留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sentinel-1数据在西南山区水库变形斜坡InSAR监测中的适用性评价:以溪洛渡水库为例

李凌婧 姚鑫 周振凯 王德富

李凌婧, 姚鑫, 周振凯, 等, 2022. Sentinel-1数据在西南山区水库变形斜坡InSAR监测中的适用性评价:以溪洛渡水库为例. 地质力学学报, 28 (2): 281-293. DOI: 10.12090/j.issn.1006-6616.2021109
引用本文: 李凌婧, 姚鑫, 周振凯, 等, 2022. Sentinel-1数据在西南山区水库变形斜坡InSAR监测中的适用性评价:以溪洛渡水库为例. 地质力学学报, 28 (2): 281-293. DOI: 10.12090/j.issn.1006-6616.2021109
LI Lingjing, YAO Xin, ZHOU Zhenkai, et al., 2022. The applicability assessment of Sentinel-1 data in InSAR monitoring of the deformed slopes of reservoir in the mountains of southwest China: A case study in the Xiluodu Reservoir. Journal of Geomechanics, 28 (2): 281-293. DOI: 10.12090/j.issn.1006-6616.2021109
Citation: LI Lingjing, YAO Xin, ZHOU Zhenkai, et al., 2022. The applicability assessment of Sentinel-1 data in InSAR monitoring of the deformed slopes of reservoir in the mountains of southwest China: A case study in the Xiluodu Reservoir. Journal of Geomechanics, 28 (2): 281-293. DOI: 10.12090/j.issn.1006-6616.2021109

Sentinel-1数据在西南山区水库变形斜坡InSAR监测中的适用性评价:以溪洛渡水库为例

doi: 10.12090/j.issn.1006-6616.2021109
基金项目: 

国家自然基金青年基金项目 41807299

中国地质调查局工作项目 DD20221738-2

三峡集团公司项目 YMJ(XLD)/(19)110

详细信息
    作者简介:

    李凌婧(1988—),女,在读博士,助研,主要从事遥感地质,地质灾害相关研究。E-mail:lilingjing123_123@163.com

  • 中图分类号: P694; P237

The applicability assessment of Sentinel-1 data in InSAR monitoring of the deformed slopes of reservoir in the mountains of southwest China: A case study in the Xiluodu Reservoir

Funds: 

the National Natural Science Foundation of China 41807299

the Chinese Geological Survey Project DD20221738-2

the Three Gorges Corporation Project YMJ(XLD)/(19)110

  • 摘要: Sentinel卫星凭借其超高的辐射分辨率、稳定的轨道系统、较大的覆盖能力、较短的重返时间、可免费下载的数据,在斜坡灾害识别监测方向上有广泛的应用。自1963年意大利瓦伊昂特大滑坡发生以来,岸坡地质灾害一直是峡谷区水库关注的主要问题之一。以金沙江上游溪洛渡水库区为例,结合PALSAR-2、TerraSAR-X数据,评价Sentinel-1 SAR数据在西南山区水库变形斜坡InSAR监测中的适用性,以理论结合实际结果分析Sentinel-1数据是否可以在一定条件下替代其他商业数据,为今后相关行业应用提供参考。结果显示:Sentinel-1数据在研究区可解译的变形斜坡约200处,类型有滑坡、危岩体和塌岸;经现场核查,Sentinel-1数据解译的最小变形斜坡投影面积约为2400 m2,约35 m(长)×77 m(宽)大小,共16个变形像元聚集。高山峡谷区叠掩、阴影现象严重,通过对雷达常用观测模式下的SAR数据的比较,在SAR数据交集区域,有效观测面积为Sentinel-1升轨70.3%,Sentinel-1降轨68.9%,PALSAR-2升轨70.4%,PALSAR-2降轨67.6%,TerraSAR-X降轨52.5%,在不考虑分辨率的情况下,在库区Sentinel-1数据与其他两种SAR数据观测能力相比持平或更优秀。6月至11月初是溪洛渡水库的水位上升期,周边植被发育较好,造成数据相干性较差,2017年后Sentinel-1A(1B)双星拍摄获取的SAR数据量增加,高频观测可使相干性提高,利用2017年后该卫星数据可有效识别水库蓄—排水周期内的区域性变形斜坡发育变化情况。当长时间缺失SAR数据时,会造成最近一对SAR数据间的某些像元测量的变形超过其InSAR最大量程,解缠时丢失相位周期。Sentinel-1数据由于连续性较好,监测斜坡的变形趋势较为连续,因此更适合连续小变形的趋势识别。

     

  • 图  1  研究区地理位置、地质背景及SAR数据范围

    a—研究区地理位置;b—溪洛渡水库区高程及活动断裂;c—SAR数据类型及拼接裁剪后的实际处理范围

    Figure  1.  The location and the geological background of the study area, and the SAR data ranges

    (a) The location of the study area; (b) The elevation and active faults; (c) The SAR data types, and InSAR processing ranges after images being spliced and clipped

    图  2  分析流程图

    Figure  2.  Analysis flow chart

    图  3  水位上升(下降)周期内升轨Sentinel-1数据存档情况(括号内数字为存档SAR数据数量)

    Figure  3.  Archiving of the Sentinel-1 data from the ascending orbit in periods of rising (falling) water level(The numbers in brackets are the amount of archived SAR data)

    图  4  水位上升(下降)周期内降轨Sentinel-1数据存档情况(括号内数字为存档SAR数据数量)

    Figure  4.  Archive of the Sentinel-1 data from the descending orbit in periods of rising (falling) water level(The numbers in brackets are the amount of archived SAR data)

    图  5  研究区变形斜坡不同时段干涉相位图及斜坡变形情况

    Figure  5.  Interferometric phase of the deformed slope at different periods in the study area and the deformation status

    图  6  变形岸坡数量时序解译情况示意图

    Figure  6.  The annual interpretations of deformed slopes

    图  7  研究区不同SAR卫星在SAR数据交集区域的有效观测比例

    a—Sentinel-1升轨数据有效观测面积;b—Sentinel-1降轨数据有效观测面积;c—PALSAR-2升轨数据有效观测面积;d—PALSAR-2降轨数据有效观测面积;e—TerraSAR-X降轨数据有效观测面积;f—SAR数据交集区域地形阴影

    Figure  7.  Proportion of effective observations by different SAR satellites in the intersection area of SAR data

    (a) The effective observation area of the Sentinel-1 ascending image; (b) The effective observation area of the Sentinel-1 descending image; (c) The effective observation area of the PALSAR-2 ascending image; (d) The effective observation area of the PALSAR-2 descending image; (e) The effective observation area of the TerraSAR-X descending image; (f) The hill shade

    图  8  三种SAR卫星降轨数据在同一地区的变形斜坡解译情况示意图

    Figure  8.  Schematic diagram of deformed slope interpretations of three satellite SAR data on descending orbits in the same area

    图  9  库区翌子村滑坡现场照片

    a—全景图(镜向北西);b—废弃房屋开裂照片

    Figure  9.  Field photos of the Yizicun landslide

    (a) Panoramic view of the landslide (towards NW); (b) Photo of a abandoned house

    图  10  库区翌子村滑坡多源SAR数据D-InSAR结果对比

    a—Sentinel-1升轨干涉图; b—Sentinel-1降轨干涉图;c—PALSAR-2升轨干涉图;d—PALSAR-2降轨干涉图;e—TerraSAR-X降轨干涉图;f—光学遥感影像及变形边界

    Figure  10.  Comparison of D-InSAR results based on the multi-source SAR data of the Yizicun landslide in the reservoir

    (a) The interference figure of the Sentinel-1 ascending image; (b) The interference figure of the Sentinel-1 descending image; (c) The interference figure of the PALSAR-2 ascending image; (d) The interference figure of the PALSAR-2 descending image; (e) The interference figure of the TerraSAR-X descending image; (f) The optical image and the deformation boundary

    图  11  库区翌子村滑坡多源SAR数据PS-InSAR时序变形曲线结果对比

    Figure  11.  Comparison of PS-InSAR time-series deformation results based on the multi-source SAR data of the Yizicun landslide in the reservoir

    表  1  星载SAR传感器基本参数及特征表

    Table  1.   Basic parameters and characteristics of Spaceborne SAR sensors

    星载SAR系统 所属国家/机构 发射时间 波段(波长/cm) 入射角/(°) 多视数,分辨率(距离向×方位向)/m×m 所用模式 重访周期/天 主要优点 主要缺点
    Sentinel-1 欧空局 2014年4月 C(5.6) 37.74 9×1,10.48×13.99 干涉宽幅模式 12(双星6) 免费、覆盖范围广、重复周期短、存档数据多 干涉用模式分辨率低,一般不接受编程预定
    PALSAR-2 日本 2014年5月 L(25) 升轨:39.66降轨:38.74 2×2,2.86×4.43 聚束模式 14 覆盖范围广、重复周期短、波段长 需购买,编程数据经常因卫星执行其他任务拍不到
    TerraSAR-X 德国 2017年6月 X(3.1) 26.58 3×3,2.73×5.89 聚束模式 11 轨道精度高、数据质量好、重返周期短 需购买,存档数据较少
    下载: 导出CSV
  • CHEN H K, ZHOU X H, 2016. Study on Identification Method on Failure Mode of Reservoir Landslide: Taking Qingshi Landslide in Three Gorges Reservoir as an Example[J]. Journal of Chongqing Normal University (Natural Science), 33(5): 37-41. (in Chinese with English abstract)
    CHEN T Z, DAI F C, 2018. Exploring the Landslide Deformation Regular Based After the Impoundment in the Xiluodu Reservoir[J]. Industial Construction, 48(Sup): 634-639. (in Chinese with English abstract)
    China Geological Disaster Prevention Engineering Industry Association, 2018. Guideline of InSAR Monitoring for Geo-hazard, T/CAGHP 013-2018 [S]. Beijing: China University of Geosciences Press. (in Chinese)
    DENG H Y, WANG C H, 2011. Engineering Geological Characteristics and Genetic Mechanism of Old Landslide of Reservoir Bank of Xiluodu Reservoir Areas[J]. Soil and Water Conservation in China, (5): 59-62. (in Chinese)
    DONG J, ZHANG L, LI M H, et al., 2018. Measuring precursory movements of the recent Xinmo landslide in Mao county, China with sentinel-1 and ALOS-2 PALSAR-2 datasets[J]. Landslides, 15(1): 135-144. doi: 10.1007/s10346-017-0914-8
    GAO G P, YANG J H. 2003. Application of GIS in geologic disaster research [J]. Yangtze River, 34(6): 32-33. (in Chinese)
    GAO L, ZENG QM, 2007. Terrain deformation monitoring in Three Gorges Area using Permanent Scatterers SAR Interferometry[C]//ScanGIS′2007-Proceedings of the 11th Scandinavian Research Conference on Geographical Information Science, s, Norway, 5-7 September 2007: 261-267.
    INTRIERI E, RASPINI F, FUMAGALLI A, et al., 2018. The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data[J]. Landslides, 15(1): 123-133. doi: 10.1007/s10346-017-0915-7
    JIANG M, LI Z W, DING X L, et al., 2009. A study on the maximum and minimum detectable deformation gradients resolved by InSAR[J]. Chinese Journal of Geophysics, 52(7): 1715-1724. (in Chinese with English abstract)
    JIA H Y, WANG Y J, GE D Q, et al., 2020. Improved offset tracking for predisaster deformation monitoring of the 2018 Jinsha River landslide (Tibet, China) [J]. Remote Sensing of Environment, 247: 111899. doi: 10.1016/j.rse.2020.111899
    HENDRON JR A J, PATTON F D., 1987. The Vaiont slide. a geotechnical analysis based on new geologic observations of the failure surface [J]. Engineering Geology, 24(1-4): 475-491. doi: 10.1016/0013-7952(87)90080-9
    HERRERA G, FERNÁNDEZ-MERODO J A, et al., 2009. A landslide forecasting model using ground based SAR data: the portalet case study[J]. Engineering Geology, 105(3-4): 220-230. doi: 10.1016/j.enggeo.2009.02.009
    HU J, LI Z W, DING X L, et al., 2014. Resolving three-dimensional surface displacements from InSAR measurements: a review[J]. Earth-Science Reviews, 133: 1-17. doi: 10.1016/j.earscirev.2014.02.005
    KANKAKU Y, SAGISAKA M, Suzuki S. (2014). PALSAR-2 launch and early orbit status[C]//. Proceedings of 2014 IEEE geoscience and & remote sensing symposium. Quebec City, QC, Canada: IEEE: 3410-3412.
    LIAO M S, TANG J, WANG T, et al., 2012. Landslide monitoring with high-resolution SAR data in the Three Gorges region[J]. Sci China Earth Sci, 42(22): 217-229. (in Chinese with English abstract)
    LIAO M S, WANG T, 2014. Time series InSAR technology and application[M]. Beijing: Science Press. (in Chinese)
    LIU G X, CHEN Q, LUO X J, et al., 2019. Principle and application of InSAR[M]. Beijing: Science Press. (in Chinese)
    LIU X H, YAO X, ZHOU Z K, et al, 2018. Study of the technique for landslide rapid recognition by InSAR[J]. Journal of Geomechanics, 24(2): 229-237. (in Chinese with English abstract)
    LI B, ZHANG Q, WANG W P, et al, 2020. Geohazard monitoring and risk management of high-steep slope in the Wudongde dam area[J]. Journal of Geomechanics, 26(4): 556-564. (in Chinese with English abstract)
    LI L J, YAO X, Yao J M, et al., 2019a. Analysis of deformation characteristics for a reservoir landslide before and after impoundment by multiple D-InSAR observations at Jinshajiang River, China[J]. Natural Hazards, 98(2): 719-733. doi: 10.1007/s11069-019-03726-w
    LI M H, ZHANG L, SHI X G, et al., 2019b. Monitoring active motion of the Guobu landslide near the Laxiwa Hydropower Station in China by time-series point-like targets offset tracking[J]. Remote Sensing of Environment, 221: 80-93. doi: 10.1016/j.rse.2018.11.006
    LI X E, ZHOU L, SU F Z, et al., 2021. Application of InSAR technology in landslide hazard: Progress and prospects[J]. National Remote Sensing Bulletin, 25(2): 614-629. (in Chinese with English abstract)
    MASSONNET D, FEIGL K L, 1998. Radar interferometry and its application to changes in the Earth's surface[J]. Reviews of Geophysics, 36(4): 441-500. doi: 10.1029/97RG03139
    OUYANG L X, LI X Q, HUI F M, et al., 2017. Sentinel-1A Data Products Characteristics and the Potential Applications[J]. Chinese Journal of Polar Research, 29(2): 286-295. (in Chinese with English abstract)
    REN Y, 2013. Research on Layover and Shadow Detecting in InSAR[D]. Changsha National University of Defense Technology. (in Chinese with English abstract)
    STROZZI T, LUCKMAN A, MURRAY T, et al., 2002. Glacier motion estimation using SAR offset-tracking procedures[J]. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2384-2391. doi: 10.1109/TGRS.2002.805079
    SINGLETON A, LI Z, HOEY T et al., 2014. Evaluating sub-pixel offset techniques as an alternative to D-InSAR for monitoring episodic landslide movements in vegetated terrain[J]. Remote Sensing of Environment, 147: 133-144. doi: 10.1016/j.rse.2014.03.003
    SHI X G, ZHANG L, BALZ T, et al., 2015. Landslide deformation monitoring using point-like target offset tracking with multi-mode high-resolution TerraSAR-X data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 105: 128-140. doi: 10.1016/j.isprsjprs.2015.03.017
    SHI X G, LIAO M S, LI M H, et al., 2016. Wide-Area Landslide Deformation Mapping with Multi-Path ALOS PALSAR Data Stacks: A Case Study of Three Gorges Area, China[J]. Remote Sensing, 8(2): 136. doi: 10.3390/rs8020136
    SCOTT H, ROLAND B, BRENT D, et al., 2016. Three-dimensional surface deformation derived from airborne interferometric uavsar: application to the slumgullion landslide[J]. Journal of geophysical research. Solid earth: JGR, 121(5): 3951-3977. doi: 10.1002/2015JB012559
    TANG X S, ZHENG Y R, TANG H M, et al., 2013. Numerical researches on deformation characteristics and prediction of reservoir landslides[J]. Chinese Journal of Geotechnical Engineering, 35(5): 940-947. (in Chinese with English abstract)
    WANG G J, XIE M W, QIU C, et al., 2011. Experiment research of D-InSAR technique on identifying landslide moving in a wide area[J]. Journal of University of Science and Technology Beijing, 33(2): 131-141. (in Chinese with English abstract)
    WANG Z Y, ZHANG J Z, 2013. Landslides Monitoring Based on InSAR Technique[J]. Journal of Geodesy and Geodynamics, 33(3): 87-91. (in Chinese with English abstract)
    XU S, WANG S X, NIU R Q, 2020. Identification of the Potential Landslide in Wushan—Fengjie in the Three Gorges Reservoir Area Based on InSAR Technology[J]. Safety and Environmental Engineering, 27(1): 32-38. (in Chinese with English abstract)
    XU W B, LI Z W, DING X L, et al., 2011. Interpolating atmospheric water vapor delay by incorporating terrain elevation information[J]. Journal of Geodesy, 85(9): 555-564. doi: 10.1007/s00190-011-0456-0
    YOU X Z, LI S S, YANG S M, et al., 2001. InSAR Investigation in the Early Stage of the Three Gorges Project on the Yangtze River[J]. Crustal Deformation and Earthquake, 21(4): 58-66. (in Chinese with English abstract)
    ZHONGCUN H Z, 1990. Discussion on reservoir landslide[J]. WANG G X, trans. Bulletin of Soil and Water Conservation, 10(1): 53-64. (in Chinese)
    ZHANG M, ZHANG C S, YANG W M, et al, 2014. The formation conditions and stability of Chahandusi Reservoir landslide in Xunhua Country, Qinghai Province[J]. Journal of Geomechanics, 20(3): 274-284. (in Chinese with English abstract)
    ZHAN W J, LI Z W, WEI J C, et al., 2015. A strategy for modeling and estimating atmospheric phase of SAR interferogram[J]. Chinese Journal of Geophysics, 58(7): 2320-2329. (in Chinese with English abstract)
    ZHANG F, 2018. Study and Engineering Implementation on Problem Areas Detection Technology for Spaceborne InSAR[D]. Xi'an: Xidian University. (in Chinese with English abstract)
    ZHANG T T, YANG H L, LI DM, et al., 2019. Identification of layover and shadows regions in SAR images: taking Badong as an example[J]. Bulletin of Surveying and Mapping, (11): 85-88. (in Chinese with English abstract)
    ZHENG J H, HUANG B L, ZHANG Q, et al, 2020. Study on the surge induced by the collapse of dangerous rock mass in Longmen Village in Three Gorges reservoir area[J]. Journal of Geomechanics, 26(4): 533-543. (in Chinese with English abstract)
    陈洪凯, 周晓涵, 2016. 库岸滑坡破坏模式识别方法研究—以三峡水库青石滑坡为例[J]. 重庆师范大学学报(自然科学版), 33(5): 37-41. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201605008.htm
    陈廷照, 戴福初, 2018. 溪洛渡库区蓄水后滑坡时空分布特征分析[J]. 工业建筑, 48(Sup): 634-639. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GYJZ201806003157.htm
    邓宏艳, 王成华, 2011. 溪洛渡库区库岸老滑坡工程地质特征及成因机制分析[J]. 中国水土保持, (5): 59-62. doi: 10.3969/j.issn.1000-0941.2011.05.023
    高改萍, 杨建宏, 2003. GIS在地质灾害研究中的应用[J]. 人民长江, 34(6): 32-33. doi: 10.3969/j.issn.1001-4179.2003.06.011
    蒋弥, 李志伟, 丁晓利, 等, 2009. InSAR可检测的最大最小变形梯度的函数模型研究[J]. 地球物理学报, 52(7): 1715-1724. doi: 10.3969/j.issn.0001-5733.2009.07.006
    廖明生, 唐婧, 王腾, 等, 2012. 高分辨率SAR数据在三峡库区滑坡监测中的应用[J]. 中国科学: 地球科学, 42(2): 217-229. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201202009.htm
    廖明生, 王腾, 2014. 时间序列InSAR技术与应用[M]. 北京: 科学出版社.
    刘国祥, 陈强, 罗小军, 等, 2019. InSAR原理与应用[M]. 北京: 科学出版社.
    刘星洪, 姚鑫, 周振凯, 等, 2018. 滑坡灾害InSAR应急排查技术方法研究[J]. 地质力学学报, 24(2): 229-237. doi: 10.12090/j.issn.1006-6616.2018.24.02.024
    李滨, 张青, 王文沛, 等, 2020. 金沙江乌东德水电站坝区高陡边坡地质灾害监测预警研究[J]. 地质力学学报, 26(4): 556-564. doi: 10.12090/j.issn.1006-6616.2020.26.04.048
    李晓恩, 周亮, 苏奋振, 等, 2021. InSAR技术在滑坡灾害中的应用研究进展[J]. 遥感学报, 25(2): 614-629. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202102008.htm
    欧阳伦曦, 李新情, 惠凤鸣, 等, 2017. 哨兵卫星Sentinel-1A数据特性及应用潜力分析[J]. 极地研究, 29(2): 286-295. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ201702013.htm
    任云, 2013. InSAR叠掩与阴影检测技术[D]. 长沙: 国防科学技术大学.
    唐晓松, 郑颖人, 唐辉明, 等, 2013. 水库滑坡变形特征和预测预报的数值研究[J]. 岩土工程学报, 35(5): 940-947. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201305023.htm
    王桂杰, 谢谟文, 邱骋, 等, 2011. 差分干涉合成孔径雷达技术在广域滑坡动态辨识上的实验研究[J]. 北京科技大学学报, 33(2): 131-141. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201102000.htm
    王志勇, 张金芝, 2013. 基于InSAR技术的滑坡灾害监测[J]. 大地测量与地球动力学, 33(3): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201303019.htm
    徐帅, 王尚晓, 牛瑞卿, 2020. 基于InSAR技术的三峡库区巫山—奉节段潜在滑坡识别[J]. 安全与环境工程, 27(1): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202001006.htm
    游新兆, 李澍荪, 杨少敏, 等, 2001. 长江三峡工程库首区InSAR测量的初步研究[J]. 地壳形变与地震, 21(4): 58-66. doi: 10.3969/j.issn.1671-5942.2001.04.008
    中村浩之, 1990. 论水库滑坡[J]. 王恭先, 译, 水土保持通报, 10(1): 53-64.
    张淼, 张春山, 杨为民, 等, 2014. 青海循化县查汗都斯水库滑坡形成条件与稳定性分析[J]. 地质力学学报, 20(3): 274-284. doi: 10.3969/j.issn.1006-6616.2014.03.006
    占文俊, 李志伟, 韦建超, 等, 2015. 一种InSAR大气相位建模与估计方法[J]. 地球物理学报, 58(7): 2320-2329. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201507010.htm
    张芳, 2018. 星载InSAR问题区域检测技术研究以及工程化实现[D]. 西安: 西安电子科技大学.
    中国地质灾害防治工程行业协会, 2018. 地质灾害InSAR监测技术指南: T∕CAGHP 013-2018 [S]. 北京: 中国地质大学出版社.
    张同同, 杨红磊, 李东明, 等, 2019. SAR影像中叠掩与阴影区域的识别—以湖北巴东为例[J]. 测绘通报, (11): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201911017.htm
    郑嘉豪, 黄波林, 张全, 等, 2020. 三峡库区龙门寨危岩体崩塌产生涌浪研究[J]. 地质力学学报, 26(4): 533-543. doi: 10.12090/j.issn.1006-6616.2020.26.04.046
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  764
  • HTML全文浏览量:  181
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-19
  • 修回日期:  2022-01-20

目录

    /

    返回文章
    返回