Correlation between the distribution characteristics of gallium and sedimentary environment of sedimentary bauxite in Pingguo County, Guangxi, China
-
摘要: 广西平果上二叠统合山组沉积型铝土矿储量大,并以伴生稀散元素Ga为特色。从主量成分和微量元素角度研究平果铝土矿的地球化学特征、形成环境及其与Ga的相互关联性,对综合回收利用和提升矿床经济价值有重要帮助。通过对整个研究区内均匀采集的18件不同类型的矿石及铝土岩样品进行金属Ga和常量、微量元素测试,经统计学方法计算和相关性图解分析,发现样品中Ga平均含量已达到工业品位(0.002×10-2)。但在不同类型矿石中的富集程度不同:豆鲕粒状铝土矿>致密块状铝土矿>铝土岩。而且Ga含量与Al2O3含量呈显著正低相关性;与SiO2含量呈显著负相关关系;与V含量呈显著正低相关关系;与稀土元素相关性不强,无明显规律性。通过对那豆沉积型铝土矿床古地理环境和不同类型样品Sr/Ba比值、Ga的富集、LREE/HREE比值分析发现:区内沉积型铝土矿主成矿期为较稳定、酸性、潮湿的滨海至浅海相环境;而且从二叠纪合山组早期的滨海相氧化环境逐步过渡到二叠纪合山组后期的浅海相还原环境。矿石类型则由早期的紫红色致密块状矿化变化为青灰色至灰黑色鲕粒状矿化。Abstract: The Pingguo area in Guangxi Province has considerable reserves of sedimentary bauxite of the Upper Permian Heshan Formation which are characterized by the occurrence of associated dispersed element Ga (gallium). It is of great significance to study the geochemical characteristics and depositional environment of the sedimentary bauxite and their correlation with Ga in the deposit on the basis of major and trace element analyses. This research helps to improve the comprehensive recovery and utilization of bauxite, and also to increase the economic values of the deposit. The contents of major and trace elements, including the Ga concentrations, were measured in 18 different types of ores and bauxite samples which were collected in the study area. The results calculated by statistical method and analyzed by correlation diagram show that the average content of Ga in the samples reaches the industrial grade (0.002×10-2), but the enrichment degree of Ga in different ore types accords with the regular rule of oolitic bauxite>dense massive bauxite>aluminous rock. Ga shows a significantly positive lower correlation with Al2O3, but a significantly negative correlation with SiO2, In addition, the Ga concentrations show a slightly positive lower correlation with V and Zr, and no significant correlation with rare earth elements. Based on the analyses of the paleo-geographic environment, Sr/Ba ratios, Ga enrichment and LREE/HREE ratios of different types of samples, this study suggests a costal to shallow marine facies with a relatively stable, acidic and humid climatic condition during the main metallogenic period of the sedimentary bauxite in the Pingguo area. Moreover, an oxidation environment of the coastal facies during the early deposition of the Upper Permian Heshan Formation was gradually transformed into a reducing, shallow marine facies during the late deposition of the Upper Permian Heshan Formation. Correspondingly, the ore type changed from the purplish red, dense massive mineralization to lime gray to grayish dark, oolitic mineralization.
-
图 1 桂西大地构造位置示意图(据张起钻,2011修改)
Figure 1. Tectonic map of western Guangxi (modified from Zhang, 2011)
图 2 那豆矿床地质简图及采样位置示意图(据龚玉爽和艾国梁,2017修改)
1—第四系沉积物;2—三叠系页岩、砂岩;3—二叠系灰岩;4—石炭系灰岩、白云岩;5—泥盆系灰岩;6—矿体;7—断层;8—背斜轴迹;9—向斜轴迹;10—采样点
Figure 2. Geological sketch and sampling position diagram of the Nadou deposit (modified from Gong and Ai, 2017)
1-Quaternary sediments; 2-Triassic shale and sandstone; 3-Permian limestone; 4-Carboniferous limestone and dolomite; 5-Devonian limestone; 6-Ore body; 7-Fault; 8-Anticline axis; 9-Syncline axis; 10-Sampling point
图 4 那豆矿床Ga含量与主量成分含量相关性图解
a—Ga含量与Al2O3含量相关性图解;b—Ga含量与Fe2O3含量相关性图解;c—Ga含量与SiO2含量相关性图解;d—Ga含量与TiO2含量相关性图解;e—Ga含量与A/S相关性图解
Figure 4. Diagrams showing the correlation between Ga content and major element content in the Nadou deposit
(a) Diagram of correlation between Ga content and Al2O3 content; (b) Diagram of correlation between Ga content and Fe2O3 content; (c) Diagram of correlation between Ga content and SiO2 content; (d) Diagram of correlation between Ga content and TiO2 content; (e) Diagram of correlation between Ga content and A/S
图 5 那豆矿床Ga含量与微量元素含量相关性图解
a—Ga含量与V含量相关性图解;b—Ga含量与Cr含量相关性图解;c—Ga含量与Co含量相关性图解;d—Ga含量与Ni含量相关性图解;e—Ga含量与Rb含量相关性图解;f—Ga含量与Sr含量相关性图解;g—Ga含量与Zr含量相关性图解;h—Ga含量与Ba含量相关性图解
Figure 5. Diagrams showing the correlation between Ga content and trace element content in the Nadou deposit
(a) Diagram of correlation between Ga content and V content; (b) Diagram of correlation between Ga content and Cr content; (c) Diagram of correlation between Ga content and Co content; (d) Diagram of correlation between Ga content and Ni content; (e) Diagram of correlation between Ga content and Rb content; (f) Diagram of correlation between Ga content and Sr content; (g) Diagram of correlation between Ga content and Zr content; (h) Diagram of correlation between Ga content and Ba content
表 1 那豆矿床主量和微量元素测试结果(主量元素/%、微量元素/×10-6)
Table 1. Test results of major and trace elements in the Nadou deposit (major elements/%, trace elements/×10-6)
样品编号 样品名称 Al2O3 Fe2O3 SiO2 TiO2 A/S Ga V Cr Co Ni Sr Zr Ba U Th ND-01 致密块状铝土矿 63.99 17.07 4.27 3.44 14.98 57.67 306.59 36.01 8.19 21.90 9.80 1560.92 6.92 19.32 28.49 ND-02 致密块状铝土矿 57.97 16.14 11.78 3.62 4.92 47.43 169.08 20.95 3.20 2.35 17.04 1257.10 18.07 10.23 36.23 ND-03 致密块状铝土矿 49.98 30.61 7.20 3.94 6.95 44.16 293.14 30.80 10.57 6.06 28.97 1295.61 20.16 16.84 25.29 ND-04 致密块状铝土矿 51.51 24.39 10.37 2.88 4.97 61.32 407.38 43.36 0.65 2.21 26.37 1354.32 97.66 15.25 53.30 ND-05 致密块状铝土矿 75.37 0.80 5.90 4.76 12.79 54.80 276.99 13.33 2.86 7.56 382.33 1741.00 16.65 11.49 30.02 ND-06 致密块状铝土矿 75.90 0.97 3.38 4.69 22.43 28.19 243.86 136.17 15.79 87.89 15.71 1996.90 5.09 19.21 51.27 ND-07 致密块状铝土矿 56.06 21.38 4.94 2.87 11.36 50.89 302.32 27.30 2.27 2.55 6.20 1315.32 5.28 12.11 31.98 ND-08 致密块状铝土矿 46.18 22.82 14.78 3.17 3.12 18.39 154.84 77.59 11.86 45.45 13.85 1302.72 43.35 11.29 46.78 ND-09 豆鲕粒状铝土矿 70.82 6.74 4.60 3.87 15.40 30.07 285.66 114.20 9.78 56.15 12.01 1762.92 8.16 32.89 54.69 ND-10 豆鲕粒状铝土矿 76.58 1.45 3.49 5.41 21.93 43.54 262.70 33.38 11.40 31.00 4.81 1601.34 2.26 16.24 19.56 ND-11 豆鲕粒状铝土矿 78.27 2.24 3.39 3.62 23.07 55.48 323.71 27.30 16.33 15.17 15.10 2133.49 28.22 32.36 35.22 ND-12 豆鲕粒状铝土矿 52.52 22.85 11.57 2.40 4.54 56.59 330.72 21.08 0.32 4.01 9.71 1614.48 9.32 17.84 29.41 ND-13 豆鲕粒状铝土矿 73.04 1.51 4.09 5.64 17.85 50.14 292.06 8.70 1.98 10.89 24.48 2329.93 7.97 28.22 38.60 ND-14 豆鲕粒状铝土矿 74.66 0.77 3.45 4.55 21.67 47.83 243.33 5.56 0.50 10.83 4.23 1862.80 0.38 16.15 20.41 ND-15 豆鲕粒状铝土矿 56.12 16.05 8.69 5.12 6.45 50.55 23.80 12.71 2.23 4.81 2.98 1734.70 14.30 13.84 6.84 ND-16 豆鲕粒状铝土矿 47.85 26.01 10.35 2.82 4.62 62.10 235.46 2.72 2.08 12.65 193.31 1136.75 48.31 4.42 31.59 ND-17 铝土岩 6.70 1.34 88.10 0.26 0.08 6.15 85.60 1.10 5.78 4.25 63.10 85.74 91.21 6.54 9.53 ND-18 铝土岩 48.80 2.15 32.35 2.33 1.51 40.67 36.39 1.63 2.45 9.96 4.37 1021.24 267.07 2.53 13.27 测试单位:广西隐伏金属矿床勘查重点实验室;测试仪器:X射线荧光光谱仪(ZSX PrimusⅡ)、电感耦合等离子体质谱(Agilent 7500cx);A/S为铝硅比;测试年份:2020年 表 2 那豆矿床Ga含量与主量成分含量的相关性及显著性
Table 2. Correlation and significance between Ga and major elements in the Nadou deposit
主量成分 Al2O3 Fe2O3 SiO2 TiO2 A/S 相关系数(r) 0.458 0.305 -0.636 0.323 0.169 显著性(双尾) 0.056 0.218 -0.005 0.191 0.502 注:样本数n=18;A/S为铝硅比 表 3 那豆矿床Ga含量与微量元素含量相关性及显著性
Table 3. Correlation and significance between Ga and trace elements in Nadou deposit
微量元素 V Cr Co Ni Rb Zr Sr Ba 相关性系数(r) 0.497 -0.390 -0.410 -0.466 -0.175 0.447 0.204 -0.161 显著性(双尾) 0.036 0.110 0.091 0.051 0.488 0.063 0.416 0.522 注:样本数n=18 表 4 那豆矿床不同类型铝土矿和铝土岩中指示性元素比值计算结果
Table 4. Calculation results of the ratio of indicative elements in different types of bauxite and aluminous rocks in the Nadou deposit
样品编号 样品名称 Mn/Sr S/A Sr/Ba V/Cr V/(V+Ni) Ga/Al ND-01 致密块状铝土矿 0.00 0.07 1.42 8.51 0.93 0.90 ND-02 致密块状铝土矿 0.00 0.20 0.94 8.07 0.99 0.82 ND-03 致密块状铝土矿 0.00 0.14 1.44 9.52 0.98 0.88 ND-04 致密块状铝土矿 0.00 0.20 0.27 9.40 0.99 1.19 ND-05 致密块状铝土矿 0.00 0.08 22.96 20.77 0.97 0.73 ND-06 致密块状铝土矿 0.02 0.04 3.09 1.79 0.74 0.37 ND-07 致密块状铝土矿 0.00 0.09 1.17 11.08 0.99 0.91 ND-08 致密块状铝土矿 0.00 0.32 0.32 2.00 0.77 0.40 ND-09 豆鲕粒状铝土矿 0.00 0.06 1.47 2.50 0.84 0.42 ND-10 豆鲕粒状铝土矿 0.00 0.05 2.13 7.87 0.89 0.57 ND-11 豆鲕粒状铝土矿 0.00 0.04 0.54 11.86 0.96 0.71 ND-12 豆鲕粒状铝土矿 0.00 0.22 1.04 15.69 0.99 1.08 ND-13 豆鲕粒状铝土矿 0.00 0.06 3.07 33.57 0.96 0.69 ND-14 豆鲕粒状铝土矿 0.00 0.05 11.05 43.80 0.96 0.64 ND-15 豆鲕粒状铝土矿 0.01 0.15 0.21 1.87 0.83 0.90 ND-16 豆鲕粒状铝土矿 0.00 0.22 4.00 86.63 0.95 1.30 ND-17 铝土岩 0.00 13.14 0.69 77.80 0.95 0.92 ND-18 铝土岩 0.00 0.66 0.02 22.33 0.79 0.83 表 5 那豆矿床不同类型铝土矿和铝土岩稀土元素测试结果(×10-6)
Table 5. Test results of REE in different types of bauxite and aluminous rocks in the Nadou deposit(×10-6)
样品编号 样品类型 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣREE LREE HREE LREE/HREE δEu δCe ND-01 致密块状铝土矿 19.50 80.91 2.36 8.10 1.94 0.42 2.89 0.76 5.89 1.31 4.03 0.68 4.57 0.67 134.04 113.22 20.81 5.44 0.54 2.93 ND-02 致密块状铝土矿 62.70 100.15 7.01 23.89 5.18 1.04 6.40 1.46 11.94 3.05 10.50 1.82 12.10 1.88 249.12 199.97 49.16 4.07 0.55 1.17 ND-03 致密块状铝土矿 105.74 182.15 12.53 33.07 4.56 0.82 5.41 1.24 9.95 2.35 6.88 1.02 6.02 0.85 372.57 338.86 33.71 10.05 0.50 1.23 ND-04 致密块状铝土矿 53.53 125.68 8.76 28.42 5.01 1.03 6.30 1.50 13.01 3.39 10.80 1.64 9.79 1.44 270.31 222.43 47.87 4.65 0.56 1.42 ND-05 致密块状铝土矿 19.74 195.32 5.04 19.10 4.49 0.80 3.84 0.60 3.15 0.53 1.47 0.25 1.77 0.25 256.35 244.49 11.86 20.62 0.59 4.80 ND-06 致密块状铝土矿 9.11 67.05 2.15 9.65 4.25 0.93 4.72 1.28 9.07 1.78 4.77 0.90 6.51 0.93 123.10 93.14 29.96 3.11 0.63 3.72 ND-07 致密块状铝土矿 5.08 71.49 1.31 6.50 2.92 0.69 3.63 0.79 5.49 1.17 3.67 0.65 4.55 0.65 108.60 88.00 20.61 4.27 0.65 6.79 ND-08 致密块状铝土矿 16.03 257.06 3.02 11.95 4.07 0.85 5.82 1.20 8.50 1.89 5.50 1.06 7.60 1.12 325.69 292.99 32.70 8.96 0.54 9.06 ND-09 豆鲕粒状铝土矿 6.62 32.98 1.50 6.43 2.19 0.49 3.85 1.52 15.52 4.23 12.96 2.27 13.76 1.99 106.30 50.20 56.10 0.89 0.51 2.57 ND-10 豆鲕粒状铝土矿 3.63 52.87 0.55 2.11 0.78 0.17 1.02 0.19 1.22 0.25 0.73 0.12 0.81 0.12 64.57 60.11 4.46 13.47 0.59 9.17 ND-11 豆鲕粒状铝土矿 53.33 89.08 7.59 21.95 4.90 0.98 5.60 1.71 13.55 2.81 8.75 1.62 11.67 1.68 225.23 177.84 47.39 3.75 0.57 1.09 ND-12 豆鲕粒状铝土矿 21.43 84.70 2.49 8.56 1.81 0.39 2.86 0.79 7.38 1.94 6.14 0.96 5.86 0.85 146.16 119.38 26.78 4.46 0.53 2.84 ND-13 豆鲕粒状铝土矿 165.67 233.53 16.54 49.19 7.55 1.25 6.91 1.48 11.33 2.54 7.91 1.38 9.35 1.36 515.98 473.73 42.25 11.21 0.53 1.09 ND-14 豆鲕粒状铝土矿 2.74 62.71 0.55 2.17 0.91 0.22 1.20 0.26 1.86 0.40 1.25 0.23 1.61 0.23 76.35 69.30 7.05 9.83 0.64 12.51 ND-15 豆鲕粒状铝土矿 2.04 59.58 0.51 2.86 1.03 0.21 1.11 0.22 1.38 0.26 0.74 0.12 0.81 0.11 70.99 66.24 4.75 13.94 0.60 14.29 ND-16 豆鲕粒状铝土矿 162.66 330.68 34.90 136.86 19.45 2.03 13.50 1.99 12.36 2.66 7.75 1.15 6.92 1.01 733.92 686.58 47.35 14.50 0.38 1.08 ND-17 铝土岩 22.17 30.23 4.44 17.12 3.85 0.70 3.36 0.52 2.90 0.55 1.48 0.22 1.35 0.19 89.10 78.52 10.58 7.42 0.59 0.75 ND-18 铝土岩 15.28 8.09 3.74 15.06 2.75 0.44 2.26 0.48 3.95 1.05 3.54 0.60 3.91 0.60 61.75 45.36 16.39 2.77 0.54 0.26 测试单位:广西隐伏金属矿床勘查重点实验室;测试仪器:电感耦合等离子体质谱(Agilent 7500cx);测试年份:2020年 -
ALGEO T J, LIU J S, 2020. A re-assessment of elemental proxies for paleoredox analysis[J]. Chemical Geology, 540: 119549. doi: 10.1016/j.chemgeo.2020.119549 BAO M, HAN J J, ZHUD S, et al., 2020. Geochemical characteristics and enrichment laws of rare earth elements in different types of bauxite in Wuzhengdao area, northern Guizhou Province[J]. Mineral Exploration, 11(5): 936-943. (in Chinese with English abstract) BENNETT W W, CANFIELD D E, 2020. Redox-sensitive trace metals as paleoredoxproxies: a review and analysis of data from modern sediments[J]. Earth-Science Reviews, 204: 103175. doi: 10.1016/j.earscirev.2020.103175 CAO J Y, WU Q H, LI H, et al., 2017. Metallogenic mechanism of Pingguo bauxite deposit, western Guangxi, China: constraints from REE geochemistry and multi-fractal characteristics of major elements in bauxite ore[J]. Journal of Central South University, 24(7): 1627-1636. doi: 10.1007/s11771-017-3568-8 CHE Q S, HUANG W H, JIU B, et al., 2021. Characteristics and sedimentary environment analysis of trace elements in Late Paleozoic coal in Huozhou area[J/OL]. Coal Science and Technology: 1-10. [2021-05-17] https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=MTKJ20210319000&uniplatform=NZKPT&v=hhPV5LJlyhZJ9dHz08jFuGv2BnUF6EuKKFdihXCXH8dUNJGvo-e4rOOt3S9EiukS. (in Chinese with English abstract) CHEN J, XIANG Z Z, WAN B, et al., 2021. The distribution characteristics of associated elements in bauxite ores and bauxite-bearing rocks of the Datian bauxite deposit in the eastern Guizhou, China[J]. Acta MineralogicaSinica, 41(4): 485-493. (in Chinese with English abstract) CHEN R Q, HE Q, LIU M, 2020. Development trend and application prospect of gallium industry in China[J]. China Nonferrous Metals (13): 40-41. (in Chinese) CHEN Y J, DENG J, HU G X, 1996. Environmental constraints on the content and distribution types of trace elements in sediments[J]. Geology-Geochemistry (3): 97-105. (in Chinese) DING Z Z, MA Z X, ZHANG Q Y, et al., 2021. Paleoenvironment analyses of the second member, middle Triassic Guanling Formation in LuopingJiangbian, Yunnan[J]. Acta SedimentologicaSinica, 39(6): 1406-1424. (in Chinese with English abstract) DU Y S, HUANG H W, HUANG Z Q, et al., 2009. Basin translation from late Palaeozoic to Triassic of Youjiang Basin and its tectonic significance[J]. Geological Science and Technology Information, 28(6): 10-15. (in Chinese with English abstract) FLOBACK A E, MOFFETT J W, 2021. Rare earth element distributions in the Arabian Sea reveal the influence of redox processes within the oxygen deficient zone[J]. Chemical Geology, 577: 120214. doi: 10.1016/j.chemgeo.2021.120214 GAO W L, WANG Z X, LI L L, et al., 2018. The ductile shear deformation age of the Jiamusi-Yitong fault and its geological significance[J]. Journal of Geomechanics, 24(6): 748-758. (in Chinese with English abstract) GONG Y S, AI G L, 2017. Discussion on evolution-controlling mechanism of accumulated bauxite orebody and geological significance of fractal characteristics of aluminum grade distribution[J]. Mineral Exploration, 8(1): 62-66. (in Chinese with English abstract) KRAWCZYK M, SUCHORSKA-WO NIAK P, SZUKIEWICZ R, et al., 2021. Morphology of Ga2O3 nanowires and their sensitivity to volatile organic compounds[J]. Nanomaterials, 11(2): 456. doi: 10.3390/nano11020456 LIAO S F, 2000. Discussions on geologic features of karst accumulation type bauxite orebody and its genetic in Pingguo[J]. Guangxi Geology, 13(4): 29-33. (in Chinese with English abstract) LIN X, LIU H J, WUZ H, et al., 2021a. Provenance study on geochemical elements of detrital K-feldspar in Quaternary gravel layer in Yichang and its geological significance[J]. Journal of Geomechanics, 27(6): 1024-1034. (in Chinese with English abstract) LIN X, LIU J, WU Z H, et al., 2021b. Study on borehole provenance tracing and fluvial sediment diffusion in the Bohai Sea: double constraints from detrital zircon U-Pb age and in-situ geochemical element of apatite grains[J]. Journal of Geomechanics, 27(2): 304-316. (in Chinese with English abstract) LI C C, NING S Z, QIAO J W, et al., 2018. Occurrence regularity and controlling factors of gallium in coal of Nanwu mining area, Chongqing[J] Coal Geology and Exploration, 46 (03): 15-20. (in Chinese with English abstract) LING K Y, WEN H J, ZHANG Q Z, et al., 2021. Super-enrichment of lithium and niobium in the upper Permian Heshan Formation in Pingguo, Guangxi, China[J]. Science China Earth Sciences, 64(5): 753-772. doi: 10.1007/s11430-020-9752-6 LIU C L, QIN Z A, 1990. Characteristics and origins of Pisolites and Oolites in sedimentary bauxite of china[J]. Contributions to Geology and Mineral Resources Research, 5(1): 72-83. (in Chinese with English abstract) LIU M, LI Y L, ZHANG R, 2020. Analysis of supply and demand situation of global gallium resource[J]. Land and Resources Information (10): 50-54, 26. (in Chinese with English abstract) LIU P, 2007. Characteristics of associate gallium distributed in the bauxite in Guizhou and its prospects for comprehensive utilization: nine treatments of bauxite ores[J]. Guizhou Geology, 24(2): 90-96. (in Chinese with English abstract) LIU R X, 2011. Study on microscopic and geochemical characteristics of Pingguo primary bauxite and spatial pattern in Guangxi[D]. Changsha: Central South University. (in Chinese with English abstract) LIU X F, WANG Q F, ZHANG Q Z, et al., 2017. Genesis of the Permian karstic Pingguo bauxite deposit, western Guangxi, China[J]. Mineralium Deposita, 52(7): 1031-1048. doi: 10.1007/s00126-017-0723-y LIU Y J, 1965. Some geochemical characteristics of Gallium in certain bauxite deposits of China[J]. Geological Review, 23(1): 42-49. (in Chinese with English abstract) LIU Y J, 1984. Elemental geochemistry[M]. Beijing: Science Press: 378-386. (in Chinese) LUO Q, 1989. Relationship between sedimentary facies and genesis of the Bauxit deposits in Pingguo, Guangxi[J]. Lithofacies Palaeogeography, (2): 11-18. (in Chinese) NIE G J, YU H M, HE S, et al., 2020. Physical simulation analysis of the Cenozoic fault activities and structural deformation mechanism of the Youjiang area[J]. Journal of Geomechanics, 26(3): 316-328. (in Chinese with English abstract) NIU Y F, LU J L, HUANGZ H, 2018. Discrimination of sedimentary environment by the characteristics of geochemical elements[J]. World Nonferrous Metals, (2): 287, 289. (in Chinese with English abstract) PAN K F, LI Y, ZHAO Q, et al., 2019. Simulation of solidification process of metallic gallium and its application in preparing 99.99999% pure gallium[J]. JOM, 71(2): 737-743. doi: 10.1007/s11837-018-3259-4 PENG Z C, LI Y N, ZHANGSUN X Q, et al., 2018. Application of the geochemical characteristics of the major and trace elements in the sedimentary environment[J]. Journal of Xi'an University (Natural Science Edition), 21(3): 108-111. (in Chinese with English abstract) QI L, QIAO Y S, LIU Z X, et al., 2021. Geochemical characteristics of the Tertiary and Quaternary Eolian deposits in eastern Gansu province: implications for provenance and weathering intensity[J]. Journal of Geomechanics, 27(3): 475-490. (in Chinese with English abstract) WANG Q F, DENG J, LIU X F, et al., 2012. Review on research of bauxite geology and genesis in China[J]. Geology and Prospecting, 48(3): 430-448. (in Chinese with English abstract) WU S W, XIA Y, TANQ P, et al., 2019. The REE geochemical characteristics and REE enrichment of ore-bearing rocks of the Zhijin phosphorite-type REE deposit, Guizhou, China[J]. Acta Mineralogica Sinica, 39(4): 359-370. (in Chinese with English abstract) XIANG G X, 2013. Study on provenance, sedimentary facies and geomorphology of Pingguo primary bauxite in Guangxi[D]. Changsha: Central South University. (in Chinese with English abstract) XIAO Y F, WU K, TIAN L, et al., 2018. Framboidal pyrite evidence for persistent low oxygen levels in shallow-marine facies of the Nanpanjiang Basin during the Permian-Triassic transition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 511: 243-255. doi: 10.1016/j.palaeo.2018.08.012 YE T, GU J, WANG G L, et al., 2021. Research progress on the associated rare earth, rare metal, and rare dispersed elements in the bauxite deposit[J]. Acta Mineralogica Sinica, 41(4): 391-399. (in Chinese with English abstract) YU W C, 2017. Sedimentological and metallogenic study of bauxite deposits in Guizhou and Guangxi Provinces, South China[D]. Wuhan: China University of Geosciences. (in Chinese with English abstract) ZHANG Q Z, 1999. Geology and origin of the karst-accumulation-type bauxite deposits in west Guangxi[J]. Geological Exploration for Non-Ferrous Metals, 8(6): 486-489. (in Chinese with English abstract) ZHANG Q Z, 2011. Metallogenic model and exploration techniques of the bauxite, Western Guangxi, China[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract) ZHAO X D, LI J M, CHEN L, et al., 2013. Analysis on gallium geochemical characteristics and ore-forming environment of bauxite mine in Yinkuangyakou of Chongqing[J]. Acta Sedimentologica Sinica, 31(6): 1022-1030. (in Chinese with English abstract) ZHAO X D, LI J M, 2014. Analyses on distribution characteristics and controlling factors of gallium in bauxite-bearing rock series in the southeastern limb of the Chepan syncline, Chongqing[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 33(6): 893-899. (in Chinese with English abstract) ZHU B, 2012. Geological characteristics and genesis of sedimentary bauxite in the Nadou deposit, Pingguo[J]. China Petroleum and Chemical Standard and Quality, 32(6): 15. (in Chinese) ZHU J G, CHEN L L, XUE T, et al., 2020. Study of enrichment regularity and sedimentary environment of associated gallium of bauxite deposit in Xinmi County, Laiji City[J]. Mining Engineering, 18(2): 8-10. (in Chinese with English abstract) ZHU M L, HUANG Z S, ZHONGS P, et al., 2018. Extraction process of gallium from gallium concentrate[J]. The Chinese Journal of Nonferrous Metals, 28(11): 2351-2357. (in Chinese with English abstract) doi: 10.1016/S1003-6326(18)64880-0 ZHU R Q, 2012. The study on geologic-landform environment and metallogenic mechanism of karst type bauxite in Pingguo, Guangxi[D]. Changsha: Central South University. (in Chinese with English abstract) 鲍淼, 韩家家, 朱斗圣, 等, 2020. 黔北务正道地区铝土矿稀土元素地球化学特征与富集规律研究[J]. 矿产勘查, 11(5): 936-943. doi: 10.3969/j.issn.1674-7801.2020.05.012 车青松, 黄文辉, 久博, 等, 2021. 霍州地区晚古生代煤中微量元素特征及沉积环境分析[J/OL]. 煤炭科学技术: 1-10[2021-05-17]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=MTKJ20210319000&uniplatform=NZKPT&v=hhPV5LJlyhZJ9dHz08jFuGv2BnUF6EuKKFdihXCXH8dUNJGvo-e4rOOt3S9EiukS. 陈健, 向震中, 万斌, 等, 2021. 黔东大田铝土矿(岩)伴生元素分布特征[J]. 矿物学报, 41(4): 485-493. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2021Z1011.htm 陈瑞强, 何青, 刘麦, 2020. 我国金属镓产业发展态势及应用前景[J]. 中国有色金属 (13): 40-41. doi: 10.3969/j.issn.1673-3894.2020.13.009 陈衍景, 邓健, 胡桂兴, 1996. 环境对沉积物微量元素含量和配分型式的制约[J]. 地质地球化学 (3): 97-105. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199603008.htm 丁仲昭, 马志鑫, 张启跃, 等, 2021. 云南罗平江边地区中三叠统关岭组二段古环境特征[J]. 沉积学报, 39(6): 1406-1424. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202106007.htm 杜远生, 黄宏伟, 黄志强, 等, 2009. 右江盆地晚古生代-三叠纪盆地转换及其构造意义[J]. 地质科技情报, 28(6): 10-15. doi: 10.3969/j.issn.1000-7849.2009.06.002 高万里, 王宗秀, 李磊磊, 等, 2018. 佳木斯—伊通断裂韧性剪切变形时代及其地质意义[J]. 地质力学学报, 24(6): 748-758. doi: 10.12090/j.issn.1006-6616.2018.24.06.077 龚玉爽, 艾国梁, 2017. 广西平果那豆矿区堆积矿演化控制机制和铝品位分形特征的地质意义探讨[J]. 矿产勘查, 8(1): 62-66. doi: 10.3969/j.issn.1674-7801.2017.01.006 廖思福, 2000. 平果岩溶堆积型铝土矿地质特征及成因探讨[J]. 广西地质, 13(4): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ200004006.htm 林旭, 刘海金, 吴中海, 等, 2021a. 宜昌第四纪砾石层钾长石主、微量元素物源研究及其地质意义[J]. 地质力学学报, 27(6): 1024-1034. doi: 10.12090/j.issn.1006-6616.2021.27.06.083 林旭, 刘静, 吴中海, 等, 2021b. 渤海钻孔物源示踪和河流沉积物扩散研究: 碎屑锆石U-Pb年龄和磷灰石原位地球化学元素双重约束[J]. 地质力学学报, 27(2): 304-316. doi: 10.12090/j.issn.1006-6616.2021.27.02.028 李聪聪, 宁树正, 乔军伟, 等, 2018. 重庆南武矿区煤中镓赋存规律及控制因素[J]. 煤田地质与勘探, 46(03): 15-20. doi: 10.3969/j.issn.1001-1986.2018.03.004 刘长龄, 覃志安, 1990. 我国沉积铝土矿中豆鲕粒的特征与成因[J]. 地质找矿论丛, 5(1): 72-83. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK199001006.htm 刘麦, 李伊兰, 张睿, 等, 2020. 全球镓资源现状及供需形势[J]. 国土资源情报 (10): 50-54, 26. https://www.cnki.com.cn/Article/CJFDTOTAL-GTZQ202010009.htm 刘平, 2007. 贵州铝土矿伴生镓的分布特征及综合利用前景: 九论贵州之铝土矿[J]. 贵州地质, 24(2): 90-96. doi: 10.3969/j.issn.1000-5943.2007.02.002 刘容秀, 2011. 广西平果原生铝土矿矿石微观特征、地球化学特征及成矿环境格局研究[D]. 长沙: 中南大学. 刘英俊, 1965. 我国某些铝土矿中镓的若干地球化学特征[J]. 地质论评, 23(1): 42-49. doi: 10.3321/j.issn:0371-5736.1965.01.005 刘英俊, 1984. 元素地球化学[M]. 北京: 科学出版社: 378-386. 罗强, 1989. 论广西平果铝土矿成因与沉积相的关系[J]. 岩相古地理 (2): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD198902001.htm 聂冠军, 于红梅, 何声, 等, 2020. 右江地区新生代断裂活动及构造变形机制的物理模拟分析[J]. 地质力学学报, 26(3): 316-328. doi: 10.12090/j.issn.1006-6616.2020.26.03.029 牛亚斐, 卢锦临, 黄志辉, 2018. 应用地球化学元素特征判别沉积环境[J]. 世界有色金属 (2): 287, 289. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201802161.htm 彭治超, 李亚男, 张孙玄琦, 等, 2018. 主微量元素地球化学特征在沉积环境中的应用[J]. 西安文理学院学报(自然科学版), 21(3): 108-111. doi: 10.3969/j.issn.1008-5564.2018.03.023 綦琳, 乔彦松, 刘宗秀, 等, 2021. 陇东新近纪红粘土与第四纪黄土地球化学特征及其物源和风化指示意义[J]. 地质力学学报, 27(3): 475-490. doi: 10.12090/j.issn.1006-6616.2021.27.03.043 王庆飞, 邓军, 刘学飞, 等, 2012. 铝土矿地质与成因研究进展[J]. 地质与勘探, 48(3): 430-448. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201203003.htm 吴盛炜, 夏勇, 谭亲平, 等, 2019. 贵州织金磷块岩型稀土矿含矿岩系REE地球化学特征与稀土富集[J]. 矿物学报, 39(4): 359-370. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201904002.htm 项广鑫, 2013. 广西平果原生铝土矿物源、沉积相及古地貌研究[D]. 长沙: 中南大学. 叶彤, 谷静, 王甘露, 等, 2021. 铝土矿中伴生三稀元素研究进展[J]. 矿物学报, 41(4): 391-399. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2021Z1003.htm 余文超, 2017. 华南黔桂地区铝土矿沉积-成矿作用[D]. 武汉: 中国地质大学. 张起钻, 1999. 桂西岩溶堆积型铝土矿床地质特征及成因[J]. 有色金属矿产与勘查, 8(6): 486-489. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS199906038.htm 张起钻, 2011. 桂西铝土矿成矿模式与勘查技术[D]. 北京: 中国地质大学(北京). 赵晓东, 李军敏, 陈莉, 等, 2013, 吕涛. 重庆银矿垭口铝土矿床镓地球化学特征及成矿环境研究[J]. 沉积学报, 31(6): 1022-1030. 赵晓东, 李军敏, 2014. 重庆车盘向斜南东翼铝土矿含矿岩系中镓的分布特征及控制因素分析[J]. 矿物岩石地球化学通报, 33(6): 893-899. doi: 10.3969/j.issn.1007-2802.2014.06.019 朱博, 2012. 平果那豆沉积型铝土矿地质特征及成因探讨[J]. 中国石油和化工标准与质量, 32(6): 15. doi: 10.3969/j.issn.1673-4076.2012.06.009 朱建刚, 陈荔荔, 薛涛, 等, 2020. 新密来集铝土矿床伴生镓富集规律及沉积环境研究[J]. 矿业工程, 18(2): 8-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GWKS202002003.htm 朱茂兰, 黄中省, 衷水平, 等, 2018. 镓精矿中镓的提取工艺[J]. 中国有色金属学报, 28(11): 2351-2357. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201811021.htm 祝瑞勤, 2012. 广西平果岩溶型铝土矿地质地貌环境与成矿机制研究[D]. 长沙: 中南大学.