Mineralization-alteration zoning law and element compositional zoning pattern in mineralized altered rocks from the Daliangzi Pb-Zn deposit, southwestern Sichuan
-
摘要: 川西南大梁子铅锌矿床是川滇黔地区震旦系灯影组碳酸盐岩赋矿的后生热液型铅锌矿床的代表之一。针对该矿床矿化蚀变分带规律不清的现状,基于矿区内1884 m、1944 m、2004 m、2064 m中段1∶200矿化-蚀变岩相学填图,精细解剖了蚀变类型、强度及蚀变岩组构,总结了矿化蚀变的强弱变化、矿物共生组合、元素组合及其空间分带特征,揭示了不同矿化蚀变带特征元素含量的变化规律,构建了从铅锌矿体中心向赋矿围岩的矿化蚀变空间分带模式:中等硅化+白云石化角砾状铅锌矿石相带(Ⅰ带)→中等硅化+白云石化网脉状铅锌矿化相带(Ⅱ带)→强硅化+白云石化+方解石化+细脉至星点状黄铁矿化相带(Ⅲ带)→方解石化+炭质+黄铁矿化相带(Ⅳ带)。基于成矿元素、特征元素组合及其元素比值的变化特征研究,矿化指示元素在不同蚀变带中依次具有Pb-Zn-Cd→Pb-Zn-Ag-Cu(Sb)→Ag-Cu-As-Sb→As-Sb的水平分带规律,总结了矿化指示元素的变化趋势。该研究对该矿床深部找矿勘查和同类矿床矿化蚀变分带研究具有启示意义。Abstract: The Daliangzi deposit in southwestern Sichuan is a representative epigenetic hydrothermal Pb-Zn deposit hosted by carbonate rocks of Sinian Dengying Formation in the Sichuan-Yunnan-Guizhou area. The mineralization-alteration zoning law of this deposit is still unclear. A mineralization-alteration petrographic mapping is carried out at a scale of 1:200 in the middle sections of 1884 m, 1944 m, 2004 m and 2064 m in the mining area. The alteration type, intensity and altered rock fabric are carefully studied, and the mineralization-alteration intensity variation, mineral paragenesis, element compositional zoning characteristics are summarized. The results reveal the variation law of characteristic element contents in different mineralization-alteration zones, following the mineralization-alteration zoning pattern from the center of Pb-Zn ore body to host rock: medium silicification+dolomitization brecciated Pb-Zn ore facies belt (I)→medium silicification+dolomitization and stockwork Pb-Zn mineralization facies belt (Ⅱ)→strong silicification+dolomitization+calcitization+veined to star shaped pyritization facies belt (Ⅲ)→calcitization+carbonaceous+pyritization facies belt (IV). The variation characteristics of metallogenic elements, characteristic element compositions and element ratios show that the mineralization indicator elements follow the horizontal zoning law of Pb-Zn-Cd→Pb-Zn-Ag-Cu(Sb)→Ag-Cu-As-Sb→As-Sb in different alteration zones, and the variation trend of mineralization indicating elements is summarized. This study provides a reference to the deep prospecting and exploration in this deposit and studies on mineralization-alteration zoning of the same type of deposit.
-
东昆仑山脉位于青海省南部,展布于中国中央造山带西段南侧,面积10×104 km2以上,由于自然条件恶劣,地质研究程度很低,区域矿产研究和开发工作才刚起步。面对国家经济发展逐步向西转移的战略决策实施,对该区的资源远景研究显得十分迫切[1]。大干沟一带由于恶劣的自然地理条件,资源潜力调查一直遭遇瓶颈。笔者经过近4年的野外地质调查,在大干沟一带取得了一系列新发现和找矿成果。
1. 区域成矿地质背景
东昆仑地区处于中朝、塔里木—柴达木、扬子和印度板块的拼合部位,特殊的大地构造位置决定了其构造演化的复杂性和独特性。元古宙以来,东昆仑经历了多期次的裂解和拼合,自北向南发育有昆北、昆中、昆南和北巴颜喀拉4条深大断裂带,将东昆仑及邻区划分为昆北火山—侵入岩带、昆中花岗—变质杂岩带、昆南陆源活动带、阿尼玛卿火山-侵入岩带和北巴颜喀拉造山带,奠定了东昆仑地区的构造格架,控制着各成矿带的成矿作用和矿产分布(见图 1)[2~7]。
图 1 东昆仑区域大地构造位置(据许志琴等,1996,改编)NCP—华北地台;YZP—扬子地台;TRM—塔里木陆块;ZDM—柴达木陆块;TQ—唐古拉—羌塘地体;LG—拉萨地体;QLS—祁连构造带;QL-DB—秦岭—大别构造带;EKL—东昆仑构造带;WKL—西昆仑构造带;KB—可可西里—巴颜喀拉构造带;ALTF—阿尔金断裂;QNSF—青海南山断裂;WWF—哇洪山—温泉断裂;KNF—昆南断裂;TJF—沱沱河—金沙江断裂;BNF—班公湖—澜沧江断裂;YZF—雅鲁藏布江断裂;Ⅰ—中朝板块;Ⅱ—塔里木—柴达木板块;Ⅲ—华南板块;Ⅳ—印度板块Figure 1. Tectonic map of East Kunlun Mountain area东昆仑是一个具有复杂演化历史的多旋回复合造山带,主要经历了前寒武纪古陆形成、早古生代洋陆转化、晚古生代—早中生代洋陆转化以及中—新生代叠复造山等4个构造旋回。
其中,早古生代与晚古生代—早中生代构造旋回与本区内铜、金、锑等多金属矿产的形成关系最为密切[8~11]。
2. 区域成矿特征及矿床类型
根据成矿区带划分,该区属于秦—祁—昆成矿域(Ⅰ1),东昆仑成矿省(Ⅱ1),雪山峰—布尔汉布达华力西—印支期钴、金、铜、玉石(稀有、稀土)成矿带(Ⅲ13)[12]。目前在该带内已发现有开荒北金矿床、小干沟金矿床、督冷沟铜(钴)矿床、驼路沟钴(金)矿床以及东大滩金锑矿点、雪峰沟金矿点、纳赤台铜金矿点等(见图 2)。
东昆仑北邻柴达木盆地,南接特提斯构造域,是显生宙以来全球典型的陆缘活动—造山带,具有得天独厚的成矿地质环境,是成矿和聚矿十分有利的区带,同时也是金和多金属理想的衍生场所。加里东成矿期,发育有与海相中基性—酸性火山岩有关的铜、铅、锌、钴矿床成矿系列,矿床类型为火山喷气沉积型,以驼路沟钴(金)矿床、督冷沟铜(钴)矿床为代表。华力西—印支期是本区比较重要的成矿时期,矿化比较普遍,以铜、金多金属为主,但规模不大,多属矿点、矿化点。成矿与同造山期中酸性侵入岩关系密切,矿床类型为接触交代型、
热液型及石英脉—构造蚀变岩型(金矿)。此类矿床构成了与花岗岩类有关的金、铜、铅、锌、铁、稀土成矿系列,较重要的矿床(点)有开荒北金矿床、小干沟金矿床、纳赤台铜金矿点等[13]。
徐文艺等[3]和张德全等[4]按成矿的动力学环境将东昆仑地区矿床类型划分为两类,一类是与拉张环境海底喷流沉积作用有关的,如火山岩容矿的块状硫化物型(VHMS)矿床和沉积岩容矿的喷气型(SEDEX);另一类是与挤压造山环境有关的,如斑岩型铜矿床,夕卡岩型铁—金—多金属矿,热液脉型、层控改造型金矿等。
3. 矿体地质特征
目前在大干沟一带已发现铜多金属矿化带一条、金锑含矿构造蚀变带一条。矿化特征基本一致,均赋存于中三叠统闹仓坚沟组北西西向脆韧性剪切带内及两侧的灰白—烟灰色方解石石英脉内,且具有南侧金锑矿化、北侧铜多金属矿化的分带特征。
3.1 铜多金属矿(化)带
矿(化)带内主要岩石为岩屑砂岩和石英脉,石英脉具褐铁矿化、碳酸盐化。该矿化带长度约5 km,宽度5~20 m,其走向为北西西向,与地层走向基本一致;倾向北,倾角40°—50°。该矿(化)带北侧有小规模花岗斑岩体出露,二者间距800~1500 m,区内矿化与该岩体的形成关系密切。
带内已圈定铜多金属矿(化)体9条,单矿(化)体控制长度2~30 m,厚度0.5~2.0 m。矿(化)体主要以含铜石英脉形式产出,含铜石英脉走向为北西西向或东西向,顺层或以锐角与矿(化)带斜交,呈串珠状展布。单工程铜多金属品位变化较大,一般Cu品位0.15×10-2~2.25×10-2,局部见有特高品位达14.71×10-2;Au品位0.23×10-6~0.79×10-6;Ag品位8.33×10-6~32.2×10-6,局部特高品位达933×10-6。
根据成矿作用将含铜、金石英脉按成矿阶段划分为两期。
① 第Ⅰ成矿期:成分简单,含矿性较差。矿物组合为辉铜矿+石英+方解石+蓝铜矿,辉铜矿呈块状、不规则脉状,以浸染状形式充填于方解石或石英脉中(见图 3)。含矿石英脉颜色呈灰白色或乳白色,半油脂光泽,单脉宽1~50 cm不等,呈脉状、网脉状或透镜状产出,围岩未见有明显矿化现象。石英脉中矿化较不均匀,品位变化较大,方解石呈菱面状铜矿化富集。
② 第Ⅱ成矿期:此阶段含矿性较好,如黄铁矿、黄铜矿、方铅矿、辉铜矿、辉银矿等,因为这一阶段的石英脉含有多种金属硫化物(见图 4)。矿物组合为辉铜矿+辉银矿+黄铜矿+黄铁矿+方铅矿+石英+方解石,辉铜矿呈细脉状、树枝状,以浸染形式充填于石英脉内或方解石边部。含矿石英脉颜色呈烟灰—青灰色,油脂光泽;长度一般在10~30 m,单脉宽10~50 cm不等,呈豆荚状、脉状、网脉状或透镜状斜穿层理产出。铜矿化在石英脉中分布极不均匀,品位变化较大。
3.2 金锑含矿构造蚀变带
金锑含矿构造蚀变带赋存于中三叠统闹仓坚沟组第二岩性段脆韧性剪切带内,金锑矿(化)与北西西向脆韧性剪切带关系极为密切。含矿构造蚀变带控制长度约3.5 km,出露宽度3~16 m。走向近北西西向,倾向北,倾角45°—55°。通过槽探工程控制,在带内初步圈定金矿体1条、锑矿体1条。
3.2.1 锑矿体
根据容矿岩石类型和成矿作用将锑矿划分为两种类型,即产于石英方解石脉中辉锑矿和产于薄层灰岩裂隙内脉状辉锑矿。
产于石英方解石脉中辉锑矿(见图 5)含矿石英方解石脉一般长6~25 m,宽度多为10~60 cm,以多条细脉组成的脉群形式产出,Sb品位为15.40×10-2~39.96×10-2,Au品位为0.15×10-6~0.23×10-6。该矿石矿物组合简单,金属矿物主要为辉锑矿,脉石矿物有石英、方解石等。围岩蚀变主要为碳酸盐化、绢云母化、硅化等,其中与锑矿化最为紧密的是碳酸盐化、硅化。
产于薄层灰岩裂隙内脉状辉锑矿(见图 6)矿体形态简单,呈脉状、透镜状产于薄层灰岩裂隙内,具局部膨胀、收缩及尖灭再现的特点,出露长度30~200 m,宽度30~50 cm,少数可达80 cm。Sb品位为39.96×10-2~41.68×10-2,Au品位为0.35×10-6~0.39×10-6。矿石矿物主要为辉锑矿、锑华、锑赭石、孔雀石、蓝铜矿,脉石矿物有石英、方解石,围岩蚀变为硅化、碳酸盐化、黄铁矿化、绢云母化等,其中与锑矿化最为紧密的为硅化、碳酸盐化。围岩蚀变具明显的分带性,由矿体向两侧依次为:矿体→断层→强蚀变带→弱蚀变带→片理化带,矿体向外侧蚀变带含矿性依次减弱。
3.2.2 金矿(化)体
地表长度180~200 m,出露宽度1.09~1.42 m。矿化岩石为薄层灰岩夹泥钙质板岩、构造片岩(见图 7)。矿化以黄铁矿及风化矿物(褐铁矿)为主,Au品位为0.52×10-6~2.48×10-6。金矿(化)体围岩蚀变主要为黄铁矿化、硅化、褐铁矿化、绢云母化,其中黄铁矿化、绢云母化与金矿化关系最为紧密,矿体向外侧蚀变强度依次减弱。
4. 找矿标志
4.1 铜多金属矿找矿标志
4.1.1 岩浆岩标志
大干沟中部靠近矿化带一侧有小规模花岗斑岩出露,近东西向呈串珠状展布,岩体与铜多金属矿化的关系主要表现在3个方面:① 岩体的展布方向与含矿石英脉的展布方向基本一致,说明含矿石英脉的形成与岩体侵入地层内形成的张裂隙有关;② 岩体附近石英脉、碳酸盐脉呈网脉状发育,单脉宽0.5~20.0 cm不等,而远离岩体石英脉发育程度降低;③ 岩体内部发育的石英脉与含矿石英脉特征基本一致。
4.1.2 岩性标志
含矿围岩主要是紫红色细粒—中粒长石岩屑砂岩,而在灰绿色砂岩内虽有热液活动但未见有矿化现象。
4.1.3 热液标志
依据热液与围岩的穿插关系及热液受控的构造方向,将热液活动期次划分为Ⅳ期。Ⅰ期石英脉为纯白色,无明显矿化,与围岩顺层,产状一致,呈北西西向展布;Ⅱ期石英脉呈乳白色—烟灰色,隐晶结构,油脂光泽,含矿性较好并可见有碳酸盐化、褐铁矿化等蚀变信息,与围岩穿层,呈北西西向展布;Ⅲ期石英脉呈纯白色—烟灰色,半油脂光泽,含矿性稍差,可见有碳酸盐化、褐铁矿化等蚀变信息,与围岩穿层,北东向展布;Ⅳ期石英脉呈乳白色,半油脂光泽,未见有矿化显示,但见有褐铁矿化。
4.1.4 围岩蚀变标志
围岩蚀变主要为硅化,其次为碳酸盐化、褐铁矿化等,特别是方解石以菱面状的形态出现时,标志着热液矿化期由石英阶段向方解石阶段的转化,铜矿化也明显富集。
4.2 金锑矿找矿标志
4.2.1 地球化学标志
1:50000水系沉积物Au-As-Sb综合异常浓集中心以及Au、Sb单元素异常高值点是本区寻找金锑矿的重要地球化学标志。
4.2.2 构造标志
北西西向脆韧性剪切带作为导矿构造是含矿热液上升的通道,剪切带内一系列皱褶构造的出现特别是褶皱的转折端或背斜核部是含矿热液的有利储存场所,而在其他褶皱不发育地段未见有明显矿化富集。
4.2.3 岩性标志
含矿围岩主要为薄层灰岩夹泥钙质板岩,分析由于薄层灰岩脆性大且化学性质活泼,在构造应力作用下易发生破碎形成许多裂隙,成为矿液运移的通道和矿质沉淀的场所,矿液与围岩以交代方式形成具工业意义的矿体,而在其他化学性质不活泼的岩性内矿化信息较弱。
4.2.4 热液标志
注意寻找低温热液方解石石英组合,脉体地表风化面见有硫黄、褐铁矿化等特征。
5. 讨论与结论
东昆仑地区自元古宙以来,加里东、华力西、印支与燕山期等均有成矿作用发生,且具有多期次、多矿种和多类型的特点,在空间展布上具有一定的规律性,表现为不同级别的构造控矿作用不同,而昆北、昆中、昆南和北巴颜喀拉4条区域性深大断裂的存在,是造成东昆仑现今构造格局、分带及沉积建造差异的主要原因,并对区域地质发展演化和成矿带的空间展布具控制作用。
本区构造对矿体的控制较明显,脆韧性剪切带与铜、金、锑成矿作用的空间关系主要表现在两方面:一是作为导矿构造控制矿体的分布,即矿体或矿化富集带直接定位于脆韧性剪切带内;二是作为含矿构造矿体分布于脆韧性剪切带的低序次的派生构造带中。
责任编辑:范二平 -
图 1 大梁子矿区区域构造简图(图 1a据王宝碌等,2004修改;图 1b据张长青等,2014修改)
Figure 1. Schematic diagram showing the regional tectonics of the Daliangzi mining area (Fig. 1a is modified from Wang et al., 2004; Fig. 1b modified is from Zhang et al., 2014)
图 3 大梁子矿区矿石典型构造
Sph—闪锌矿;Gn—方铅矿;Py—黄铁矿;Dol—白云岩
a—致密块状的铅锌矿;b—方铅矿和闪锌矿以胶结物的形式分布于白云岩周围;c—黄铁矿呈稠密浸染状,细脉状方铅矿、闪锌矿Figure 3. Typical ore structures in the Daliangzi mining area
(a) Dense massive Pb-Zn ore; (b) Galena and sphalerite distributed around dolomite in the form of cement; (c) Densely disseminated pyrite, fine veined galena and sphalerite
Sph-Sphalerite; Gn-Galena; Py-Pyrite; Dol-Dolomite图 4 不同阶段矿石组构照片
a—闪锌矿(S1和S2)胶结白云岩角砾和斑点状白云石(D1),旁侧见细脉状白云石(D2);b—浅黄褐色细脉状闪锌矿(S3);c—星点状方铅矿(G1),呈半自形—他形粒状结构,旁侧见星点状黄铁矿(P3)沿石英脉(Q1)发育;d—浅黄褐色—橘红色闪锌矿(S2)与方铅矿(G2)呈共边结构;e—浅黄褐色—橘红色闪锌矿(S2)与方铅矿(G2)呈共边结构;f—方铅矿和黄铁矿共生并溶蚀交代硅质白云岩;g—黄铁矿(P1)呈星点状分布;h—黄铁矿与方铅矿共生,胶结白云岩角砾;i—黄铁矿(P3)溶蚀白云岩呈港湾状结构;j—石英脉(Q2)切穿硅质白云岩;k—石英(Q2)交代白云石(D3)边部;l—棕黑色闪锌矿(S1)和网脉状白云石(D2);m—细脉状、脉状白云石(D3);n—方解石(Cc)溶蚀交代白云岩(D4);o—方解石(Cc)呈脉状穿切白云石(D4)
Figure 4. Photos showing ore fabric at different stages
(a) Sphalerite (S1 and S2) cemented dolomite breccia and spotted dolomite (D1), with fine veined dolomite (D2) on the side; (b) Light yellowish brown fine veined sphalerite (S3); (c) Star shaped galena (G1) in a semi automorphic-allomorphic granular structure, with star shaped pyrite (P3) developed along quartz vein (Q1) on the side; (d) Light yellowish brown-orange sphalerite (S2) and galena (G2) have a coplanar structure; (e) Light yellowish brown orange sphalerite (S2) and galena (G2) have a coplanar structure; (f) Galena and pyrite coexist, and they dissolve and metasomatize siliceous dolomite; (g) Pyrite (P1) is distributed in a star shape; (h) Pyrite and galena coexist and cement dolomite breccia; (i) Pyrite (P3) dissolved dolomite with a harbor-like structure; (j) Quartz vein (Q2) cuts through siliceous dolomite; (k) Quartz (Q2) metasomatizes dolomite (D3) edge; (l) Brownish black sphalerite (S1) and stockwork dolomite (D2); (m) Fine veined and veined dolomite (D3); (n) Calcite (Cc) dissolves and metasomatizes dolomite (D4); (o) Calcite (Cc) is vein shaped cutting through dolomite (D4)
图 5 大梁子铅锌矿床各矿化蚀变分带典型特征照片
Sph—闪锌矿;Gn—方铅矿;Py—黄铁矿;Ccp—黄铜矿;Dol—白云石;Qtz—石英; Cc—方解石
a—白云石重结晶,黄铁矿呈自形粒状结构;b—白云石溶蚀交代黄铁矿,黄铁矿呈半自形结构;c—白云石与浅黄褐色—橘红色闪锌矿呈共边结构;d—石英重结晶,黄铁矿被石英溶蚀成不规则粒状;e—白云石包裹闪锌矿与黄铁矿;f—白云岩被黄铁矿、闪锌矿溶蚀交代,呈交代残余结构,偶见黄铜矿呈星点状分布;g—红棕色—黄色闪锌矿交代溶蚀白云石;h—闪锌矿交代石英呈港湾状结构;i—闪锌矿交代白云石呈交错结构,方铅矿呈星点状,黄铁矿呈半自形—他形粒状结构;j—黄铁矿溶蚀交代硅质白云岩,石英呈粒状;k—脉状石英;l—白云石重结晶,石英溶蚀交代棕黑色闪锌矿呈港湾状结构,方解石具自形—半自形结构;m—方解石呈脉状分布;n—黄铁矿呈星点状他形粒状结构分布;o—方解石呈脉状Figure 5. Typical photos showing mineralization-alteration zoning characteristics in the Daliangzi Pb-Zn deposit
(a) Dolomite recrystallizes and pyrite is in a euhedral granular structure; (b) Dolomite dissolves and metasomatizes pyrite, and pyrite has a subhedral structure; (c) Dolomite and light yellowish-brown orange sphalerite have a coplanar structure; (d) Quartz recrystallizes and pyrite is dissolved into irregular granules by quartz; (e) Dolomite wraps sphalerite and pyrite; (f) Dolomite is eroded and metasomatized by pyrite, sphalerite is in a metasomatic residual structure, and chalcopyrite is occasionally distributed in a star shape; (g) Reddish brown-yellow sphalerite metasomatizes and dissolves dolomite; (h) Sphalerite metasomatizes quartz, showing a harbor-like structure; (i) Sphalerite metasomatize dolomite, showing a staggered structure, galena is in a star shape, and pyrite is in a subhedral allomorphic granular structure; (j) Pyrite dissolves and metasomatizes siliceous dolomite, and quartz is in a granular structure; (k) Veined quartz; (l) Dolomite recrystallizes, quartz dissolves and metasomatizes brownish black sphalerite and shows a harbor-like structure, and calcite has a euhedral-semi euhedral structure; (m) Calcite is vein distributed in black argillaceous dolomite; (n) Pyrite is distributed in star shaped granular structure; (o) Calcite is vein shaped
Sph-Sphalerite; Gn-Galena; Py-Pyrite; Ccp-Chalcopyrite; Qtz-Quartz; Cc-Calcite图 6 大梁子铅锌矿床1884 m中段和1944 m中段矿化-蚀变剖面填图
a—1884 m中段3号勘探线;b—1944 m中段3号勘探线;c—1944 m中段17号勘探线
Figure 6. Geochemical mapping showing the mineralization-alteration profiles at the middle sections of 1884 m and 1944 m in the Daliangzi Pb-Zn deposit
(a) No.3 surveyline at the middle section of 1884 m; (b) No.3 surveyline at the middle section of 1944 m; (c) No.17 surveyline at the middle section of 1944 m
图 7 大梁子铅锌矿床2004 m中段和2064 m中段矿化-蚀变剖面填图
a—2004 m中段南部运输巷;b—2064 m中段29号勘探线
Figure 7. Geochemical mapping showing the mineralization-alteration profiles at the middle sections of 2004 m and 2064 m in the Daliangzi Pb-Zn deposit
(a) The South haulage roadway at the middle section of 2004 m; (b) No.29 surveyline at the middle section of 2064 m
图 10 大梁子铅锌矿床流体包裹体显微照片
a—闪锌矿气(V)液(L)两相包裹体;b—方解石气(V)液(L)两相包裹体;c—方解石气(V)液(L)两相包裹体
Figure 10. Micrographs of the fluid inclusions in the Daliangzi Pb-Zn deposit
(a) Sphalerite gas(V)-liquid(L) two-phase inclusion; (b) Calcite gas(V)-liquid(L) two-phase inclusion; (c) Calcite gas(V)-liquid(L) two-phase inclusion
图 11 大梁子铅锌矿床矿化-蚀变分带模式图
a—元素及比值横向变化图;b—元素及比值垂向变化图;c—矿化-蚀变分带模式图
Figure 11. Diagram showing the mineralization-alteration zoning pattern of the Daliangzi Pb-Zn deposit
(a) Horizontal variation diagram of elements and ratios; (b) Vertical variation diagram of elements and ratios; (c) Mineralization-alteration zoning pattern
表 1 大梁子铅锌矿床成矿阶段划分及矿物生成顺序
Table 1. Paragenetic sequence of the Daliangzi Pb-Zn deposit
表 2 大梁子铅锌矿床矿化元素测试结果(×10-6)
Table 2. Mineralization element contents in the Daliangzi Pb-Zn deposit (×10-6)
采样位置 样品号 岩性 主要矿化元素 Pb Zn Ag Cu Cd Ge As Sb 1884平面3线 DLZc417 黄褐色碎粉岩 368.0 1183.0 1.0 13.5 5.4 1.3 137.0 6.8 DLZc419 米黄色碎粉岩 1525.0 7665.0 2.5 24.3 35.4 1.3 108.0 10.9 DLZc422 黑色碎粉岩 2193.0 79200.0 21.3 553.0 359.0 9.4 471.0 111.0 DLZc424 深灰色碎裂白云岩 7913.0 158300.0 1493.0 226.0 1021.0 15.7 166.0 35.7 DLZc425 米黄色碎粉岩 11370.0 5219.0 6.4 21.7 33.2 2.0 920.0 14.2 1944平面3线 DLZc258 灰白色碎斑白云岩 231.0 874.0 0.3 5.6 15.4 0.1 16.8 2.1 DLZc259 黑色炭泥质白云岩 7430.0 119300.0 21.9 168.0 797.0 11.3 160.0 42.3 DLZc261 灰白色白云岩 802.0 12700.0 3.6 38.4 75.6 1.2 33.0 8.1 DLZc262 黄褐色片理化带 4181.0 134700.0 30.1 190.0 946.0 16.6 211.0 58.4 DLZc264 黑色炭泥质白云岩 2303.0 17210.0 3.9 50.1 70.7 3.4 360.0 7.1 1944平面17线 DLZc15 灰白色细粒白云岩 202.0 479.0 1.6 25.1 6.1 0.2 42.6 3.2 DLZc16 灰白色硅质白云岩 464.0 520.0 2.7 90.3 12.5 0.3 75.5 6.7 DLZc17 灰白色细粒白云岩 82.3 333.0 0.2 10.4 5.7 0.1 13.2 1.3 DLZc19 灰白色细粒白云岩 323.0 34225.0 4.2 435.0 287.0 4.3 86.9 19.7 DLZc20 泥化白云岩 98800.0 57700.0 83.9 227.0 90.3 4.9 92.1 99.5 DLZc23 层纹状白云岩 8875.0 104900.0 18.8 113.0 674.0 7.2 35.1 42.6 DLZc24 泥化白云岩 5036.0 20625.0 6.3 587.0 100.0 2.4 89.4 41.2 DLZc26 白云质碎裂岩 2509.0 29980.0 3.7 587.0 99.6 1.3 96.0 20.1 DLZc27 碎裂白云岩 17677.0 77300.0 16.2 3940.0 526.0 4.2 202.0 57.5 DLZc29 碎裂白云岩 431.0 2664.0 2.9 1526.0 45.3 1.7 176.0 13.4 DLZc32-3 浅灰色硅质岩 178.0 207600.0 29.4 300.0 1549.0 30.0 63.1 97.9 DLZc35 角砾岩 8675.0 133700.0 27.4 243.0 1045.0 14.6 71.9 73.3 DLZc38 浅灰色白云岩 8654.0 129600.0 18.3 297.0 768.0 8.9 71.9 73.3 DLZc40 灰白色白云岩 438.0 1177.0 1.7 103.0 14.1 0.9 101.0 66.4 2004平面南部运输巷 DLZc-840 黑色泥质物质 449.0 105.0 1.9 13.5 0.3 1.0 93.7 6.6 DLZc-841 灰色白云岩 111.0 98.1 0.6 7.0 0.4 0.3 30.8 2.9 DLZc-842 黑色碎斑岩 68.0 105.0 1.2 23.0 0.2 0.7 57.7 3.7 DLZc-844 黑色碎裂白云岩 2511.0 326.0 4.7 32.6 1.5 0.6 94.0 13.4 DLZc-849 灰色硅质白云岩 41.4 51.2 0.1 4.3 0.3 0.1 16.6 0.7 DLZc-852 灰白色碎斑岩 22.5 212.0 0.1 7.3 0.6 0.2 54.8 1.4 2064平面29线 DLZc815 黄褐色碎裂岩 73900.0 24979.0 42.0 106.0 80.5 2.0 2989.0 32.4 DLZc817 褐色碎粉岩 1136.0 409.0 1.6 15.1 2.6 0.3 95.5 4.0 DLZc819 黑色碎粉岩 213.0 191.0 0.3 27.1 0.7 1.5 147.0 4.1 DLZc821 黄褐色碎裂岩 37182.0 1367.0 15.7 35.4 4.3 0.8 198.0 34.6 DLZc823 米黄色碎粉岩 501.0 209.0 1.0 7.6 5.3 0.4 24.8 3.4 DLZc826 黄褐色碎裂岩 831.0 1550.0 2.2 63.7 4.7 0.6 218.0 11.4 DLZc827 灰黑色碎裂岩 2287.0 77.2 1.3 15.5 0.5 0.4 63.3 3.1 DLZc828 黄褐色碎粉岩 1611.0 552.0 3.5 60.1 2.4 0.5 99.5 6.0 表 3 大梁子铅锌矿床显微测温结果
Table 3. Microscopic temperature measurement results of the Daliangzi Pb-Zn deposit
样号 寄主矿物 包裹体类型 大小/μm 气液比/% 冰点/℃ 均一温度/℃ 盐度/%NaCleqv pH 成矿阶段 范围 均值 范围 均值 DLZ46-1 方解石 L+V 7~13 10~20 -8.50~-6.10 -7.22 186~211.4 200.5 10.73 5.83 1 DLZ541 闪锌矿 L+V 8~11 15~25 -8.90~-5.50 -7.64 177.5~267.8 221.1 11.21 5.82 1 DLZ530 方解石 L+V 11~20 10~16 -10.40~-3.70 -6.84 147.6~186.5 170.0 10.11 5.86 2 DLZ204 方解石 L+V 10~15 10~15 -12.00~-4.10 -8.44 146.3~201.7 175.4 11.95 5.88 2 DLZ217 方解石 L+V 7~8 15~20 -7.50~-3.80 -5.23 155.2~170.0 163.5 8.09 6.03 2 DLZ523 方解石 L+V 7~15 10~20 -7.40~-3.20 -8.17 146.5~206.4 171.3 7.47 5.90 2 注:L为液相包裹体,V为气相包裹体;成矿阶段中1代表多金属硫化物阶段;2代表碳酸盐岩阶段 -
BEJAOUI J, BOUHLEL S, CARDELLACH E, et al., 2013. Mineralization and fluid inclusion studies of the Aptian carbonate-hosted Pb-Zn-Ba ore deposits at Jebel Hamra, Central Tunisia[J]. Journal of Geochemical Exploration, 128: 136-146. BODNAR R J, 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta, 57(3): 683-684. doi: 10.1016/0016-7037(93)90378-A BODNAR R J, 2003. Reequilibration of fluid inclusions[M]//SAMSON I, ANDERSON A, MARSHALL D. Fluid inclusions: Analysis and interpretation. Canada: Mineralogical Association of Canada: 213-230. CORBELLA M, AYORA C, CARDELLACH E, 2004. Hydrothermal mixing, carbonate dissolution and sulfide precipitation in Mississippi Valley-type deposits[J]. Mineralium Deposita, 39(3): 344-357. doi: 10.1007/s00126-004-0412-5 CORDEIRO P F O, OLIVEIRA C G, PANIAGO L N, et al., 2018. The carbonate-hosted MVT Morro Agudo Zn-Pb deposit, central Brazil[J]. Ore Geology Reviews, 101: 437-452. GONG H S, HAN R S, LI Z T, et al., 2020. Element association anomaly of tectonites and prediction of concealed deposit in the Xiaozhuqing exploration area on the periphery of Huize lead-zinc mine area, northeastern Yunnan province[J]. Journal of Geomechanics, 26(3): 419-431. (in Chinese with English abstract) HAN R S, CHEN J, HUANG Z L, et al., 2006. Dynamics of tectonic ore-forming processes and localization-prognosis of concealed orebodies: as exemplified by the Huize super-large Zn-Pb-(Ag-Ge) district, Yunnan[M]. Beijing: Science Press: 1-200. (in Chinese with English abstract) HAN R S, WANG L, FANG W X, et al., 2011. The preliminary discussion on diapir structure-lithofacies zonation model for the Fengshan copper deposit, Yimen area, Yunnan, China[J]. Geological Bulletin of China, 30(4): 495-504. (in Chinese with English abstract) HAN R S, HU Y Z, WANG X K, et al., 2012. Mineralization Model of Rich Ge-Ag-Bearing Zn-Pb Polymetallic Deposit Concentrated District in NortheasternYunnan, China[J]. Acta Geologica Sinica, 86(2): 280-294. (in Chinese with English abstract) HAN R S, 2014-11-19. A large-scale altered lithofacies location prediction method for hydrothermal deposits: CN, 201410396700.7[P]. (in Chinese) HANILÇI N, ÖZTVRK H, BANKS D, 2020. Geological, Geochemical and Microthermometric Characteristics of the Hakkari Region Zn-Pb Deposits, SE Turkey[J]. Ore Geology Reviews, 125: 103667. doi: 10.1016/j.oregeorev.2020.103667 KONG Z G, WU Y, ZHANG F, et al., 2018. Sources of ore-forming material of typical Pb-Zn deposits in the Sichuan-Yunnan-Guizhou metallogenic province: constraints from the S-Pb isotopic compositions[J]. Earth Science Frontiers, 25(1): 125-137. (in Chinese with English abstract) LEACH D L, BRADLEY D C, HUSTON D, et al., 2010. Sediment-hosted lead-zinc deposits in earth history[J]. Economic Geology, 105(3): 593-625. doi: 10.2113/gsecongeo.105.3.593 LI F Y, 2003. Study on occurrence state and enrichment mechanism of dispersed elements in MVT deposits: a case study for the Tianbaoshan and Daliangzi Pb-Zn deposits in Sichuan province[D]. Chengdu: Chengdu University of Technology: 1-69. (in Chinese with English abstract) LIN F C, 1994. Some new opinions on the genesis of the Daliangzi lead-zinc deposit, Huidong county, Sichuan province[J]. Mineral Deposits, 13(2): 126-136. (in Chinese with English abstract) LIU B, 2011. Calculation of pH and Eh for aqueous inclusions as simple system[J]. Acta Petrologica Sinica, 27(5): 1533-1542. (in Chinese with English abstract) LIU H C, LIN W D, 1999. Regularity research of Ag-Zn-Pb ore deposits North-East Yunnan province[M]. Kunming: Yunnan University Press: 47-56. (in Chinese with English abstract) LIU Z P, 2016. General study on the stable isotope geochemistry of the Daliangzi Pb-Zn deposit in Huidong, Sichuan[D]. Chengdu: Chengdu University of Technology: 1-79. (in Chinese with English abstract) TAO Q, HAN R S, ZHAO D, et al., 2020. The mineralization and alteration zoning related to the buried granite porphyry of the Huangshaping Cu-Sn polymetallic deposit, southern Hunan[J]. Geology in China, 1-24. http://kns.cnki.net/kcms/detail/11.1167.P.20200415.1611.004.html. (in Chinese with English abstract) WANG B L, LV S K, HU J G, 2004. A tentative description of the Chuan-Dian-Qian rhombic massif[J]. Yunnan Geology, 23(2): 140-153. (in Chinese with English abstract) WANG M Z, HAN R S, ZHOU W, et al., 2019. Ore-forming structure analysis of the Liangyan lead-zinc mining area in northwestern Guizhou deposit concentration district, China[J]. Journal of Geomechanics, 25(2): 187-197. (in Chinese with English abstract) WANG X C, 1988. The metallogenic mechanism of stratified lead-zinc deposits in the Sinian Dengying Formation in the eastern margin of the Kangdian Earth Axis-Taking Tianbaoshan and Daliangzi deposits as examples[D]. Chengdu: Chengdu Institute of Geology. (in Chinese) WANG X C, 1991. Genesis analysis of Daliangzi Pb-Zn deposit in Sichuan province[J]. Mineral Resources and Geology, 5(3): 151-156. (in Chinese) WEI A Y, 2011. Research on alteration-mineralization zoning model of No. 1 ore group in Maoping lead-zinc deposit, Northeast Yunnan[D]. Kunming: Kunming: Kunming University of Science and Technology: 1-137. (in Chinese with English abstract) WU J B, HAN R S, WU P, et al., 2019. The main controlling fault and ore-controlling effect of F15 in the Dalangzi lead-zinc deposit in Huidong, Southwest Sichuan[C]//The 9th national symposium on mineralization theory and prospecting methods. Nanjing. (in Chinese) WU Z H, JIN Y F, 1993. Some problems concerning element zoning and its application to geological ore-prospecting[J]. Geophysical and Geochemical Exploration, 17(1): 7-13. (in Chinese) XU B, 2014. Contrast analysis on the genesis between Tianbaoshan Huidong Pb-Zn deposit and Daliangzi Huili Pb-Zn deposit Sichuan[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract) YUAN B, MAO J W, YAN X H, et al., 2014. Sources of metallogenic materials and metallogenic mechanism of Daliangzi ore field in Sichuan province: constraints from geochemistry of S, C, H, O, Sr isotope and trace element in sphalerite[J]. Acta Petrologica Sinica, 30(1): 209-220. (in Chinese with English abstract) ZENG Q F, 1986. On hydrothermal metallogenic conditions[M]. Beijing: Science Press, 1-286. (in Chinese) ZHANG C Q, LI X H, YU J J, et al., 2008. Rb-Sr dating of single sphalerites from the Daliangzi Pb-Zn deposit, Sichuan, and its geological significances[J]. Geological Review, 54(4): 532-538. (in Chinese with English abstract) ZHANG C Q, MAO J W, YUAN B, et al., 2014. Research on ore-controlling factors and prediction of orebody positioning in Daliangzi lead-zinc mine, Huidong county, Sichuan province[R]. Beijing: Chinese Academy of Geological Sciences: 1-236. (in Chinese) ZHANG C Q, MAO J W, WU S P, et al., 2005. Distribution, characteristics and genesis of Mississippi Valley-Type lead-zinc deposits in Sichuan-Yunnan-Guizhou area[J]. Mineral Deposits, 24(3): 336-348. (in Chinese with English abstract) ZHANG X P, 2017. The regularity of mineralization alteration facies zoning and ore prospecting in deep part of Huize lead-zinc district[D]. Kunming: Kunming University of Science and Technology. (in Chinese with English abstract) ZHAO D, HAN R S, REN T, et al., 2016. The mineralization and alteration zoning of the Le-hong lead zinc deposit, the large deposit concentration area in the Northeast of Yunnan province, China[J]. Petrology and Geochemistry, 35(6): 1258-1269. (in Chinese with English abstract) ZHOU C X, WEI C S, GUO J Y, et al., 2001. The source of metals in the Qilinchang Zn-Pb deposit, northeastern Yunnan, China: Pb-Sr isotope constraints[J]. Economic Geology, 96(3): 583-598. doi: 10.2113/gsecongeo.96.3.583 ZHU L M, LUAN S W, YUAN H H, 1994. Geological and geochemical signs of hydrothermal deposition of sulfide-bearing siliceous rocks in the Dalangzi lead-zinc deposit, Dishu[J]. Bulletin of Mineralogy, Petrology and Geochemistry (1): 17-18. (in Chinese) 龚红胜, 韩润生, 李孜腾, 等, 2020. 滇东北会泽铅锌矿区外围小竹箐勘查区构造岩元素组合异常及隐伏矿预测[J]. 地质力学学报, 26(3): 419-431. doi: 10.12090/j.issn.1006-6616.2020.26.03.036 韩润生, 陈进, 黄智龙, 等, 2006. 构造成矿动力学及隐伏矿定位预测: 以云南会泽超大型铅锌(银、锗)矿床为例[M]. 北京: 科学出版社: 1-200. 韩润生, 王雷, 方维萱, 等, 2011. 初论云南易门地区凤山铜矿床刺穿构造岩-岩相分带模式[J]. 地质通报, 30(4): 495-504. doi: 10.3969/j.issn.1671-2552.2011.04.006 韩润生, 胡煜昭, 王学琨, 等, 2012. 滇东北富锗银铅锌多金属矿集区矿床模型[J]. 地质学报, 86(2): 280-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201202008.htm 韩润生, 2014-11-19. 一种热液矿床的大比例尺蚀变岩相定位预测方法: 中国, 201410396700.7[P]. 孔志岗, 吴越, 张锋, 等, 2018. 川滇黔地区典型铅锌矿床成矿物质来源分析: 来自S-Pb同位素证据[J]. 地学前缘, 25(1): 125-137. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201801011.htm 李发源, 2003. MVT铅锌矿床中分散元素赋存状态和富集机理研究: 以四川天宝山、大梁子铅锌矿床为例[D]. 成都: 成都理工大学: 1-69. 林方成, 1994. 四川会东大梁子铅锌矿床成因新探[J]. 矿床地质, 13(2): 126-136. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ402.003.htm 刘斌, 2011. 简单体系水溶液包裹体pH和Eh的计算[J]. 岩石学报, 27(5): 1533-1542. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201105026.htm 柳贺昌, 林文达, 1999. 滇东北铅锌银矿床规律研究[M]. 昆明: 云南大学出版社: 47-56. 刘志鹏, 2016. 四川会东大梁子铅锌矿床稳定同位素地球化学研究[D]. 成都: 成都理工大学: 1-79. 陶琴, 韩润生, 赵冻, 等, 2020. 湘南黄沙坪铜锡多金属矿床与隐伏花岗斑岩有关的矿化-蚀变分带模式[J/OL]. 中国地质: 1-24. http://kns.cnki.net/kcms/detail/11.1167.P.20200415.1611.004.html. 王宝碌, 吕世琨, 胡居贵, 2004. 试论川滇黔菱形地块[J]. 云南地质, 23(2): 140-153. doi: 10.3969/j.issn.1004-1885.2004.02.002 王明志, 韩润生, 周威, 等, 2019. 黔西北矿集区亮岩铅锌矿区成矿构造解析[J]. 地质力学学报, 25(2): 187-197. doi: 10.12090/j.issn.1006-6616.2019.25.02.017 王小春, 1988. 康滇地轴中段东缘震旦系灯影组层控铅锌矿床成矿机理: 以天宝山和大梁子矿床为例[D]. 成都: 成都地质学院. 王小春, 1991. 四川大梁子铅锌矿床的成因分析[J]. 矿产与地质, 5(3): 151-156. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD199103001.htm 魏爱英, 2011. 滇东北毛坪铅锌矿床Ⅰ号矿群蚀变: 矿化分带模式研究[D]. 昆明: 昆明理工大学: 1-137. 吴建标, 韩润生, 吴鹏, 等, 2019. 川西南会东大梁子铅锌矿区F15主控断裂与控矿作用[C]//第九届全国成矿理论与找矿方法学术讨论会. 南京. 伍宗华, 金仰芬, 1993. 元素分带及其在地质找矿中应用的几个问题[J]. 物探与化探, 17(1): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH199301001.htm 徐波, 2014. 四川会理天宝山铅锌矿与会东大梁子铅锌矿成因对比研究[D]. 成都: 成都理工大学. 袁波, 毛景文, 闫兴虎, 等, 2014. 四川大梁子铅锌矿成矿物质来源与成矿机制: 硫、碳、氢、氧、锶同位素及闪锌矿微量元素制约[J]. 岩石学报, 30(1): 209-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201401016.htm 曾庆丰, 1986. 论热液成矿条件[M]. 北京: 科学出版社: 1-286. 张长青, 毛景文, 吴锁平, 等, 2005. 川滇黔地区MVT铅锌矿床分布、特征及成因[J]. 矿床地质, 24(3): 336-348. doi: 10.3969/j.issn.0258-7106.2005.03.013 张长青, 李向辉, 余金杰, 等, 2008. 四川大梁子铅锌矿床单颗粒闪锌矿铷-锶测年及地质意义[J]. 地质论评, 54(4): 532-538. doi: 10.3321/j.issn:0371-5736.2008.04.013 张长青, 毛景文, 袁波, 等, 2014. 四川省会东县大梁子铅锌矿控矿因素研究及矿体定位预测[R]. 北京: 中国地质科学院: 1-236. 张小培, 2017. 会泽铅锌矿床深部矿化-蚀变岩相分带规律及找矿预测[D]. 昆明: 昆明理工大学. 赵冻, 韩润生, 任涛, 等, 2016. 滇东北大型矿集区乐红大型铅锌矿床矿化蚀变分带模式[J]. 矿物岩石地球化学通报, 35(6): 1258-1269. doi: 10.3969/j.issn.1007-2802.2016.06.016 朱赖民, 栾世伟, 袁海华, 1994. 底舒大梁子铅锌矿床含硫化物硅质岩热水沉积地质地球化学标志[J]. 矿物岩石地球化学通报 (1): 17-18. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH401.008.htm 期刊类型引用(2)
1. 刘松岩,张达,杨明建,张鑫明,未国栋,聂胜强,王轩,冯彦平,栗文杰,陈贵兰. 熊耳山矿集区蒿坪沟Ag–Au多金属矿床绿泥石特征及其找矿意义. 地质力学学报. 2024(01): 129-146 . 本站查看
2. 郭小刚,路万全,周宏,王秦,杨镇熙,郭东宝,苟瑞. 甘蒙北山四道梁南钼矿土壤地球化学异常特征及找矿潜力分析. 地质与勘探. 2023(04): 774-790 . 百度学术
其他类型引用(0)
-