z, FANG Z L, 1995. Effect of clay minerals on kerogen pyrolysis and the reaction mechanism[J]. Journal of the University of Petroleum, China, 19(5): 11-17. (in Chinese with English abstract) ZHANG Z L, YE T X, REN Y H, et al., 2005. Kinetics study on hydrocarbon generation of fatty acid ester catalyzed by immature oil source rocks at low temperature[J]. Journal of the University of Petroleum, China, 29(5): 104-106, 116. (in Chinese with English abstract) 董泽亮, 李贤庆, 杨杰, 等, 2015. 煤系烃源岩生气热模拟实验研究[J]. 中国煤炭地质, 27(6): 12-17, 34. doi: 10.3969/j.issn.1674-1803.2015.06.03 郭贵安, 陈义才, 张代生, 等, 2005. 吐哈盆地侏罗系热模拟生烃演化特征研究[J]. 西南石油大学学报, 27(4): 13-15. doi: 10.3863/j.issn.1674-5086.2005.04.004 郭汝泰, 杨凤丽, 2002. 藻类有机质的成烃机制探讨[J]. 同济大学学报, 30(1): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ200201007.htm 郭少斌, 毛文静, 马啸, 2017. 低熟页岩生烃特征的热模拟实验研究[J]. 地学前缘, 24(6): 365-369. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201706034.htm 何川, 郑伦举, 王强, 等, 2021. 烃源岩生排烃模拟实验技术现状、应用与发展方向[J]. 石油实验地质, 43(5): 862-870. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202105016.htm 何坤, 张水昌, 王晓梅, 等, 2014. 松辽盆地白垩系湖相Ⅰ型有机质生烃动力学[J]. 石油与天然气地质, 35(1): 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201401007.htm 胡洪瑾, 蒋有录, 刘景东, 等, 2019. 东濮凹陷文留地区煤成气运聚机理及成藏过程[J]. 地质力学学报, 25(2): 215-222. doi: 10.12090/j.issn.1006-6616.2019.25.02.020 胡锦杰, 唐友军, 何大祥, 等, 2020. 不同类型烃源岩排烃模式对比及差异性探究[J]. 地质力学学报, 26(6): 941-951. doi: 10.12090/j.issn.1006-6616.2020.26.06.075 黄第藩, 1996. 成烃理论的发展: (Ⅰ)未熟油及有机质成烃演化模式[J]. 地球科学进展, 11(4): 327-335. doi: 10.3321/j.issn:1001-8166.1996.04.001 黄第藩, 张大江, 王培荣, 等, 2003. 中国未成熟石油成因机制和成藏条件[M]. 北京: 石油工业出版社. 蒋启贵, 王勤, 承秋泉, 等, 2005. 不同组分烃源岩生烃动力学特征浅析[J]. 石油实验地质, 27(5): 512-518, 533. doi: 10.3969/j.issn.1001-6112.2005.05.015 蒋启贵, 王延斌, 秦建中, 等, 2009. 现代生物物质生烃机制动力学研究[J]. 沉积学报, 27(3): 546-550. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200903021.htm 金强, 钱家麟, 黄醒汉, 1986. 生油岩干酪根热降解动力学研究及其在油气生成量计算中的应用[J]. 石油学报, 7(3): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB198603001.htm 李忠, 1992. 试论油气形成过程中粘土矿物的催化作用[J]. 石油实验地质, 14(1): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD199201007.htm 刘会平, 张在龙, 陈俊杰, 等, 2006. 东营凹陷烃源岩低温催化酯水解生烃动力学研究[J]. 中国石油大学学报(自然科学版), 30(6): 112-116. doi: 10.3321/j.issn:1000-5870.2006.06.023 卢双舫, 王民, 王跃文, 等, 2006. 密闭体系与开放体系模拟实验结果的比较研究及其意义[J]. 沉积学报, 24(2): 282-288. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200602017.htm 马中良, 谭静强, 赵晗, 等, 2020. 云南禄劝地区泥盆系油苗地球化学特征及地质意义[J]. 地质力学学报, 26(6): 952-960. doi: 10.12090/j.issn.1006-6616.2020.26.06.076 孟庆强, 秦建中, 刘文斌, 等, 2008. 多细胞宏观底栖藻类生烃特点实验研究[J]. 石油学报, 29(6): 822-826. doi: 10.3321/j.issn:0253-2697.2008.06.006 潘长春, 耿安松, 钟宁宁, 等, 2006. 矿物和水对干酪根热解生烃作用的影响-Ⅲ. 甾、藿烷(烯)的形成与热演化[J]. 地质学报, 80(3): 446-453. doi: 10.3321/j.issn:0001-5717.2006.03.018 沈忠民, 周光甲, 洪志华, 1998. 陆相低成熟烃源岩有机硫与热解成烃动力学关系初探[J]. 沉积学报, 16(4): 133-139. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB804.022.htm 沈忠民, 1999. 低熟源岩可溶有机质成烃动力学特征[J]. 地质论评, 45(1): 85-91. doi: 10.3321/j.issn:0371-5736.1999.01.014 沈忠民, 陈义才, 2002. 源岩平均活化能影响因素浅析[J]. 成都理工学院学报, 29(6): 600-604. doi: 10.3969/j.issn.1671-9727.2002.06.002 汤庆艳, 张铭杰, 张同伟, 等, 2013. 生烃热模拟实验方法述评[J]. 西南石油大学学报(自然科学版), 35(1): 52-62. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201301006.htm 王飞腾, 郭少斌, 毛文静, 等, 2018. 基于热模拟实验的泥页岩黏土矿物演化及成岩阶段划分[J]. 科学技术与工程, 18(12): 174-179. doi: 10.3969/j.issn.1671-1815.2018.12.028 王国臣, 2009. 镜质体反射率测定结果的影响因素及其校正[J]. 内蒙古石油化工, 35(12): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH200912027.htm 王开发, 张玉兰, 吴国瑄, 等, 1994. 盘星藻热模拟生油研究[J]. 同济大学学报, 22(2): 184-191. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ402.009.htm 王宁, 李荣西, 王香增, 等, 2016. 海陆过渡相页岩气形成热模拟实验研究[J]. 天然气地球科学, 27(1): 189-197. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601023.htm 王铁冠, 钟宁宁, 侯读杰, 等, 1995. 低熟油气形成机理与分布[M]. 北京: 石油工业出版社: 168-174. 王治朝, 米敬奎, 李贤庆, 等, 2009. 生烃模拟实验方法现状与存在问题[J]. 天然气地球科学, 20(4): 592-597. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200904019.htm 徐立恒, 陈践发, 卢双舫, 等, 2008. 应用生烃动力学法研究川东上二叠统烃源岩生烃史[J]. 吉林大学学报(地球科学版), 38(4): 594-599. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200804008.htm 张枝焕, 高先志, 方朝亮, 1995. 粘土矿物对干酪根热解产物的影响及其作用机理[J]. 石油大学学报(自然科学版), 19(5): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX505.002.htm 张在龙, 叶天旭, 任永宏, 等, 2005. 未熟烃源岩低温催化脂肪酸酯生烃动力学研究[J]. 石油大学学报(自然科学版), 29(5): 104-106, 116. doi: 10.3321/j.issn:1000-5870.2005.05.024