留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

川西南大梁子铅锌矿床矿化蚀变分带规律与元素组合分带模型

袁航 韩润生 冯志兴 吴鹏 管申进 丁天柱 李凌杰 杨博

袁航, 韩润生, 冯志兴, 等, 2022. 川西南大梁子铅锌矿床矿化蚀变分带规律与元素组合分带模型. 地质力学学报, 28 (3): 432-447. DOI: 10.12090/j.issn.1006-6616.2021016
引用本文: 袁航, 韩润生, 冯志兴, 等, 2022. 川西南大梁子铅锌矿床矿化蚀变分带规律与元素组合分带模型. 地质力学学报, 28 (3): 432-447. DOI: 10.12090/j.issn.1006-6616.2021016
YUAN Hang, HAN Runsheng, FENG Zhixing, et al., 2022. Mineralization-alteration zoning law and element compositional zoning pattern in mineralized altered rocks from the Daliangzi Pb-Zn deposit, southwestern Sichuan. Journal of Geomechanics, 28 (3): 432-447. DOI: 10.12090/j.issn.1006-6616.2021016
Citation: YUAN Hang, HAN Runsheng, FENG Zhixing, et al., 2022. Mineralization-alteration zoning law and element compositional zoning pattern in mineralized altered rocks from the Daliangzi Pb-Zn deposit, southwestern Sichuan. Journal of Geomechanics, 28 (3): 432-447. DOI: 10.12090/j.issn.1006-6616.2021016

川西南大梁子铅锌矿床矿化蚀变分带规律与元素组合分带模型

doi: 10.12090/j.issn.1006-6616.2021016
基金项目: 

国家自然科学基金 42172086

"云岭学者"人才计划项目 2014

云南省矿产资源预测评价工程实验室项目 2010

云南省地质过程与矿产资源创新团队项目 2012

详细信息
    作者简介:

    袁航(1994—), 男, 工程师, 从事构造地质学和矿床学等科研工作。E-mail: 381681581@qq.com

    通讯作者:

    韩润生(1964—), 男, 研究员, 博士生导师, 从事构造成矿动力学及隐伏矿床预测、矿床学研究和教学工作。E-mail: 554670042@qq.com

  • 中图分类号: P575

Mineralization-alteration zoning law and element compositional zoning pattern in mineralized altered rocks from the Daliangzi Pb-Zn deposit, southwestern Sichuan

Funds: 

the National Natural Science Foundation of China 42172086

the "Yunling scholars" Talent Plan 2014

the program of Yunnan Mineral Resources Prediction and Evaluation Engineering Laboratory 2010

the program of Yunnan Geological Process and Mineral Resources Innovation Team 2012

  • 摘要: 川西南大梁子铅锌矿床是川滇黔地区震旦系灯影组碳酸盐岩赋矿的后生热液型铅锌矿床的代表之一。针对该矿床矿化蚀变分带规律不清的现状,基于矿区内1884 m、1944 m、2004 m、2064 m中段1∶200矿化-蚀变岩相学填图,精细解剖了蚀变类型、强度及蚀变岩组构,总结了矿化蚀变的强弱变化、矿物共生组合、元素组合及其空间分带特征,揭示了不同矿化蚀变带特征元素含量的变化规律,构建了从铅锌矿体中心向赋矿围岩的矿化蚀变空间分带模式:中等硅化+白云石化角砾状铅锌矿石相带(Ⅰ带)→中等硅化+白云石化网脉状铅锌矿化相带(Ⅱ带)→强硅化+白云石化+方解石化+细脉至星点状黄铁矿化相带(Ⅲ带)→方解石化+炭质+黄铁矿化相带(Ⅳ带)。基于成矿元素、特征元素组合及其元素比值的变化特征研究,矿化指示元素在不同蚀变带中依次具有Pb-Zn-Cd→Pb-Zn-Ag-Cu(Sb)→Ag-Cu-As-Sb→As-Sb的水平分带规律,总结了矿化指示元素的变化趋势。该研究对该矿床深部找矿勘查和同类矿床矿化蚀变分带研究具有启示意义。

     

  • 图  1  大梁子矿区区域构造简图(图 1a据王宝碌等,2004修改;图 1b据张长青等,2014修改)

    Figure  1.  Schematic diagram showing the regional tectonics of the Daliangzi mining area (Fig. 1a is modified from Wang et al., 2004; Fig. 1b modified is from Zhang et al., 2014)

    图  2  大梁子铅锌矿床7号和19号勘探线剖面

    Figure  2.  Sections of No.7 and No.19 exploration lines in the Daliangzi Pb-Zn deposit

    图  3  大梁子矿区矿石典型构造

    Sph—闪锌矿;Gn—方铅矿;Py—黄铁矿;Dol—白云岩
    a—致密块状的铅锌矿;b—方铅矿和闪锌矿以胶结物的形式分布于白云岩周围;c—黄铁矿呈稠密浸染状,细脉状方铅矿、闪锌矿

    Figure  3.  Typical ore structures in the Daliangzi mining area

    (a) Dense massive Pb-Zn ore; (b) Galena and sphalerite distributed around dolomite in the form of cement; (c) Densely disseminated pyrite, fine veined galena and sphalerite
    Sph-Sphalerite; Gn-Galena; Py-Pyrite; Dol-Dolomite

    图  4  不同阶段矿石组构照片

    a—闪锌矿(S1和S2)胶结白云岩角砾和斑点状白云石(D1),旁侧见细脉状白云石(D2);b—浅黄褐色细脉状闪锌矿(S3);c—星点状方铅矿(G1),呈半自形—他形粒状结构,旁侧见星点状黄铁矿(P3)沿石英脉(Q1)发育;d—浅黄褐色—橘红色闪锌矿(S2)与方铅矿(G2)呈共边结构;e—浅黄褐色—橘红色闪锌矿(S2)与方铅矿(G2)呈共边结构;f—方铅矿和黄铁矿共生并溶蚀交代硅质白云岩;g—黄铁矿(P1)呈星点状分布;h—黄铁矿与方铅矿共生,胶结白云岩角砾;i—黄铁矿(P3)溶蚀白云岩呈港湾状结构;j—石英脉(Q2)切穿硅质白云岩;k—石英(Q2)交代白云石(D3)边部;l—棕黑色闪锌矿(S1)和网脉状白云石(D2);m—细脉状、脉状白云石(D3);n—方解石(Cc)溶蚀交代白云岩(D4);o—方解石(Cc)呈脉状穿切白云石(D4)

    Figure  4.  Photos showing ore fabric at different stages

    (a) Sphalerite (S1 and S2) cemented dolomite breccia and spotted dolomite (D1), with fine veined dolomite (D2) on the side; (b) Light yellowish brown fine veined sphalerite (S3); (c) Star shaped galena (G1) in a semi automorphic-allomorphic granular structure, with star shaped pyrite (P3) developed along quartz vein (Q1) on the side; (d) Light yellowish brown-orange sphalerite (S2) and galena (G2) have a coplanar structure; (e) Light yellowish brown orange sphalerite (S2) and galena (G2) have a coplanar structure; (f) Galena and pyrite coexist, and they dissolve and metasomatize siliceous dolomite; (g) Pyrite (P1) is distributed in a star shape; (h) Pyrite and galena coexist and cement dolomite breccia; (i) Pyrite (P3) dissolved dolomite with a harbor-like structure; (j) Quartz vein (Q2) cuts through siliceous dolomite; (k) Quartz (Q2) metasomatizes dolomite (D3) edge; (l) Brownish black sphalerite (S1) and stockwork dolomite (D2); (m) Fine veined and veined dolomite (D3); (n) Calcite (Cc) dissolves and metasomatizes dolomite (D4); (o) Calcite (Cc) is vein shaped cutting through dolomite (D4)

    图  5  大梁子铅锌矿床各矿化蚀变分带典型特征照片

    Sph—闪锌矿;Gn—方铅矿;Py—黄铁矿;Ccp—黄铜矿;Dol—白云石;Qtz—石英; Cc—方解石
    a—白云石重结晶,黄铁矿呈自形粒状结构;b—白云石溶蚀交代黄铁矿,黄铁矿呈半自形结构;c—白云石与浅黄褐色—橘红色闪锌矿呈共边结构;d—石英重结晶,黄铁矿被石英溶蚀成不规则粒状;e—白云石包裹闪锌矿与黄铁矿;f—白云岩被黄铁矿、闪锌矿溶蚀交代,呈交代残余结构,偶见黄铜矿呈星点状分布;g—红棕色—黄色闪锌矿交代溶蚀白云石;h—闪锌矿交代石英呈港湾状结构;i—闪锌矿交代白云石呈交错结构,方铅矿呈星点状,黄铁矿呈半自形—他形粒状结构;j—黄铁矿溶蚀交代硅质白云岩,石英呈粒状;k—脉状石英;l—白云石重结晶,石英溶蚀交代棕黑色闪锌矿呈港湾状结构,方解石具自形—半自形结构;m—方解石呈脉状分布;n—黄铁矿呈星点状他形粒状结构分布;o—方解石呈脉状

    Figure  5.  Typical photos showing mineralization-alteration zoning characteristics in the Daliangzi Pb-Zn deposit

    (a) Dolomite recrystallizes and pyrite is in a euhedral granular structure; (b) Dolomite dissolves and metasomatizes pyrite, and pyrite has a subhedral structure; (c) Dolomite and light yellowish-brown orange sphalerite have a coplanar structure; (d) Quartz recrystallizes and pyrite is dissolved into irregular granules by quartz; (e) Dolomite wraps sphalerite and pyrite; (f) Dolomite is eroded and metasomatized by pyrite, sphalerite is in a metasomatic residual structure, and chalcopyrite is occasionally distributed in a star shape; (g) Reddish brown-yellow sphalerite metasomatizes and dissolves dolomite; (h) Sphalerite metasomatizes quartz, showing a harbor-like structure; (i) Sphalerite metasomatize dolomite, showing a staggered structure, galena is in a star shape, and pyrite is in a subhedral allomorphic granular structure; (j) Pyrite dissolves and metasomatizes siliceous dolomite, and quartz is in a granular structure; (k) Veined quartz; (l) Dolomite recrystallizes, quartz dissolves and metasomatizes brownish black sphalerite and shows a harbor-like structure, and calcite has a euhedral-semi euhedral structure; (m) Calcite is vein distributed in black argillaceous dolomite; (n) Pyrite is distributed in star shaped granular structure; (o) Calcite is vein shaped
    Sph-Sphalerite; Gn-Galena; Py-Pyrite; Ccp-Chalcopyrite; Qtz-Quartz; Cc-Calcite

    图  6  大梁子铅锌矿床1884 m中段和1944 m中段矿化-蚀变剖面填图

    a—1884 m中段3号勘探线;b—1944 m中段3号勘探线;c—1944 m中段17号勘探线

    Figure  6.  Geochemical mapping showing the mineralization-alteration profiles at the middle sections of 1884 m and 1944 m in the Daliangzi Pb-Zn deposit

    (a) No.3 surveyline at the middle section of 1884 m; (b) No.3 surveyline at the middle section of 1944 m; (c) No.17 surveyline at the middle section of 1944 m

    图  7  大梁子铅锌矿床2004 m中段和2064 m中段矿化-蚀变剖面填图

    a—2004 m中段南部运输巷;b—2064 m中段29号勘探线

    Figure  7.  Geochemical mapping showing the mineralization-alteration profiles at the middle sections of 2004 m and 2064 m in the Daliangzi Pb-Zn deposit

    (a) The South haulage roadway at the middle section of 2004 m; (b) No.29 surveyline at the middle section of 2064 m

    图  8  大梁子铅锌矿床矿化-蚀变垂向分带示意图

    Figure  8.  Schematic diagram showing the mineralization-alteration vertical zoning of the Daliangzi Pb-Zn deposit

    图  9  大梁子铅锌矿床流体包裹体采样位置图

    Figure  9.  Sampling location map of the fluid inclusions in the Daliangzi Pb-Zn deposit

    图  10  大梁子铅锌矿床流体包裹体显微照片

    a—闪锌矿气(V)液(L)两相包裹体;b—方解石气(V)液(L)两相包裹体;c—方解石气(V)液(L)两相包裹体

    Figure  10.  Micrographs of the fluid inclusions in the Daliangzi Pb-Zn deposit

    (a) Sphalerite gas(V)-liquid(L) two-phase inclusion; (b) Calcite gas(V)-liquid(L) two-phase inclusion; (c) Calcite gas(V)-liquid(L) two-phase inclusion

    图  11  大梁子铅锌矿床矿化-蚀变分带模式图

    a—元素及比值横向变化图;b—元素及比值垂向变化图;c—矿化-蚀变分带模式图

    Figure  11.  Diagram showing the mineralization-alteration zoning pattern of the Daliangzi Pb-Zn deposit

    (a) Horizontal variation diagram of elements and ratios; (b) Vertical variation diagram of elements and ratios; (c) Mineralization-alteration zoning pattern

    表  1  大梁子铅锌矿床成矿阶段划分及矿物生成顺序

    Table  1.   Paragenetic sequence of the Daliangzi Pb-Zn deposit

    表  2  大梁子铅锌矿床矿化元素测试结果(×10-6)

    Table  2.   Mineralization element contents in the Daliangzi Pb-Zn deposit (×10-6)

    采样位置 样品号 岩性 主要矿化元素
    Pb Zn Ag Cu Cd Ge As Sb
    1884平面3线 DLZc417 黄褐色碎粉岩 368.0 1183.0 1.0 13.5 5.4 1.3 137.0 6.8
    DLZc419 米黄色碎粉岩 1525.0 7665.0 2.5 24.3 35.4 1.3 108.0 10.9
    DLZc422 黑色碎粉岩 2193.0 79200.0 21.3 553.0 359.0 9.4 471.0 111.0
    DLZc424 深灰色碎裂白云岩 7913.0 158300.0 1493.0 226.0 1021.0 15.7 166.0 35.7
    DLZc425 米黄色碎粉岩 11370.0 5219.0 6.4 21.7 33.2 2.0 920.0 14.2
    1944平面3线 DLZc258 灰白色碎斑白云岩 231.0 874.0 0.3 5.6 15.4 0.1 16.8 2.1
    DLZc259 黑色炭泥质白云岩 7430.0 119300.0 21.9 168.0 797.0 11.3 160.0 42.3
    DLZc261 灰白色白云岩 802.0 12700.0 3.6 38.4 75.6 1.2 33.0 8.1
    DLZc262 黄褐色片理化带 4181.0 134700.0 30.1 190.0 946.0 16.6 211.0 58.4
    DLZc264 黑色炭泥质白云岩 2303.0 17210.0 3.9 50.1 70.7 3.4 360.0 7.1
    1944平面17线 DLZc15 灰白色细粒白云岩 202.0 479.0 1.6 25.1 6.1 0.2 42.6 3.2
    DLZc16 灰白色硅质白云岩 464.0 520.0 2.7 90.3 12.5 0.3 75.5 6.7
    DLZc17 灰白色细粒白云岩 82.3 333.0 0.2 10.4 5.7 0.1 13.2 1.3
    DLZc19 灰白色细粒白云岩 323.0 34225.0 4.2 435.0 287.0 4.3 86.9 19.7
    DLZc20 泥化白云岩 98800.0 57700.0 83.9 227.0 90.3 4.9 92.1 99.5
    DLZc23 层纹状白云岩 8875.0 104900.0 18.8 113.0 674.0 7.2 35.1 42.6
    DLZc24 泥化白云岩 5036.0 20625.0 6.3 587.0 100.0 2.4 89.4 41.2
    DLZc26 白云质碎裂岩 2509.0 29980.0 3.7 587.0 99.6 1.3 96.0 20.1
    DLZc27 碎裂白云岩 17677.0 77300.0 16.2 3940.0 526.0 4.2 202.0 57.5
    DLZc29 碎裂白云岩 431.0 2664.0 2.9 1526.0 45.3 1.7 176.0 13.4
    DLZc32-3 浅灰色硅质岩 178.0 207600.0 29.4 300.0 1549.0 30.0 63.1 97.9
    DLZc35 角砾岩 8675.0 133700.0 27.4 243.0 1045.0 14.6 71.9 73.3
    DLZc38 浅灰色白云岩 8654.0 129600.0 18.3 297.0 768.0 8.9 71.9 73.3
    DLZc40 灰白色白云岩 438.0 1177.0 1.7 103.0 14.1 0.9 101.0 66.4
    2004平面南部运输巷 DLZc-840 黑色泥质物质 449.0 105.0 1.9 13.5 0.3 1.0 93.7 6.6
    DLZc-841 灰色白云岩 111.0 98.1 0.6 7.0 0.4 0.3 30.8 2.9
    DLZc-842 黑色碎斑岩 68.0 105.0 1.2 23.0 0.2 0.7 57.7 3.7
    DLZc-844 黑色碎裂白云岩 2511.0 326.0 4.7 32.6 1.5 0.6 94.0 13.4
    DLZc-849 灰色硅质白云岩 41.4 51.2 0.1 4.3 0.3 0.1 16.6 0.7
    DLZc-852 灰白色碎斑岩 22.5 212.0 0.1 7.3 0.6 0.2 54.8 1.4
    2064平面29线 DLZc815 黄褐色碎裂岩 73900.0 24979.0 42.0 106.0 80.5 2.0 2989.0 32.4
    DLZc817 褐色碎粉岩 1136.0 409.0 1.6 15.1 2.6 0.3 95.5 4.0
    DLZc819 黑色碎粉岩 213.0 191.0 0.3 27.1 0.7 1.5 147.0 4.1
    DLZc821 黄褐色碎裂岩 37182.0 1367.0 15.7 35.4 4.3 0.8 198.0 34.6
    DLZc823 米黄色碎粉岩 501.0 209.0 1.0 7.6 5.3 0.4 24.8 3.4
    DLZc826 黄褐色碎裂岩 831.0 1550.0 2.2 63.7 4.7 0.6 218.0 11.4
    DLZc827 灰黑色碎裂岩 2287.0 77.2 1.3 15.5 0.5 0.4 63.3 3.1
    DLZc828 黄褐色碎粉岩 1611.0 552.0 3.5 60.1 2.4 0.5 99.5 6.0
    下载: 导出CSV

    表  3  大梁子铅锌矿床显微测温结果

    Table  3.   Microscopic temperature measurement results of the Daliangzi Pb-Zn deposit

    样号 寄主矿物 包裹体类型 大小/μm 气液比/% 冰点/℃ 均一温度/℃ 盐度/%NaCleqv pH 成矿阶段
    范围 均值 范围 均值
    DLZ46-1 方解石 L+V 7~13 10~20 -8.50~-6.10 -7.22 186~211.4 200.5 10.73 5.83 1
    DLZ541 闪锌矿 L+V 8~11 15~25 -8.90~-5.50 -7.64 177.5~267.8 221.1 11.21 5.82 1
    DLZ530 方解石 L+V 11~20 10~16 -10.40~-3.70 -6.84 147.6~186.5 170.0 10.11 5.86 2
    DLZ204 方解石 L+V 10~15 10~15 -12.00~-4.10 -8.44 146.3~201.7 175.4 11.95 5.88 2
    DLZ217 方解石 L+V 7~8 15~20 -7.50~-3.80 -5.23 155.2~170.0 163.5 8.09 6.03 2
    DLZ523 方解石 L+V 7~15 10~20 -7.40~-3.20 -8.17 146.5~206.4 171.3 7.47 5.90 2
    注:L为液相包裹体,V为气相包裹体;成矿阶段中1代表多金属硫化物阶段;2代表碳酸盐岩阶段
    下载: 导出CSV
  • BEJAOUI J, BOUHLEL S, CARDELLACH E, et al., 2013. Mineralization and fluid inclusion studies of the Aptian carbonate-hosted Pb-Zn-Ba ore deposits at Jebel Hamra, Central Tunisia[J]. Journal of Geochemical Exploration, 128: 136-146.
    BODNAR R J, 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta, 57(3): 683-684. doi: 10.1016/0016-7037(93)90378-A
    BODNAR R J, 2003. Reequilibration of fluid inclusions[M]//SAMSON I, ANDERSON A, MARSHALL D. Fluid inclusions: Analysis and interpretation. Canada: Mineralogical Association of Canada: 213-230.
    CORBELLA M, AYORA C, CARDELLACH E, 2004. Hydrothermal mixing, carbonate dissolution and sulfide precipitation in Mississippi Valley-type deposits[J]. Mineralium Deposita, 39(3): 344-357. doi: 10.1007/s00126-004-0412-5
    CORDEIRO P F O, OLIVEIRA C G, PANIAGO L N, et al., 2018. The carbonate-hosted MVT Morro Agudo Zn-Pb deposit, central Brazil[J]. Ore Geology Reviews, 101: 437-452.
    GONG H S, HAN R S, LI Z T, et al., 2020. Element association anomaly of tectonites and prediction of concealed deposit in the Xiaozhuqing exploration area on the periphery of Huize lead-zinc mine area, northeastern Yunnan province[J]. Journal of Geomechanics, 26(3): 419-431. (in Chinese with English abstract)
    HAN R S, CHEN J, HUANG Z L, et al., 2006. Dynamics of tectonic ore-forming processes and localization-prognosis of concealed orebodies: as exemplified by the Huize super-large Zn-Pb-(Ag-Ge) district, Yunnan[M]. Beijing: Science Press: 1-200. (in Chinese with English abstract)
    HAN R S, WANG L, FANG W X, et al., 2011. The preliminary discussion on diapir structure-lithofacies zonation model for the Fengshan copper deposit, Yimen area, Yunnan, China[J]. Geological Bulletin of China, 30(4): 495-504. (in Chinese with English abstract)
    HAN R S, HU Y Z, WANG X K, et al., 2012. Mineralization Model of Rich Ge-Ag-Bearing Zn-Pb Polymetallic Deposit Concentrated District in NortheasternYunnan, China[J]. Acta Geologica Sinica, 86(2): 280-294. (in Chinese with English abstract)
    HAN R S, 2014-11-19. A large-scale altered lithofacies location prediction method for hydrothermal deposits: CN, 201410396700.7[P]. (in Chinese)
    HANILÇI N, ÖZTVRK H, BANKS D, 2020. Geological, Geochemical and Microthermometric Characteristics of the Hakkari Region Zn-Pb Deposits, SE Turkey[J]. Ore Geology Reviews, 125: 103667. doi: 10.1016/j.oregeorev.2020.103667
    KONG Z G, WU Y, ZHANG F, et al., 2018. Sources of ore-forming material of typical Pb-Zn deposits in the Sichuan-Yunnan-Guizhou metallogenic province: constraints from the S-Pb isotopic compositions[J]. Earth Science Frontiers, 25(1): 125-137. (in Chinese with English abstract)
    LEACH D L, BRADLEY D C, HUSTON D, et al., 2010. Sediment-hosted lead-zinc deposits in earth history[J]. Economic Geology, 105(3): 593-625. doi: 10.2113/gsecongeo.105.3.593
    LI F Y, 2003. Study on occurrence state and enrichment mechanism of dispersed elements in MVT deposits: a case study for the Tianbaoshan and Daliangzi Pb-Zn deposits in Sichuan province[D]. Chengdu: Chengdu University of Technology: 1-69. (in Chinese with English abstract)
    LIN F C, 1994. Some new opinions on the genesis of the Daliangzi lead-zinc deposit, Huidong county, Sichuan province[J]. Mineral Deposits, 13(2): 126-136. (in Chinese with English abstract)
    LIU B, 2011. Calculation of pH and Eh for aqueous inclusions as simple system[J]. Acta Petrologica Sinica, 27(5): 1533-1542. (in Chinese with English abstract)
    LIU H C, LIN W D, 1999. Regularity research of Ag-Zn-Pb ore deposits North-East Yunnan province[M]. Kunming: Yunnan University Press: 47-56. (in Chinese with English abstract)
    LIU Z P, 2016. General study on the stable isotope geochemistry of the Daliangzi Pb-Zn deposit in Huidong, Sichuan[D]. Chengdu: Chengdu University of Technology: 1-79. (in Chinese with English abstract)
    TAO Q, HAN R S, ZHAO D, et al., 2020. The mineralization and alteration zoning related to the buried granite porphyry of the Huangshaping Cu-Sn polymetallic deposit, southern Hunan[J]. Geology in China, 1-24. http://kns.cnki.net/kcms/detail/11.1167.P.20200415.1611.004.html. (in Chinese with English abstract)
    WANG B L, LV S K, HU J G, 2004. A tentative description of the Chuan-Dian-Qian rhombic massif[J]. Yunnan Geology, 23(2): 140-153. (in Chinese with English abstract)
    WANG M Z, HAN R S, ZHOU W, et al., 2019. Ore-forming structure analysis of the Liangyan lead-zinc mining area in northwestern Guizhou deposit concentration district, China[J]. Journal of Geomechanics, 25(2): 187-197. (in Chinese with English abstract)
    WANG X C, 1988. The metallogenic mechanism of stratified lead-zinc deposits in the Sinian Dengying Formation in the eastern margin of the Kangdian Earth Axis-Taking Tianbaoshan and Daliangzi deposits as examples[D]. Chengdu: Chengdu Institute of Geology. (in Chinese)
    WANG X C, 1991. Genesis analysis of Daliangzi Pb-Zn deposit in Sichuan province[J]. Mineral Resources and Geology, 5(3): 151-156. (in Chinese)
    WEI A Y, 2011. Research on alteration-mineralization zoning model of No. 1 ore group in Maoping lead-zinc deposit, Northeast Yunnan[D]. Kunming: Kunming: Kunming University of Science and Technology: 1-137. (in Chinese with English abstract)
    WU J B, HAN R S, WU P, et al., 2019. The main controlling fault and ore-controlling effect of F15 in the Dalangzi lead-zinc deposit in Huidong, Southwest Sichuan[C]//The 9th national symposium on mineralization theory and prospecting methods. Nanjing. (in Chinese)
    WU Z H, JIN Y F, 1993. Some problems concerning element zoning and its application to geological ore-prospecting[J]. Geophysical and Geochemical Exploration, 17(1): 7-13. (in Chinese)
    XU B, 2014. Contrast analysis on the genesis between Tianbaoshan Huidong Pb-Zn deposit and Daliangzi Huili Pb-Zn deposit Sichuan[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
    YUAN B, MAO J W, YAN X H, et al., 2014. Sources of metallogenic materials and metallogenic mechanism of Daliangzi ore field in Sichuan province: constraints from geochemistry of S, C, H, O, Sr isotope and trace element in sphalerite[J]. Acta Petrologica Sinica, 30(1): 209-220. (in Chinese with English abstract)
    ZENG Q F, 1986. On hydrothermal metallogenic conditions[M]. Beijing: Science Press, 1-286. (in Chinese)
    ZHANG C Q, LI X H, YU J J, et al., 2008. Rb-Sr dating of single sphalerites from the Daliangzi Pb-Zn deposit, Sichuan, and its geological significances[J]. Geological Review, 54(4): 532-538. (in Chinese with English abstract)
    ZHANG C Q, MAO J W, YUAN B, et al., 2014. Research on ore-controlling factors and prediction of orebody positioning in Daliangzi lead-zinc mine, Huidong county, Sichuan province[R]. Beijing: Chinese Academy of Geological Sciences: 1-236. (in Chinese)
    ZHANG C Q, MAO J W, WU S P, et al., 2005. Distribution, characteristics and genesis of Mississippi Valley-Type lead-zinc deposits in Sichuan-Yunnan-Guizhou area[J]. Mineral Deposits, 24(3): 336-348. (in Chinese with English abstract)
    ZHANG X P, 2017. The regularity of mineralization alteration facies zoning and ore prospecting in deep part of Huize lead-zinc district[D]. Kunming: Kunming University of Science and Technology. (in Chinese with English abstract)
    ZHAO D, HAN R S, REN T, et al., 2016. The mineralization and alteration zoning of the Le-hong lead zinc deposit, the large deposit concentration area in the Northeast of Yunnan province, China[J]. Petrology and Geochemistry, 35(6): 1258-1269. (in Chinese with English abstract)
    ZHOU C X, WEI C S, GUO J Y, et al., 2001. The source of metals in the Qilinchang Zn-Pb deposit, northeastern Yunnan, China: Pb-Sr isotope constraints[J]. Economic Geology, 96(3): 583-598. doi: 10.2113/gsecongeo.96.3.583
    ZHU L M, LUAN S W, YUAN H H, 1994. Geological and geochemical signs of hydrothermal deposition of sulfide-bearing siliceous rocks in the Dalangzi lead-zinc deposit, Dishu[J]. Bulletin of Mineralogy, Petrology and Geochemistry (1): 17-18. (in Chinese)
    龚红胜, 韩润生, 李孜腾, 等, 2020. 滇东北会泽铅锌矿区外围小竹箐勘查区构造岩元素组合异常及隐伏矿预测[J]. 地质力学学报, 26(3): 419-431. doi: 10.12090/j.issn.1006-6616.2020.26.03.036
    韩润生, 陈进, 黄智龙, 等, 2006. 构造成矿动力学及隐伏矿定位预测: 以云南会泽超大型铅锌(银、锗)矿床为例[M]. 北京: 科学出版社: 1-200.
    韩润生, 王雷, 方维萱, 等, 2011. 初论云南易门地区凤山铜矿床刺穿构造岩-岩相分带模式[J]. 地质通报, 30(4): 495-504. doi: 10.3969/j.issn.1671-2552.2011.04.006
    韩润生, 胡煜昭, 王学琨, 等, 2012. 滇东北富锗银铅锌多金属矿集区矿床模型[J]. 地质学报, 86(2): 280-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201202008.htm
    韩润生, 2014-11-19. 一种热液矿床的大比例尺蚀变岩相定位预测方法: 中国, 201410396700.7[P].
    孔志岗, 吴越, 张锋, 等, 2018. 川滇黔地区典型铅锌矿床成矿物质来源分析: 来自S-Pb同位素证据[J]. 地学前缘, 25(1): 125-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201801011.htm
    李发源, 2003. MVT铅锌矿床中分散元素赋存状态和富集机理研究: 以四川天宝山、大梁子铅锌矿床为例[D]. 成都: 成都理工大学: 1-69.
    林方成, 1994. 四川会东大梁子铅锌矿床成因新探[J]. 矿床地质, 13(2): 126-136. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ402.003.htm
    刘斌, 2011. 简单体系水溶液包裹体pH和Eh的计算[J]. 岩石学报, 27(5): 1533-1542. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201105026.htm
    柳贺昌, 林文达, 1999. 滇东北铅锌银矿床规律研究[M]. 昆明: 云南大学出版社: 47-56.
    刘志鹏, 2016. 四川会东大梁子铅锌矿床稳定同位素地球化学研究[D]. 成都: 成都理工大学: 1-79.
    陶琴, 韩润生, 赵冻, 等, 2020. 湘南黄沙坪铜锡多金属矿床与隐伏花岗斑岩有关的矿化-蚀变分带模式[J/OL]. 中国地质: 1-24. http://kns.cnki.net/kcms/detail/11.1167.P.20200415.1611.004.html.
    王宝碌, 吕世琨, 胡居贵, 2004. 试论川滇黔菱形地块[J]. 云南地质, 23(2): 140-153. doi: 10.3969/j.issn.1004-1885.2004.02.002
    王明志, 韩润生, 周威, 等, 2019. 黔西北矿集区亮岩铅锌矿区成矿构造解析[J]. 地质力学学报, 25(2): 187-197. doi: 10.12090/j.issn.1006-6616.2019.25.02.017
    王小春, 1988. 康滇地轴中段东缘震旦系灯影组层控铅锌矿床成矿机理: 以天宝山和大梁子矿床为例[D]. 成都: 成都地质学院.
    王小春, 1991. 四川大梁子铅锌矿床的成因分析[J]. 矿产与地质, 5(3): 151-156. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD199103001.htm
    魏爱英, 2011. 滇东北毛坪铅锌矿床Ⅰ号矿群蚀变: 矿化分带模式研究[D]. 昆明: 昆明理工大学: 1-137.
    吴建标, 韩润生, 吴鹏, 等, 2019. 川西南会东大梁子铅锌矿区F15主控断裂与控矿作用[C]//第九届全国成矿理论与找矿方法学术讨论会. 南京.
    伍宗华, 金仰芬, 1993. 元素分带及其在地质找矿中应用的几个问题[J]. 物探与化探, 17(1): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH199301001.htm
    徐波, 2014. 四川会理天宝山铅锌矿与会东大梁子铅锌矿成因对比研究[D]. 成都: 成都理工大学.
    袁波, 毛景文, 闫兴虎, 等, 2014. 四川大梁子铅锌矿成矿物质来源与成矿机制: 硫、碳、氢、氧、锶同位素及闪锌矿微量元素制约[J]. 岩石学报, 30(1): 209-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201401016.htm
    曾庆丰, 1986. 论热液成矿条件[M]. 北京: 科学出版社: 1-286.
    张长青, 毛景文, 吴锁平, 等, 2005. 川滇黔地区MVT铅锌矿床分布、特征及成因[J]. 矿床地质, 24(3): 336-348. doi: 10.3969/j.issn.0258-7106.2005.03.013
    张长青, 李向辉, 余金杰, 等, 2008. 四川大梁子铅锌矿床单颗粒闪锌矿铷-锶测年及地质意义[J]. 地质论评, 54(4): 532-538. doi: 10.3321/j.issn:0371-5736.2008.04.013
    张长青, 毛景文, 袁波, 等, 2014. 四川省会东县大梁子铅锌矿控矿因素研究及矿体定位预测[R]. 北京: 中国地质科学院: 1-236.
    张小培, 2017. 会泽铅锌矿床深部矿化-蚀变岩相分带规律及找矿预测[D]. 昆明: 昆明理工大学.
    赵冻, 韩润生, 任涛, 等, 2016. 滇东北大型矿集区乐红大型铅锌矿床矿化蚀变分带模式[J]. 矿物岩石地球化学通报, 35(6): 1258-1269. doi: 10.3969/j.issn.1007-2802.2016.06.016
    朱赖民, 栾世伟, 袁海华, 1994. 底舒大梁子铅锌矿床含硫化物硅质岩热水沉积地质地球化学标志[J]. 矿物岩石地球化学通报 (1): 17-18. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH401.008.htm
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  827
  • HTML全文浏览量:  175
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2022-05-02

目录

    /

    返回文章
    返回