A KronosFlow software-based preliminary study on the tectono-thermal evolution of thrust-nappe belt
-
摘要: 盆地模拟是含油气盆地勘探评价的重要技术方法之一,然而传统的盆地建模2D模拟技术仅适用于拉张型盆地,使得挤压型盆地横向上的热史重建一直是个难题,从而制约了进一步的油气勘探。目前由法国Beicip-Franlab公司设计的KronosFlow软件突破了传统盆模软件对逆冲推覆带、盐构造和泥底辟等复杂构造的局限性,精确控制了横向和垂向上的构造位移,通过跟踪单个网格连续运动形态、恢复侧向变形量以及与TemisFlow软件无缝衔接,实现了对挤压型盆地埋藏史、热史、生排烃史以及油气运聚史的恢复。以塔里木盆地北缘柯坪逆冲推覆带和库车逆冲推覆带为例,利用KronosFlow软件定量反演了新生代以来的构造-热演化历史,并以实测数据约束并验证挤压环境下盆地模拟结果的有效性。柯坪逆冲推覆带的依木干他乌断层在40~30 Ma再次活动,断层附近志留系—泥盆系的温度大于85 ℃,柯坪塔格断层在15~10 Ma活动,断层附近志留系—泥盆系的温度小于70 ℃,寒武系(烃源岩成熟度为1.3%~1.7%)和奥陶系(烃源岩成熟度为0.7%~1.2%)烃源岩热演化程度高,生烃能力强。库车逆冲推覆带侏罗系北段温度介于50~70 ℃,南段温度介于210~230 ℃,盐构造造成地温异常,其中秋里塔格构造带膏盐岩最厚,降温效果最明显。
-
关键词:
- 盆地模拟 /
- KronosFlow软件 /
- 模型构建 /
- 逆冲推覆带 /
- 构造-热演化
Abstract: Basin modeling is an essential technical method for the exploration and assessment of petroleum basins. However, traditional 2D basin modeling technologies only apply to extensional basins. This makes the thermal history reconstruction in lateral direction of compressional basins an unsolved problem and thus restricts oil and gas exploration. The latest KronosFlow software developed by the French Beicip-Franlab company breaks through the above limitations of traditional softwares on complex structures such as thrust-nappe belts, salt structures, mud diapir structures, and precisely controls the lateral and vertical structural displacements. We restored the burial history, thermal history, hydrocarbon generation, expulsion history, and hydrocarbon migration and accumulation history of compressional basins, by tracking the continuous motion pattern of a single grid, restoring lateral deformation and seamlessly interacting with the TemisFlow software. We then used the KronosFlow software on the Kalpin and Kuqa thrust-nappe belts in the northern margin of the Tarim Basin for quantitatively inverting the tectonic-thermal evolution history of the thrust-nappe belts since the Cenozoic. The modeling results were consistent with the measured paleo-thermal indicator data, confirming the validity of the results of this software for the compressional basin. The Yimugantawu fault in the Kalpin thrust-nappe belt was reactivated during 40~30 Ma, and the temperature of the Silurian-Devonian near the fault was higher than 85℃. The Kepingtag fault was active during 15~10 Ma, and the formation temperature was lower than 70℃. The Cambrian (maturity of source rocks between 1.3%~1.7%) and Ordovician (maturity of source rocks between 0.7%~1.2%) source rocks have a high degree of thermal evolution and strong hydrocarbon generation ability. The temperature of the Jurassic strata in the Kuqa thrust-nappe belt ranges from 50 to 70℃ in the northern section and 210 to 230℃ in the southern section. The salt structure results in geothermal anomaly, among which the salt rock in the Qiulitage structural belt is the thickest and the cooling effect is the most obvious.-
Key words:
- basin modeling /
- KronosFlow software /
- model building /
- thrust-nappe belt /
- tectono-thermal evolution
-
图 5 柯坪逆冲推覆带主要断层和褶皱构造分布图(据吕修祥等, 2014修改)
1—柯坪塔格断层; 2—柯坪塔格背斜; 3—依木干他乌断层; 4—卡拉布克塞塔格断层; 5—孔乌腊奇背斜; 6—依木干他乌南断层; 7—奥兹尔塔格断层; 8—皮羌山断层; 9—皮羌山向斜; 10—托克散阿达拜山背斜; 11—阿合奇-乌恰断层; 12—皮羌断层; 13—萨尔干断层; 14—印干断层; 15—科克布克三山断层; 16—奥伊布拉克山断层
Figure 5. Major faults and folds in the Kalpin thrust-nappe belt (modified after lv et al., 2014)
1-Kepingtag fault; 2-Kepingtag anticline; 3-Yimugantawu fault; 4-Kalabukesaitag fault; 5-Kongwuqi anticline; 6-Southern Yimugantawu fault; 7-Aoziertag fault; 8-Piqiangshan fault; 9-Piqiangshan syncline; 10-Tuokesanadabaishan anticline; 11-Aheqi-Wuqia fault; 12-Piqiang fault; 13-Sergan fault; 14-Yin'gan fault; 15-Kekebukesanshan fault; 16-Aoyibulakeshan fault
图 6 柯坪逆冲推覆带A-A'剖面图(据马德明等, 2007修改; 剖面位置见图 5)
Figure 6. A-A'cross section across the Kalpin thrust-nappe belt (modified after Ma et al., 2007; location is shown in Fig. 5)
图 9 库车逆冲推覆带构造单元及主要断层和褶皱分布图(据Wen et al., 2017修改)
Figure 9. Tectonic units of the Kuqa thrust-nappe belt with the major faults and folds (modified after Wen et al., 2017)
图 10 库车逆冲推覆带B-B'剖面图(据金文正等, 2007修改; 剖面位置见图 9)
Figure 10. B-B' cross section across the Kuqa thrust-nappe belt (modified after Jin et al., 2007; location is shown in Fig. 9)
表 1 柯坪逆冲推覆带A-A'剖面模拟约束参数
Table 1. Constraint parameters of the A-A' section modeling for the Kalpin thrust-nappe belt
沉积模型 热条件 断层性质 岩石圈模型 新近系—第四系(N-Q): 砂岩
中二叠统(P2): 砂岩
石炭系—二叠系(C-P): 石灰岩
志留系—泥盆系(S-D): 砂岩
上奥陶统(O3): 石灰岩
上寒武统—中奥陶统(€3-O1-2): 石灰岩
震旦系—中寒武统(Z-€1-2): 膏盐岩
基底: 上地壳现今热流: 48 mW/m2
古热流: 55 mW/m2
地表温度: 14 ℃可穿透性 上地壳: 20 km
下地壳: 12 km
上地幔: 93 km注: 沉积模型数据马德明等(2007), 现今热流刘绍文等(2017a), 古热流王良书等(1995), 地表温度取自新疆地区多年平均气温为参考, 岩石圈分层数据赵俊猛等(2008) 表 2 库车逆冲推覆带B-B'剖面模拟约束参数
Table 2. Constraint parameters of the B-B' section modeling for the Kuqa thrust-nappe belt
沉积模型 热条件 断层性质 岩石圈模型 上新统库车组—第四统(N2k-Q): 砂泥岩
中新统康村组(N1k): 泥岩
中新统吉迪克组(N1j): 膏盐岩
古近统(E): 砂泥岩
白垩统(K): 砂岩
侏罗统(J): 煤
三叠统(T): 砂岩
二叠统(P): 砂泥岩
基底: 上地壳现今热流: 44.6 mW/m2
古热流: 55 mW/m2
地表温度: 14 ℃可穿透性 上地壳: 20 km
下地壳: 12 km
上地幔: 93 km注: 沉积模型数据金文正等(2007), 现今热流刘绍文等(2017a), 古热流王良书等(1995), 地表温度取自新疆地区多年平均气温为参考, 岩石圈分层数据赵俊猛等(2008) 表 3 柯坪、库车逆冲推覆带生储盖及构造差异
Table 3. Differences in source rock, reservoir, cap rock and tectonic style between the Kalpin and Kuqa thrust-nappe belts
逆冲推覆带 烃源岩 储层 盖层 构造样式 柯坪逆冲推覆带 寒武系、奥陶系、石炭系、二叠系 上震旦统、寒武系、下奥陶统、二叠系碳酸盐岩; 志留系、石炭系碎屑岩 中寒武统、上奥陶统、下二叠统 叠瓦状逆冲、断层传播褶皱 库车逆冲推覆带 三叠系、侏罗系 下白垩统、古近系碎屑岩 古近系 盐上: 断层传播褶皱、滑脱褶皱;
盐下: 断层转折褶皱 -
ALMENDRAL A, ROBLES W, PARRA M, et al., 2015. FetKin: coupling kinematic restorations and temperature to predict thrusting, exhumation histories, and thermochronometric ages[J]. AAPG Bulletin, 99(8): 1557-1573. doi: 10.1306/07071411112 ANKA Z, CALLIES M, DARNAULT R, et al., 2018. New Tools for New Challenges: Petroleum System Modeling of the Kurdish Foothills[C]. AAPG Annual Convention & Exhibition. BISHOP D J, BUCHANAN P G, BISHOP C J, 1995. Gravity-driven thin-skinned extension above Zechstein Group evaporites in the western central North Sea: an application of computer-aided section restoration techniques[J]. Marine and Petroleum Geology, 12(2): 115-135. doi: 10.1016/0264-8172(95)92834-J BUCHANAN P G, BISHOP D J, HOOD D N, 1996. Development of salt-related structures in the central North Sea: Results from section balancing[C]//ALSOP G I, BLUNDELL D J, DAVISON J. Salt tectonics. Geological Society, London, Special Publications, 100(1): 111-128. CHANG J, LI D, MIN K, et al., 2019. Cenozoic deformation of the Kalpin fold-and-thrust belt, southern Chinese Tian Shan: New insights from low-T thermochronology and sandbox modeling[J]. Tectonophysics, 766: 416-432. doi: 10.1016/j.tecto.2019.06.018 CHANG J, QIU N S, LI J W, 2012. The coupling relationship between the South Tianshan Mountains and the Tarim Basin: New evidence from the (U-Th)/He ages[J]. Earth Science Frontiers, 19(5): 234-243. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201205024.htm DU J H, TIAN J, LI G X, et al., 2019. Strategic breakthrough and prospect of Qiulitag structural belt in Kuqa depression[J]. China Petroleum Exploration, 24(1): 16-23. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-KTSY201901003.htm DU Z L, WANG Q C, ZHOU X H, 2007. Mesozoic and Cenozoic uplifting history of the Kuqa-South Tianshan Basin-Mountain System from the evidence of apatite fission track analysis[J]. Acta Petrologica et Mineralogica, 26(5): 399-408. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW200705003.htm FRERY E, CALLIES M, GIBOREAU R, et al., 2017. Fault impact on hydrocarbon migration-2D complex modelling of the north Perth basin petroleum systems, Australia[C]//Conference proceedings, 79th EAGE conference and exhibition 2017. Madrid, Spain: European Association of Geoscientists & Engineers. GABRIELE M, 2017. Basin and Petroleum System Modeling[J]. Oilfield Review, 21(2): 14-23. http://www.documbase.com/goto/21312632-548e3ef0e85d3015047844e283863c9c/Basin-and-Petroleum-System-Modeling-Schlumberger.pdf GAO Y J, ZHANG J F, ZHANG Y Y, et al., 2020. The first discovery of Silurian commercial gas flow in the Well XSD1 in the northwest Tarim Basin, Xinjiang[J/OL]. Geology in China. (2020-09-15). http://kns.cnki.net/kcms/detail/11.1167.P.20200915.1033.011.html. (in Chinese with English abstract) HANTSCHEL T, KAUERAUF A I, 2009. Introduction to basin modeling[M]//KAUERAUF A I, HANTSCHEL T. Fundamentals of basin and petroleum systems modeling. Berlin, Heidelberg: Springer. HE D F, JIA C Z, 2005. Thrust tectonics and hydrocarbon accumulation[J]. Petroleum Exploration and Development, 32(2): 55-62. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK20050200D.htm HE L J, XU H H, LIU Q Y, 2017. Tectono-thermal modeling of the foreland basins: a case study of the Longmenshan foreland basin[J]. Earth Science Frontiers, 24(3): 127-136. (in Chinese with English abstract) HUANG S W, 2014. Hydrocarbon accumulation conditions beneath Cambrian salt layer in Kalpin thrust belt of Tarim Basin[J]. Fault-Block Oil and Gas Field, 21(3): 282-286. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKYT201403003.htm JI C J, WU Z H, LIU Z W, et al., 2019. Structural features of thrust nappes in the Qiangtang basin and hydrocarbon resources effect[J]. Journal of Geomechanics, 25(S1): 66-71. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX2019S1012.htm JIN W Z, TANG L J, WANG Q H, et al., 2007. Cenozoic tectonic evolution of the eastern Qiultag structural belt, Kuqa foreland basin in Xinjiang[J]. Chinese Journal of Geology, 42(3): 444-454. (in Chinese with English abstract) LI C, WANG Y L, DU H L, et al., 2001. Evaluation of source rocks in Keping Area, Tarim Basin[J]. Journal of Xinjiang Petroleum Institute, 13(1): 22-25. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-XJSY200101004.htm LI M, BAO J P, WANG H, et al., 2004. The analysis on the maturity parameters of source rock and hydrocarbons in Kuche foreland basin of Tarim basin[J]. Natural Gas Geoscience, 15(4): 367-378. (in Chinese with English abstract) http://www.researchgate.net/publication/284388995_The_analysis_on_the_maturity_parameters_of_source_rock_and_hydrocarbon_in_Kuche_foreland_basin_of_Tarim_Basin LI Y J, WU G Y, LEI G L, et al., 2008. Deformational features, ages and mechanism of the Cenozoic Kuqa foreland fold-and-thrust belt in Xinjiang[J]. Geological Science, 43(3): 488-506. (in Chinese with English abstract) LIANG M L, WANG Z X, LI C L, et al., 2020. Effect of structural deformation on permeability evolution of marine shale reservoirs[J]. Journal of Geomechanics, 26(6): 840-851. (in Chinese with English abstract) LIU C, XU Z P, CHEN G, et al., 2019. Hydrocarbon accumulation conditions and evolution process of the ZQ1 large condensate gas reservoir in the Qiulitage structural belt, Tarim Basin[J]. Natural Gas Industry, 39(4): 8-17. (in Chinese with English abstract) LIU K Y, LIU J L, 2017. Current status and future development trends of Basin and Petroleum System Modeling (BPSM)[J]. Petroleum Science Bulletin, 2(2): 161-175. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYKE201702001.htm LIU S W, LI X L, HAO C Y, et al., 2017a. Heat flow, deep formation temperature and thermal structure of the Tarim Basin, Northwest China[J]. Earth Science Frontiers, 24(3): 41-55. (in Chinese with English abstract) http://meetingorganizer.copernicus.org/EGU2016/EGU2016-1801.pdf LIU S W, YANG X Q, QIU N S, et al., 2017b. Geothermal effects of salt structures on marine sedimentary basins and implications for hydrocarbon thermal evolution[J]. Chinese Science Bulletin, 62(15): 1631-1644. (in Chinese with English abstract) doi: 10.1360/N972017-00076 LU X S, SONG Y, ZHAO M J, et al., 2014. Thermal history modeling of complicated extrusional section and source rock maturation characteristics in Kuqa foreland basin[J]. Natural Gas Geoscience, 25(10): 1547-1557. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TDKX201410009.htm LV X X, YAN J J, 1996. Hydrocarbon prospects of Keping Area on the northwestern margin of Tarim Basin[J]. Acta Sedimentologica Sinica, 14(3): 32-39. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB603.003.htm LV X X, BAI Z K, XIE Y Q, et al., 2014. Reconsideration on petroleum exploration prospects in the Kalpin thrust belt of northwestern Tarim Basin[J]. Acta Sedimentologica Sinica, 32(4): 766-775. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201404017.htm MA D M, CHEN J L, ZENG C M, et al., 2007. Structural deformation characteristics of the Kalpin thrust belt on the northwestern margin of the Tarim Basin[J]. Journal of Geomechanics, 13(4): 340-347. (in Chinese with English abstract) http://www.cqvip.com/Main/Detail.aspx?id=26597623 MA Q, SHU L S, ZHU W B, 2006. Mesozoic-Cenozoic burial, uplift and exhumation: a profile along the Urumqi-Korla highway in the Tianshan mountains[J]. Xinjiang Geology, 24(2): 99-104. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-XJDI200602001.htm MCQUARRIE N, EHLERS T A, 2017. Techniques for understanding fold-and-thrust belt kinematics and thermal evolution[M]//LAW R D, THIGPEN J R, MERSCHAT A J, et al., Linkages and feedbacks in orogenic systems. Boulder: Geological Society of America, 213: 1-30. MORA A, CASALLAS W, KETCHAM R A, et al., 2015. Kinematic restoration of contractional basement structures using thermokinematic models: a key tool for petroleum system modeling[J]. AAPG Bulletin, 99(8): 1575-1598. doi: 10.1306/04281411108 NEMCOK M, SCHAMEL S, GAYER R, 2005. Thrustbelts: Structural architecture, thermal regimes and petroleum systems[M]. New York: Cambridge University Press. QU G S, LI Y G, CHEN J, et al., 2003. Geometry, kinematics and tectonic evolution of kepingtage thrust system[J]. Earth Science Frontiers, 10(S1): 142-152. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY2003S1020.htm ROWAN M G, 1993. A systematic technique for the sequential restoration of salt structures[J]. Tectonophysics, 228(3-4): 331-348. doi: 10.1016/0040-1951(93)90347-M SHI G R, 2009. Review and outlook for the 30th anniversary of basin modeling techniques[J]. Computer Applications of Petroleum (1): 3-6. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-SYGS200901006.htm WANG F Y, DU Z L, LI Q, et al., 2005. Organic maturity and hydrocarbon generation history of the Mesozoic oil-prone source rocks in Kuqa depression, Tarim Basin[J]. Geochimica, 34(2): 136-146. (in Chinese with English abstract) http://www.researchgate.net/publication/284593857_Organic_maturity_and_hydrocarbon_generation_history_of_the_Mesozoic_oil-prone_source_rocks_in_Kuqa_depression_Tarim_Basin WANG L N, JI J Q, SUN D X, et al., 2015. Chronological constraints on multi-staged rapid cooling of the Tianshan Mountains inferred from apatite fission track analysis of modern river sands[J]. Science China Earth Sciences, 58(8): 1305-1319. doi: 10.1007/s11430-015-5072-z WANG L S, LI C, SHI Y S, 1995. Distribution of terrestrial heat flow density in Tarim basin, western China[J]. Acta Geophysica Sinica, 38(6): 855-856. (in Chinese with English abstract) http://www.cqvip.com/qk/94718x/1995006/1711006.html WANG L S, LI C, LIU S W, et al., 2003. Geotemperature gradient distribution of Kuqa foreland basin, north of Tarim, China[J]. Chinese Journal of Geophysics, 46(3): 403-407. (in Chinese with English abstract) doi: 10.1002/cjg2.3375 WANG R, WU X H, XIA X H, et al., 2020. Application of basin simulation technology on the assessment of hydrocarbon resources potential of the Lunpola Basin in Tibet[J]. Journal of Geomechanics, 26(1): 84-95. (in Chinese with English abstract) http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=ZDDY202001016 WEI G Q, JIA C Z, 1998. Structural characteristics and oil & gas of thrust belts in Tarim basin[J]. Acta Petrolei Sinica, 19(1): 11-17. (in Chinese with English abstract) WEI Y J, YANG T, GUO B C, et al., 2019. Oil and gas resources potentials, exploration fields and favorable zones in foreland thrust belts[J]. China Petroleum Exploration, 24(1): 46-59. (in Chinese with English abstract) WEI Z B, ZHANG D J, XU H X, et al., 2001. Application of EASY% RO model to the studies of thermal history for Mesozoic basins, western China[J]. Petroleum Exploration & Development, 28(2): 43-46. (in Chinese with English abstract) WEN L, LI Y J, ZHANG G Y, et al., 2017. Evolution of fold-thrust belts and Cenozoic uplifting of the South Tianshan Mountain range in the Kuqa region, Northwest China[J]. Journal of Asian Earth Sciences, 135: 327-337. doi: 10.1016/j.jseaes.2017.01.002 XIONG L P, GAO W A, 1982. Characteristics of geotherm in uplift and depression[J]. Acta Geophysica Sinica, 25(5): 448-456. (in Chinese with English abstract) YANG G, 2003. The analyses on NW-striking paleouplift and the hydrocarbon potential, northwest Tarim[J]. Xinjiang Geology, 21(2): 157-162. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI200302003.htm YAO H X, LI W S, WANG G H, 2013. Oil and gas characteristics of thrusting-nappe structure belt in Huoyanshan, Xinjiang[J]. Journal of Geomechanics, 19(2): 206-213. (in Chinese with English abstract) YU Z C, LIU K Y, ZHAO M J, et al., 2016. Characterization of Diagenesis and the Petroleum Charge in Kela 2 Gas Field, Kuqa Depression, Tarim Basin[J]. Earth Science, 41(3): 533-545. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201603019.htm ZHANG Q C, SHI G R, TIAN Z Y, 2001. Present developing situation and future prospects of basin simulation technology[J]. Petroleum Geology & Experiment, 23(3): 312-317. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200103010.htm ZHANG W, LIU C L, WU X Z, et al., 2019. Statistical characteristics and prediction models for oil and gas resources abundance in different types of Chinese basins[J]. Geology and Exploration, 55(6): 1518-1527. ZHANG Y Y, GAO Y J, BAI Z K, et al., 2019. New hydrocarbon discoveries via drilling in the eastern Keping uplift, Tarim Basin[J/OL]. Geology in China. (2019-12-31). http://kns.cnki.net/kcms/detail/11.1167.P.20191230.1806.011.html. (in Chinese with English abstract) ZHANG Z Y, ZHU W B, ZHENG D W, et al., 2016. Apatite fission track thermochronology in the Kuluketage and Aksu areas, NW China: Implication for tectonic evolution of the northern Tarim[J]. Geoscience Frontiers, 7(2): 171-180. doi: 10.1016/j.gsf.2015.08.007 ZHAO J M, CHENG H G, PEI S P, et al., 2008. Deep structure at northern margin of Tarim Basin[J]. Chinese Science Bulletin, 53(10): 1544-1554. 常健, 邱楠生, 李佳蔚, 2012. 塔里木盆地与南天山的耦合关系: 来自(U-Th)/He年龄的新证据[J]. 地学前缘, 19(5): 234-243. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205024.htm 杜金虎, 田军, 李国欣, 等, 2019. 库车坳陷秋里塔格构造带的战略突破与前景展望[J]. 中国石油勘探, 24(1): 16-23. doi: 10.3969/j.issn.1672-7703.2019.01.003 杜治利, 王清晨, 周学慧, 2007. 中新生代库车-南天山盆山系统隆升历史的裂变径迹证据[J]. 岩石矿物学杂志, 26(5): 399-408. doi: 10.3969/j.issn.1000-6524.2007.05.002 高永进, 张君峰, 张远银, 等, 2020. 塔里木盆地西北部新苏地1井首获志留系工业气流[J/OL]. 中国地质. (2020-09-15). http://kns.cnki.net/kcms/detail/11.1167.P.20200915.1033.011.html. 何登发, 贾承造, 2005. 冲断构造与油气聚集[J]. 石油勘探与开发, 32(2): 55-62. doi: 10.3321/j.issn:1000-0747.2005.02.013 何丽娟, 许鹤华, 刘琼颖, 2017. 前陆盆地构造-热演化: 以龙门山前陆盆地为例[J]. 地学前缘, 24(3): 127-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703015.htm 黄苏卫, 2014. 塔里木盆地西北缘柯坪冲断带寒武系盐下成藏条件[J]. 断块油气田, 21(3): 282-286. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201403003.htm 季长军, 吴珍汉, 刘志伟, 等, 2019. 羌塘盆地逆冲推覆构造特征及油气资源效应[J]. 地质力学学报, 25(S1): 66-71. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=2019S112&journal_id=dzlxxb 金文正, 汤良杰, 王清华, 等, 2007. 新疆库车盆地东秋里塔格构造带新生代的构造演化[J]. 地质科学, 42(3): 444-454. doi: 10.3321/j.issn:0563-5020.2007.03.003 李椿, 王艳丽, 杜鸿烈, 等, 2001. 塔里木盆地柯坪地区烃源岩评价[J]. 新疆石油天然气, 13(1): 22-25. doi: 10.3969/j.issn.1673-2677.2001.01.005 李梅, 包建平, 汪海, 等, 2004. 库车前陆盆地烃源岩和烃类成熟度及其地质意义[J]. 天然气地球科学, 15(4): 367-378. doi: 10.3969/j.issn.1672-1926.2004.04.010 李曰俊, 吴根耀, 雷刚林, 等, 2008. 新疆库车新生代前陆褶皱冲断带的变形特征、时代和机制[J]. 地质科学, 43(3): 488-506. doi: 10.3321/j.issn:0563-5020.2008.03.005 梁明亮, 王宗秀, 李春麟, 等, 2020. 构造变形对海相页岩储层渗透率演化的影响[J]. 地质力学学报, 26(6): 840-851. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200604&journal_id=dzlxxb 刘春, 徐振平, 陈戈, 等, 2019. 塔里木盆地中秋1凝析气藏成藏条件及演化过程[J]. 天然气工业, 39(4): 8-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201904003.htm 刘可禹, 刘建良, 2017. 盆地和含油气系统模拟(BPSM)研究现状及发展趋势[J]. 石油科学通报, 2(2): 161-175. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201702001.htm 刘绍文, 李香兰, 郝春艳, 等, 2017a. 塔里木盆地的热流、深部温度和热结构[J]. 地学前缘, 24(3): 41-55. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703005.htm 刘绍文, 杨小秋, 邱楠生, 等, 2017b. 沉积盆地盐构造热效应及其油气地质意义[J]. 科学通报, 62(15): 1631-1644. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201715009.htm 鲁雪松, 宋岩, 赵孟军, 等, 2014. 库车前陆盆地复杂挤压剖面热演化历史模拟及烃源岩成熟度演化特征[J]. 天然气地球科学, 25(10): 1547-1557. doi: 10.11764/j.issn.1672-1926.2014.10.1547 吕修祥, 严俊君, 1996. 塔里木盆地西北缘柯坪地区油气前景[J]. 沉积学报, 14(3): 32-39. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB603.003.htm 吕修祥, 白忠凯, 谢玉权, 等, 2014. 塔里木盆地西北缘柯坪地区油气勘探前景再认识[J]. 沉积学报, 32(4): 766-775. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201404017.htm 马德明, 陈江力, 曾昌民, 等, 2007. 塔里木盆地西北缘柯坪冲断带的构造变形特征[J]. 地质力学学报, 13(4): 340-347. doi: 10.3969/j.issn.1006-6616.2007.04.007 马前, 舒良树, 朱文斌, 2006. 天山乌-库公路剖面中、新生代埋藏、隆升及剥露史研究[J]. 新疆地质, 24(2): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200602001.htm 曲国胜, 李亦纲, 陈杰, 等, 2003. 柯坪塔格推覆构造几何学、运动学及其构造演化[J]. 地学前缘, 10(S1): 142-152. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY2003S1020.htm 石广仁, 2009. 盆地模拟技术30年回顾与展望[J]. 石油工业计算机应用 (1): 3-6. 汪锐, 伍新和, 夏响华等, 2020. 应用盆地模拟技术评价西藏伦坡拉盆地油气资源潜力[J]. 地质力学学报, 26(1): 84-95. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200109&journal_id=dzlxxb 王飞宇, 杜治利, 李谦, 等, 2005. 塔里木盆地库车坳陷中生界油源岩有机成熟度和生烃历史[J]. 地球化学, 34(2): 136-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200502005.htm 王良书, 李成, 施央申, 1995. 塔里木盆地大地热流密度分布特征[J]. 地球物理学报, 38(6): 855-856. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX506.018.htm 王良书, 李成, 刘绍文, 等, 2003. 塔里木盆地北缘库车前陆盆地地温梯度分布特征[J]. 地球物理学报, 46(3): 403-407. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200303018.htm 蔚远江, 杨涛, 郭彬程, 等, 2019. 前陆冲断带油气资源潜力、勘探领域分析与有利区带优选[J]. 中国石油勘探, 24(1): 46-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201901007.htm 魏国齐, 贾承造, 1998. 塔里木盆地逆冲带构造特征与油气[J]. 石油学报, 19(1): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB801.002.htm 魏志彬, 张大江, 许怀先, 等, 2001. EASY% RO模型在我国西部中生代盆地热史研究中的应用[J]. 石油勘探与开发, 28(2): 43-46. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200102012.htm 熊亮萍, 高维安, 1982. 隆起与拗陷地区地温场的特点[J]. 地球物理学报, 25(5): 448-456. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX198205008.htm 杨庚, 2003. 塔里木西北缘北西向古隆起的存在及油气勘探前景[J]. 新疆地质, 21(2): 157-162. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200302003.htm 姚宏鑫, 李文圣, 王根厚, 2013. 新疆火焰山逆冲推覆构造成油特征[J]. 地质力学学报, 19(2): 206-213. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20130210&journal_id=dzlxxb 于志超, 刘可禹, 赵孟军, 等, 2016. 库车凹陷克拉2气田储层成岩作用和油气充注特征[J]. 地球科学, 41(3): 533-545. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201603019.htm 张庆春, 石广仁, 田在艺, 2001. 盆地模拟技术的发展现状与未来展望[J]. 石油实验地质, 23(3): 312-317. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200103010.htm 张蔚, 刘成林, 吴晓智, 等, 2019. 中国不同类型盆地油气资源丰度统计特征及预测模型[J]. 地质与勘探, 55(6): 1518-1527. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201906018.htm 张远银, 高永进, 白忠凯, 等, 2019. 塔里木盆地柯坪断隆东段钻获奥陶-志留系油气显示[J/OL]. 中国地质. (2019-12-31). http://kns.cnki.net/kcms/detail/11.1167.P.20191230.1806.011.html. 赵俊猛, 程宏岗, 裴顺平, 等, 2008. 塔里木盆地北缘的深部结构[J]. 科学通报, 53(8): 946-955. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200808015.htm