Quaternary sedimentary sequence and sedimentary environment restoration in the Jinzhong Basin, Fenhe Rift Valley
-
摘要: 晋中盆地是位于汾渭地堑系中部的新生代陆内断陷沉积盆地,研究晋中盆地第四纪的沉积序列对于进一步认识该盆地区域构造和区域气候环境变化具有重要意义。为查明晋中盆地第四纪沉积序列结构、研究揭示晋中盆地第四纪沉积环境及演化,通过构造岩相学方法,对晋中盆地地表和钻孔内第四纪沉积物和沉积环境进行了研究。结果表明:晋中盆地清徐地区地表第四纪沉积序列结构为盆地内部沱阳组河床相和河漫滩相-盆地边缘汾河组河流相—盆山过渡带峙峪组河流相、汾河组冲积扇相及马兰组风积相-基岩山地(盆地外围)二叠系浅海相。钻孔岩芯内第四纪沉积序列结构为下更新统浅湖相和滨湖相—中更新统浅湖相和河流相—上更新统河流相和冲积扇相—全新统冲积扇相。研究认为晋中新生代陆内断陷盆地内沉积序列和演化结构为早更新世陆相湖盆沉积环境—中更新世萎缩湖泊环境—晚更新世强烈萎缩的湖泊和河流环境—全新世再度沉降的陆相湖盆;陆相湖盆从中心向山地沉积环境分带为湖泊沉积环境—河流和湖泊沉积环境—冲积扇沉积环境(盆地边缘出山口区)。盆山过渡带地区上更新世沉积物错位现象与同沉积活动断裂有关,断裂活动性揭示了晋中盆地阶梯式断陷成盆的动力学机制。这些研究成果为区域气候环境变化和晋中盆地区域构造研究提供了新证据,也为太原市城市群建设中工程场址的选择提了供参考。Abstract: Jinzhong Basin is a Cenozoic intracontinental faulted sedimentary basin located in the middle of Fen-Wei graben system. Our study aims to identify the Quaternary sedimentary sequence and reveal the Quaternary sedimentary environmental evolution of the Jinzhong Basin. We used structural petrography to survey the Quaternary sediments and sedimentary environment on the surface and in the boreholes of the Jinzhong Basin. The results shows: The surface Quaternary sedimentary sequence in the Qingxu area of the Jinzhong Basin is composed of the river bed facies and floodplain facies of the Tuoyang Formation in the basin-the fluvial facies of the Fenhe Formation at the basin edge-the fluvial facies of the Zhiyu Formation, alluvial fan facies of the Fenhe Formation and aeolian facies of the Malan Formation in the basin-mountain transition zone-Permian neritic facies in the bedrock mountain (the periphery of the basin). The Quaternary sedimentary sequence in the core of the borehole is composed of the shallow lake facies and lakeside facies of the Lower Pleistocene-the shallow lake facies and fluvial facies of the Middle Pleistocene-the fluvial facies and alluvial fan facies of the Upper Pleistocene-the alluvial fan facies of the Holocene. The study suggests that the sedimentary sequence and environmental evolution of the Jinzhong basin is the early Pleistocene continental lake basin sediment-the Middle Pleistocene shrunken lake-the late Pleistocene strongly shrunken lake and river-the Holocene re-subsidence terrestrial lake pots. From the center to the mountain the sedimentary environment of the continental lake basin can be divided into lake sediment-river and lake sediment-alluvial fan sediment(the mountain mouth area at the edge of the basin).The dislocation of Upper Pleistocene sediments in the basin-mountain transition zone was caused by syn-sedimentary active faults. The fault activity reveals the dynamic mechanism of stepped formation in the Jinzhong Basin. These findings provide new evidence for the study of regional climate, environmental changes and regional tectonics in the Jinzhong Basin as well as reference for the site selection of Taiyuan City.
-
Key words:
- Jinzhong Basin /
- Quaternary /
- sedimentary sequence /
- sedimentary environment /
- active fault
-
图 3 黄楼村三级河流阶地上分布的马兰组及峙峪组地层
a—马兰组淡黄色亚砂土; b—马兰组中发育的垂直节理; c —峙峪组褐色砾石层与灰色含砾黏土、砂土互层; d—峙峪组粗砂细砾层
Figure 3. Malan Formation and Zhiyu Formation distributed on the third-level river terraces of Huanglou Village
(a) Malan Formation pale yellow subsandy soil in the Malan Formation; (b) Vertical joints developed in the Malan Formation; (c) Brown gravel layer and gray gravel-bearing clay interbedded with sandy soil in the Shiyu Formation; (d) Coarse sand and fine gravel in the Shiyu Formation
图 4 冲积扇地区的汾河组及盆地内部的沱阳组地层
a—汾河组冲积扇进积现象; b—沱阳组河床相叠瓦状定向排列的砾石; c—沱阳组河漫滩相波状层理
Figure 4. The Fenhe Formation in the alluvial fan area and the Tuoyang Formation in the basin
(a) Advancement of the alluvial fan in the Fenhe Formation; (b) Stacked oriented gravel in the river bed facies of the Tuoyang Formation; (c) Wave-like bedding in the river floodplain facies in the Tuoyang Formation
图 6 晋中盆地第四系剖面图
a—刘家园村—西梁泉村钻孔联合剖面; b—晋中盆地水文地质剖面(据山西省地质调查院, 2008修改)
Figure 6. Sectional view of the Quaternary in the Jinzhong Basin
(a) Joint Section of boreholes in Liujiayuan-Xiliangquan; (b) Hydrogeological Section of the Jinzhong Basin (modified after Shanxi Geological Survey Institute, 2008)
图 8 晋中盆地构造、地震及沉积物厚度分布图
a—晋中盆地地块分布图(武强等, 2003); b—晋中盆地主要断裂、地震、新生界和第四系沉积物厚度分布图(据中国地震局地壳应力研究所, 2010修改)
Figure 8. Distribution map showing the structure, earthquake and sediment thickness in the Jinzhong Basin
(a) Plot distribution map of the Jinzhong Basin (Wu et al., 2003). (b) Map showing the distribution of main faults, earthquakes, Cenozoic and Quaternary sediment thickness in the Jinzhong Basin (modified after Institute of Crustal Stress, China Earthquake Administration, 2010)
-
FANG W X, 2012. R&D on new mapping technology of geochemical Lithofacies in prediction and exploration for iron-oxide copper gold deposits (IOCG)[J]. Advances in Earth Sciences, 27(10): 1178-1184. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201210021.htm FANG W X, 2016. On tectonic system of hydrothermal breccia: objective, methodology and lithofacies-mapping applications[J]. Geotectonica et Metallogenia, 40(2): 237-265. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DGYK201602006&dbcode=CJFD&year=2016&dflag=pdfdown FANG Y G, LUO W X, YE H, et al., 2019. Late quaternary activity of Heqing-Eryuan fault and its impact on water diversion project in the central Yunnan[J]. South China Journal of Seismology, 39(3): 6-13. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HNDI201903002.htm GUO J, 2015. Earthquake risk assessment on main active faults of Linfen city[D]. Chengdu: Chengdu University of Technology (in Chinese with English abstract). GUO T T, XU X W, YU G H, et al., 2017. Research history and current situation of active faults and their avoidance zone width[J]. Progress in Geophysics, 32(5): 1893-1900. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201705004.htm HU X M, FU J L, MA Z Z, et al., 2002. The significance of the Hongshan quaternary section in Taiyuan basin, Shanxi[J]. Journal of Stratigraphy, 26(3): 226-229. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200203012.htm Institute of Crustal Stress, China Earthquake Administration, 2010. Report on the completion of Jiaocheng fault mapping[R](Internal publishing). JIANG W L, WANG H Z, 2004. Thermoluminescence and carbon-14 dating methods applied to quantitative studies of the holocene active faults in Datong and Jinzhong Basins, Shanxi[J]. Quaternary Sciences, 24(3): 332-340. (in Chinese with English abstract) http://www.oalib.com/paper/1571253 LI J X, LIU C Y, YUE L P, et al., 2015. Apatite fission track evidence for the Cenozoic uplift of the Lüliang Mountains and a discussion on the uplift mechanism[J]. Geology in China, 42(4): 960-972. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201504013.htm LI S B, WANG Y J, ZHANG Y Z, et al., 2015. Meso-cenozoic uplifting of south Taihang mountains: constraints from apatite fission track dat[J]. Geotectonica et Metallogenia, 39(3): 460-469. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201503010.htm LIU C Y, ZHAO H G, GUI X J, et al., 2006. Space-time coordinate of the evolution and reformation and mineralization response in Ordos Basin[J]. Acta Geologica Sinica, 80(5): 617-638. (in Chinese with English abstract) http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE200605003&dbcode=CJFD&year=2006&dflag=pdfdown LIU X W, YUAN D Y, SHAO Y X, et al., 2015. Characteristics of late quaternary tectonic activity in the middle-eastern segment of the southern branch of Diebu-Bailongjiang Fault, Gansu[J]. Journal of Earth Sciences and Environment, 37(6): 111-119. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX201506013.htm LU J, 2016. Study on the influence of active faults on the suitability construction in Xi'an Metropolis[D]. Kunming: Kunming University of Science and Technology. (in Chinese with English abstract) MA B Q, XU G L, SHENG X Q, et al., 1999. A study on the tectonogeomorphology along the Jiaocheng Fault, Shanxi province[J]. Bulletin of the Institute of Crustal Dynamics: 7-15. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEIS199900001.htm MA R Y, HAO Q, LI P, et al., 2015. New recognition on "Gaojiacun-Gaodian Fault" in Baoji Area of Shaanxi[J]. Journal of Earth Sciences and Environment, 37(2): 83-92. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX201502011.htm National Commission of Stratigraphy, 2017. Guide to Stratigraphy in China and the Introduction to the Guide[M]. Beijing: Geological Publishing House. (in Chinese) NI Q, 2008. Talking about the geological structure of Taiyuan basin and its evolution[J]. Sci-Tech Information Development & Economy, 18(29): 116-117. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KJQB200829067.htm Shanxi Bureau of Geology and Mineral Resources, 1989. Regional Geology of Shaanxi Province[M]. Beijing: Geological Publishing House. (in Chinese) Shanxi Bureau of Geology and Mineral Resources. 1997. Lithography of Shanxi Province[M]. Wuhan: China University of Geosciences Press. (in Chinese) Shanxi Provincial Geological Survey Institute, 2008. Survey and evaluation report on groundwater resources and environmental problems in six major basins in Shanxi Province[R] (Internal publishing). WANG L, 2018. Grain-size Characteristics and Sedimentary Environment of Quaternary Sediments in Jiaocheng Area[D]. Beijing: China University of Geosciences. (in Chinese with English abstract) WAN J W, 2015. Active faults exploration and research on associated activity of the Shawan fault zone[D]. Ganzhou: Jiangxi University of Science and Technology. (in Chinese with English abstract) WANG L K, YANG Z J, BI Z W, et al., 2017. Research progress of quaternary geology in Taiyuan basin[J]. China's Manganese Industry, 35(3): 54-57. (in Chinese with English abstract) http://search.cnki.net/down/default.aspx?filename=ZGMM201703017&dbcode=CJFD&year=2017&dflag=pdfdown WANG N L, YANG J C, XIA Z K, et al., 1996. Cenozoic sedimentary and structural geomorphology of Shanxi Graben System[M]. Science Press. (in Chinese) WANG Y G, 2007. Research on the impact of urbanization development in Jinzhong basin on regional ecological environment[D]. Taiyuan: Shanxi University. (in Chinese with English abstract) WEI R Z, LI H B, XU C L, et al., 2017. Review on Meso-Cenozoic tectonic evolution in Shanxi uplift[J]. Geological Survey of China, 4(1): 24-34. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDC201701004.htm WEI R Z, ZHUANG Q T, YAN J Y, et al., 2020. Late Cenozoic stratigraphic division and sedimentary environment of Jinzhong Basin in Shanxi Province, and its climate and lake evolution since the pre-Qin period[J]. Geology in China. https://kns.cnki.net/kcms/detail/11.1167.P.20200417.1116.002.html. WU Q, CHEN P P, 2003. Research on state of art and prospect of earth fissures[J]. The Chinese Journal of Geological Hazard and Control, 14(1): 22-27. (in Chinese with English abstract) http://d.wanfangdata.com.cn/periodical/zgdzzhyfzxb200301005 WU Q, JIANG Z Q, LI Y L, 2003. Ground fissures hazards research of Shaanxi fault basin[M]. Beijing: Geolgical Publishing House. (in Chinese) WU Z H, 2018. Active faults: terminology, research advances, and thinking on some problems[J]. Journal of Earth Sciences and Environment, 40(6): 706-726. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX201806003.htm WU Z H, 2019. The definition and classification of active faults: history, current status and progress[J]. Acta Geoscientica Sinica, 40(5): 661-697. (in Chinese with English abstract) XIAO K Z, TONG H M, 2020. Research progress and inspiration of strike-slip faults[J]. Journal of Geomechanics, 26(2): 151-166. (in Chinese with English abstract) https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20200201&flag=1 XIE X S, JIANG W L, WANG H Z, et al., 2004. Holocene activities of the Taigu fault zone, Shanxi province, in relation to the 1303 Hongdong M=8 earthquake[J]. Acta Seismologica Sinica, 26(3): 281-293. (in Chinese with English abstract) http://www.cqvip.com/QK/93548X/20043/9959523.html XU G L, MA B Q, JIANG W L, 1998. The behavior and segmentation of the Shanxi Jiaocheng active fault[J]. Crustal Structure and Crustal Stress Collection: 13-21. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEIS199800001.htm XU X W, 2006. Active faults, associated earthquake disaster distribution and policy for disaster reduction[J]. Technology for Earthquake Disaster Prevention, 1(1): 7-14. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZZFY200601001.htm YAN X B, LI Z H, GUO J, et al., 2014. Evolution of late Cenozoic geography and environment in Shanxi Province and the neotectonic response[J]. China Earthquake Engineering Journal, 36(2): 338-346, 352. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZBDZ201402021.htm ZANG M D, 2015. The study on the earth fissure risk zoning in Taiyuan basin[D]. Xi'an: Chang'an University. (in Chinese with English abstract) ZHOU J J, ZHANG X M, ZHAO F S, et al., 2019. Research on risk assessment of geological hazards in Qinling-Daba mountain area, south Shaanxi province[J]. Journal of Geomechanics, 25(4): 544-553. (in Chinese with English abstract) https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190412&journal_id=dzlxxb ZHOU J L, 2011. A study of active faults in Zhangjiakou basin[D]. Beijing: Geophysical Research of China Earthquake Administration. (in Chinese with English abstract) 方维萱, 2012. 论铁氧化物铜金型(IOCG)矿床地球化学岩相学填图新技术研发[J]. 地球科学进展, 27(10): 1178-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201210021.htm 方维萱, 2016. 论热液角砾岩构造系统及研究内容、研究方法和岩相学填图应用[J]. 大地构造与成矿学, 40(2): 237-265. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201602006.htm 房艳国, 罗文行, 叶浩, 等, 2019. 鹤庆-洱源断裂晚第四纪活动特征及对滇中引水工程的影响[J]. 华南地震, 39(3): 6-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDI201903002.htm 郭瑾, 2015. 临汾市城区主要断裂活动性及地震危险性评价[D]. 成都: 成都理工大学. https://d.wanfangdata.com.cn/thesis/Y2843263 郭婷婷, 徐锡伟, 于贵华, 等, 2017. 活动断层及其"避让带"宽度的研究历史与现状[J]. 地球物理学进展, 32(5): 1893-1900. http://www.cnki.com.cn/Article/CJFDTotal-DQWJ201705004.htm 胡小猛, 傅建利, 马志正, 等, 2002. 太原盆地洪山第四纪剖面的发现[J]. 地层学杂志, 26(3): 226-229. doi: 10.3969/j.issn.0253-4959.2002.03.013 江娃利, 王焕贞, 2004. 山西大同与晋中盆地全新世活动断裂定量研究中热释光与14C测年方法应用[J]. 第四纪研究, 24(3): 332-340. doi: 10.3321/j.issn:1001-7410.2004.03.013 李建星, 刘池洋, 岳乐平, 等, 2015. 吕梁山新生代隆升的裂变径迹证据及其隆升机制探讨[J]. 中国地质, 42(4): 960-972. doi: 10.3969/j.issn.1000-3657.2015.04.013 李庶波, 王岳军, 张玉芝, 等, 2015. 南太行山中新生代隆升过程: 磷灰石裂变径迹证据[J]. 大地构造与成矿学, 39(3): 460-469. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201503010.htm 刘池洋, 赵红格, 桂小军, 等, 2006. 鄂尔多斯盆地演化-改造的时空坐标及其成藏(矿)响应[J]. 地质学报, 80(5): 617-638. doi: 10.3321/j.issn:0001-5717.2006.05.001 刘兴旺, 袁道阳, 邵延秀, 等, 2015. 甘肃迭部-白龙江南支断裂中东段晚第四纪构造活动特征[J]. 地球科学与环境学报, 37(6): 111-119. doi: 10.3969/j.issn.1672-6561.2015.06.010 卢杰, 2016. 大西安地区活动断裂对工程建设适宜性的影响研究[D]. 昆明: 昆明理工大学. http://cdmd.cnki.com.cn/article/cdmd-10674-1016242172.htm 马保起, 许桂林, 盛小青, 等, 1999. 山西交城断裂活动的构造地貌学研究[J]. 地壳构造与地壳应力文集: 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SEIS199900001.htm 马润勇, 郝骐, 李培, 等, 2015. 对陕西宝鸡地区"高家村-高店断裂"的新认识[J]. 地球科学与环境学报, 37(2): 83-92. doi: 10.3969/j.issn.1672-6561.2015.02.010 倪倩, 2008. 太原盆地地质结构及其演化[J]. 科技情报开发与经济, 18(29): 116-117. doi: 10.3969/j.issn.1005-6033.2008.29.066 全国地层委员会编, 2017. 中国地层指南及中国地层指南说明书[M]. 北京: 地质出版社. 山西省地质调查院, 2008. 山西省六大盆地地下水资源及其环境问题调查评价报告[R]. 山西省地质矿产局, 1989. 山西省区域地质志[M]. 北京: 地质出版社. 山西省地质矿产局, 1997. 山西省岩石地层[M]. 武汉: 中国地质大学出版社. 王磊, 2018. 交城地区第四纪沉积物粒度特征及其沉积环境分析[D]. 北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1018030029.htm 万佳威, 2015. 沙湾断裂带探测及其活动性研究[D]. 赣州: 江西理工大学. https://d.wanfangdata.com.cn/thesis/D688517 王利康, 杨振京, 毕志伟, 等, 2017. 太原盆地第四纪地质研究进展[J]. 中国锰业, 35(3): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201703017.htm 王乃樑, 杨景春, 夏正楷, 等, 1996. 山西地堑系新生代沉积与构造地貌[M]. 北京: 科学出版社. 王应刚, 2007. 晋中盆地城市化发展对区域生态环境影响研究[D]. 太原: 山西大学. http://cdmd.cnki.com.cn/Article/CDMD-10108-2008038531.htm 魏荣珠, 李好斌, 徐朝雷, 等, 2017. 对山西隆起区中新生代构造演化的认识[J]. 中国地质调查, 4(1): 24-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201701004.htm 魏荣珠, 庄其天, 闫纪元, 等, 2020. 山西晋中盆地晚新生代地层划分、沉积环境及其先秦以来气候和湖泊演化[J]. 中国地质. https://kns.cnki.net/kcms/detail/11.1167.P.20200417.1116.002.html. 武强, 陈佩佩, 2003. 地裂缝灾害研究现状与展望[J]. 中国地质灾害与防治学报, 14(1): 22-27. doi: 10.3969/j.issn.1003-8035.2003.01.005 武强, 姜振泉, 李云龙, 2003. 山西断陷盆地地裂缝灾害研究[M]. 北京: 地质出版社. 吴中海, 2018. 活断层的术语、研究进展及问题思考[J]. 地球科学与环境学报, 40(6): 706-726. doi: 10.3969/j.issn.1672-6561.2018.06.002 吴中海, 2019. 活断层的定义与分类: 历史、现状和进展[J]. 地球学报, 40(5): 661-697. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201905003.htm 肖坤泽, 童亨茂, 2020. 走滑断层研究进展及启示[J]. 地质力学学报, 26(2): 151-166. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200201&journal_id=dzlxxb 谢新生, 江娃利, 王焕贞, 等, 2004. 山西太谷断裂带全新世活动及其与1303年洪洞8级地震的关系[J]. 地震学报, 26(3): 281-293. doi: 10.3321/j.issn:0253-3782.2004.03.007 许桂林, 马保起, 江娃利, 1998. 山西交城断裂带第四纪活动习性及其分段特征[J]. 地壳构造与地壳应力文集: 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SEIS199800001.htm 徐锡伟, 2006. 活动断层、地震灾害与减灾对策问题[J]. 震灾防御技术, 1(1): 7-14. doi: 10.3969/j.issn.1673-5722.2006.01.002 中国地震局地壳应力研究所, 2010. 交城断裂填图结题报告[R]. 闫小兵, 李自红, 郭瑾, 等, 2014. 山西晚新生代古地理环境变迁与新构造运动响应[J]. 地震工程学报, 36(2): 338-346, 352. doi: 10.3969/j.issn.1000-0844.2014.02.0338 臧明东, 2015. 太原盆地地裂缝危险性区划研究[D]. 西安: 长安大学. http://cdmd.cnki.com.cn/article/cdmd-10710-1015802620.htm 周静静, 张晓敏, 赵法锁, 等, 2019. 陕南秦巴山区地质灾害危险性评价研究[J]. 地质力学学报, 25(4): 544-553. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190412&journal_id=dzlxxb 周江林, 2011. 张家口盆地活动断裂研究[D]. 北京: 中国地震局地球物理研究所. http://cdmd.cnki.com.cn/Article/CDMD-85401-1012460871.htm