留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南极新生代海陆格局变迁对全球气候变化的影响

裴军令 赵越 周在征 杨振宇 刘晓春 郑光高 仝亚博 李建锋 侯礼富

裴军令, 赵越, 周在征, 等, 2021. 南极新生代海陆格局变迁对全球气候变化的影响. 地质力学学报, 27 (5): 867-879. DOI: 10.12090/j.issn.1006-6616.2021.27.05.070
引用本文: 裴军令, 赵越, 周在征, 等, 2021. 南极新生代海陆格局变迁对全球气候变化的影响. 地质力学学报, 27 (5): 867-879. DOI: 10.12090/j.issn.1006-6616.2021.27.05.070
PEI Junling, ZHAO Yue, ZHOU Zaizheng, et al., 2021. Impact of Cenozoic Antarctic continent-ocean configuration patterns on global climate change. Journal of Geomechanics, 27 (5): 867-879. DOI: 10.12090/j.issn.1006-6616.2021.27.05.070
Citation: PEI Junling, ZHAO Yue, ZHOU Zaizheng, et al., 2021. Impact of Cenozoic Antarctic continent-ocean configuration patterns on global climate change. Journal of Geomechanics, 27 (5): 867-879. DOI: 10.12090/j.issn.1006-6616.2021.27.05.070

南极新生代海陆格局变迁对全球气候变化的影响

doi: 10.12090/j.issn.1006-6616.2021.27.05.070
基金项目: 国家重点研发计划(2018YFC1406900);国家自然科学基金重点项目(41930218);国家自然科学基金专项项目(41941004);国家自然科学基金青年项目(41802066)
详细信息
    作者简介:

    裴军令(1977-), 男, 博士, 研究员, 从事极地地质研究工作。E-mail: jlpei@qq.com

  • 中图分类号: P541;P69

Impact of Cenozoic Antarctic continent-ocean configuration patterns on global climate change

Funds: This research is financially supported by the National Key Research and Development Program of China (Grant No.2018YFC1406900) and the National Natural Science Foundations of China (Grant No.41930218, 41941004, 41802066)
  • 摘要: 南极大陆记录了新生代以来地质演化中多次重大地质事件,包括大陆生长、裂解和离散、全球冷却和大陆尺度南极冰盖的发展等。尽管非常重要,但至今关于南极大陆新生代地质演化仍有诸多争论。文章主要针对塔斯曼通道和德雷克海峡贯通过程,系统总结并分析了南极洲、南美洲和澳大利亚的构造、岩浆和沉积演化历史。始新世晚期至渐新世早期开始发育的南极环极洋流(ACC)受德雷克海峡和塔斯曼通道扩张程度的控制。综合分析和对比研究表明,~34 Ma全球气候从"暖室"到"冷室"的转变与ACC开始的时间一致,表明构造通道的打开控制了ACC的发育,进而对全球气候产生了重要影响。最后,简要总结了南极作为一个完整的地球系统,其新生代地质演化如何控制海陆格局的变迁,并提出未来研究需要解决的关键问题。

     

  • 图  1  南极及周边现代海陆格局图

    成图数据(earth_relief_01m)来源:http://mirrors.ustc.edu.cn/gmt/data/;制图软件为The Generic Mapping Tools(GMT,v6.1.0)

    Figure  1.  Continent-ocean configuration pattern map of the Circum-Antarctic region

    Earth relief data with 1 arc-minute resolution (earth_relief_01m) are from the website: http://mirrors.ustc.edu.cn/gmt/data/; Data visualization by The Generic Mapping Tools (GMT, v6.1.0)

    图  2  晚白垩世以来南极与相邻陆块重建图

    模型主要是根据海洋磁异常条带和破碎带的几何学特征计算出相关洋壳区域的欧拉旋转参数,假定旋转速率恒定,利用Gplates软件对各构造单元的运动学过程进行重建。模型还使用了地质和地球物理数据所记录到的陆内伸展、走滑、挤压等构造事件作为约束条件。同时还利用古地磁数据对模型进行了验证和必要的迭代。斯科舍海(Scotia Sea)地区的重建模型基于van de Lagemaat(2021),制图软件:Gplates和GMT

    Figure  2.  Reconstruction of Antarctica and its surrounding areas since the late Cretaceous

    Euler rotation parameters of relevant oceanic crust regions were calculated based on geometric characteristics of marine magnetic anomaly and fracture zones constraints, following the precondition that the stage rotation rate was constant. Gplates software was applied to reconstruct the kinematic process of all tectonic units. The model is also constrained by tectonic events such as intracontinental extensional history, strike-slip and deformation records. Additionally, the paleomagnetic data are used to verify and iterate the model. The reconstruction of the Scotia Sea region is based on van de Lagemaat (2021). Data visualization by Gplates and GMT software.

    图  3  新生代以来南极周边区域海底扩张过程

    数据来源于Seton et al., 2012; Müller et al., 2018, 2019; Wessel et al., 2019; van de Lagemaat et al., 2021的重建模型;制图软件:Gplates和GMT

    Figure  3.  Seafloor spreading map around the Antarctic since 65 Ma

    Reconstruction data are derived from the global-scale plate motion models by Seton et al., 2012; Müller et al., 2018, 2019; Wessel et al., 2019; Van De Lagemaat et al., 2021; Data visualization by Gplates and GMT software.

    图  4  白垩纪以来南极古纬度图(参考点:70°S, 65°W)

    Figure  4.  Paleolatitudes of the Antarctic since the Cretaceousrelative to a reference point on the Antarctic Peninsula (70°S, 65°W)

    图  5  新生代南极地质事件与全球气候变化对比

    图件根据Zachos et al., 2001; Livermore et al., 2007; Westerhold et al., 2020;2021-2030地球科学发展战略研究组,2021修改,深海氧同位素数据主要由多次大洋钻探计划(ODP)、海洋钻探计划(IODP)积累产生,图中所用数据来源于Westerhold et al., 2020提供的数据库

    Figure  5.  Cenozoic geological events in the Antarctic compared with global climate changes

    This Graph is modified after Zachos et al., 2001; Livermore et al., 2007; Westerhold et al., 2020; 2021-2030 Earth Science Development Strategy Research Group, 2021. Deep-sea oxygen isotope data, mainly collected by Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP), mined from the database provided by Westerhold et al., 2020

    表  1  西南极古地磁数据表

    Table  1.   Paleomagnetic data from West Antarctica

    编号 年代 研究区 N/n 古地磁极 参考文献
    纬度/(°S) 经度/(°E) A95/(°)
    1 140 Ma Byers Peninsula, Livingston Island, South Shetland Islands 4 60.0 50.0 9.5 Grunow, 1993
    2 110 Ma SSI and AP (Northern AP) 23 81.1 170.0 6.2 Watts et al., 1984; Grunow, 1993; Bakhmutov and Shpyra, 2011; Gao et al., 2018
    3 90 Ma SSI and AP (Northern AP) 50 86.8 113.0 3.4 Poblete et al., 2011
    4 55 Ma SSI (Northern AP) 40 85.0 45.5 5.6 Grunow, 1993; Nawrocki et al., 2010; Bakhmutov and Shpyra, 2011; Poblete et al., 2011; Gao et al., 2018
    5 27 Ma Kerguelen islands (Antarctic Plate) 233 85.3 9.3 2.3 Camps et al., 2007
    6 5 Ma James Ross Island volcanics 85.7 30.7 7.0 Kristjánsson et al., 2005
    7 108 Ma OC and EEL (Southern AP) 5 65.2 193.9 17.7 Kellogg, 1980
    8 105 Ma LC (Southern AP) 5 82.6 274.8 9.0 Kellogg and Rowley, 1978
    下载: 导出CSV
  • AITKEN A R A, YOUNG D A, FERRACCIOLI F, et al., 2014. The subglacial geology of Wilkes Land, East Antarctica[J]. Geophysical Research Letters, 41(7): 2390-2400. doi: 10.1002/2014GL059405
    BAKHMUTOV, V., SHPYRA, V., 2011. Palaeomagnetism of late Cretaceous-Paleocene igneousrocks from the western part of the Antarctic Peninsula (argentine IslandsArchipelago)[J]. Geological Quarterly, 55(4): 285-300. http://gq.pgi.gov.pl/article/download/7726/pdf_18
    BALL P, EAGLES G, EBINGER C, et al., 2013. The spatial and temporal evolution of strain during the separation of Australia and Antarctica[J]. Geochemistry, Geophysics, Geosystems, 14(8): 2771-2799. doi: 10.1002/ggge.20160
    BARKER P F, BURRELL J, 1982. The influence upon Southern Ocean circulation, sedimentation, and climate of the opening of Drake Passage[M]//CRADDOCK C. Antarctic geoscience. Madison: University of Wisconsin.
    BARKER P F, THOMAS E, 2004. Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current[J]. Earth-Science Reviews, 66(1-2): 143-162. doi: 10.1016/j.earscirev.2003.10.003
    BIRKENMAJER K, LUCZKOWSKA E, 1987. Foraminiferal evidence for a Lower Miocene age of glaciomarine and related strata, Moby Dick Group, King George Island (South Shetland Islands, Antarctica)[J]. Bulletin of the Polish Academy of Sciences, Earth Sciences, 35(1): 1-10. http://www.researchgate.net/publication/279555044_Foraminiferal_evidence_for_a_Lower_Miocene_age_of_glaciomarine_and_related_strata_Moby_Dick_Group_King_George_Island_South_Shetland_Islands_Antarctica
    BRONSELAER B, WINTON, M, GRIFFIES, S M, et al., 2018. Change in future climate due to Antarctic meltwater[J]. Nature, 564(7734): 53-58. doi: 10.1038/s41586-018-0712-z
    CAMPS P, HENRY B, NICOLAYSEN K, et al., 2007. Statistical properties of paleomagnetic directions in Kerguelen lava flows: Implications for the late Oligocene paleomagnetic field[J]. Journal of Geophysical Research, 112(B6): 1-14. http://www.gm.univ-montp2.fr/IMG/pdf/22-jgr07.pdf
    CHEN T Y, SHEN Y B, ZHAO Y, et al., 2008. Geological development of Antarctica and evolution of Gondwanaland[M]. Beijing: The Commercial Press. (in Chinese)
    COOK A J, HOLLAND P R, MEREDITH M P, et al., 2016. Ocean forcing of glacier retreat in the western Antarctic Peninsula[J]. Science, 353(6296): 283-286. doi: 10.1126/science.aae0017
    CRAMWINCKEL M J, HUBER M, KOCKEN I J, et al., 2018. Synchronous tropical and polar temperature evolution in the Eocene[J]. Nature, 559(7714): 382-386. doi: 10.1038/s41586-018-0272-2
    DALZIEL I W D, 2014. Drake Passage and the Scotia arc: A tortuous space-time gateway for the Antarctic Circumpolar Current[J]. Geology, 42(4): 367-368. doi: 10.1130/focus042014.1
    DOUBROVINE P V, STEINBERGER B, TORSVIK T H, 2012. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans[J]. Journal of Geophysical Research: Solid Earth, 117(B9): 1-30. http://www.geologist.nl/Reconstructions/Doubrovine-2012-Journal%20of%20Geophysical%20Research.pdf
    DUAN W W, CAO L, 1998. Late Paleogene palynoflora from Point Hennequin of Admiralty Bay, King George Island, Antarctica and its significance instratigraphy[J]. Chinese Journal of Polar Research, 10(2): 29-35. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-JDYZ802.002.htm
    EAGLES G, GOHL K, LARTER R D, 2004. High-resolution animated tectonic reconstruction of the South Pacific and West Antarctic Margin[J]. Geochemistry, Geophysics, Geosystems, 5(7): Q07002. doi: 10.1029/2003GC000657/pdf
    EAGLES G, LIVERMORE R, MORRIS P, 2006. Small basins in the Scotia Sea: The Eocene Drake Passage gateway[J]. Earth andPlanetary Science Letters, 242(3-4): 343-353. doi: 10.1016/j.epsl.2005.11.060
    EAGLES G, JOKAT W, 2014. Tectonic reconstructions for paleobathymetry in Drake Passage[J]. Tectonophysics, 611: 28-50. doi: 10.1016/j.tecto.2013.11.021
    Earth Science Development Strategy Research Group, 2021-2030, 2021. Earth science development strategy 2021-2030: habitable Earth's past, present and future[M]. Beiing: Science Press. (in Chinese)
    ENGLAND M R, POLVANI, L M, SUN L T, et al., 2020. Tropical climate responses to projected Arctic and Antarctic sea-ice loss[J]. Nature Geoscience, 13(4): 275-281. doi: 10.1038/s41561-020-0546-9
    FRETZDORFF S, WORTHINGTON T J, HAASE K M, et al., 2004. Magmatism in the Bransfield Basin: Rifting of the South Shetland Arc?[J]. Journal of Geophysical Research: Solid Earth, 109(B12): B12208, . doi: 10.1029/2004JB003046.
    GALEOTTI S, DECONTO R, NAISH T, et al., 2016. Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition[J]. Science, 352(6281): 76-80. doi: 10.1126/science.aab0669
    GAO L, ZHAO Y, YANG Z Y, et al., 2015. Recent progress of late Cretaceous: Miocene volcanic-sedimentary strata on King George Island, West Antarctic[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 34 (6): 1109-1122. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201506006.htm
    GAO L, ZHAO Y, YANG Z Y, et al., 2018. New paleomagneticand 40Ar/39Ar geochronological results for the South Shetland Islands, WestAntarctica, and their tectonic implications. Journal of Geophysical Research: Solid Earth, 123(1): 4-30. doi: 10.1002/2017JB014677
    GEE J S, KENT D V, 2007. Source of Oceanic Magnetic Anomalies and the Geomagnetic Polarity Timescale[J]. Treatise on Geophysics, 5: 455-507. doi: 10.1016/B978-044452748-6/00097-3
    GILLARD M, AUTIN J, MANATSCHAL G, et al., 2015. Tectonomagmatic evolution of the final stages of rifting along the deep conjugate Australian-Antarctic magma-poor rifted margins: Constraints from seismic observations[J]. Tectonics, 34(4): 753-783. doi: 10.1002/2015TC003850
    GRUNOW, A M., 1993. New paleomagnetic data from the Antarctic Peninsula and theirtectonic implications[J]. Journal of Geophysical Research: Solid Earth, 98(B8): 13815-13833. doi: 10.1029/93JB01089
    GUO Z F, WILSON M, DINGWELL D B, et al., 2021. India-Asia collision as a driver of atmospheric CO2 in the Cenozoic[J]. Nature Communications, 12: 3891. doi: 10.1038/s41467-021-23772-y
    HAMBREY M J, MCKELVEY B, 2000. Neogene fjordal sedimentation on the western margin of the Lambert Graben, East Antarctica[J]. Sedimentology, 47(3): 577-607. doi: 10.1046/j.1365-3091.2000.00308.x
    HATHWAY B, LOMAS S A, 1998. The Jurassic-Lower Cretaceous Byers Group, South Shetland Islands, Antarctica: revised stratigraphy and regional correlations[J]. Cretaceous Research: 19(1): 43-67. doi: 10.1006/cres.1997.0095
    HILL D J, HAYWOOD A M, VALDES P J, et al., 2013. Paleogeographic controls on the onset of the Antarctic circumpolar current[J]. Geophysical Research Letters, 40(19): 5199-5204.
    HOGG C J, LEA M A, SOLER M G, et al., 2020. Protect the Antarctic Peninsula-before it's too late[J]. Nature, 586(7830): 496-499. doi: 10.1038/d41586-020-02939-5
    HOUBEN A J, BIJL P K, SLUIJS A, et al., 2019. Late Eocene Southern Ocean cooling and invigoration of circulation preconditioned Antarctica for full-scale glaciation[J]. Geochemistry, Geophysics, Geosystems, 20(5): 2214-2234. http://www.onacademic.com/detail/journal_1000042285140499_0c2a.html
    HU S L, ZHENG X S, DAI C M, et al., 1995. 40Ar/39Ar isochron dating on a microscope scale of A635 basalt from the northern coast of King George Island, Antarctica by using a continuous laser system and a mass-spectrometer[J]. Chinese Science Bulletin, 40(16): 1495-1496. (in Chinese) doi: 10.1360/csb1995-40-16-1495
    JOVANE L, FLORINDO F, ACTON G, et al., 2019. Miocene Glacial Dynamics Recorded by Variations in Magnetic Properties in the ANDRILL-2A Drill Core[J]. Journal of Geophysical Research: Solid Earth, 124(3): 2297-2312. doi: 10.1029/2018JB016865
    KATZ M E, CRAMER B S, TOGGWEILER J R, et al., 2011. Impact of Antarctic Circumpolar Current Development on Late Paleogene Ocean Structure[J]. Science, 332(6033): 1076-1079. doi: 10.1126/science.1202122
    KELLOGG K, REYNOLDS R L, 1978. Paleomagnetic results from the Lassiter Coast, Antarctica, and a test for oroclinal bending of the Antarctic Peninsula[J]. Journal of Geophysical Research: Solid Earth, 83(B5): 2293-2299. doi: 10.1029/JB083iB05p02293
    KELLOG K, 1980. Paleomagnetic evidence for oroclinal bending of the southern Antarctic Peninsula[J]. Geological Society of America Bulletin, 91(7): 414-420. doi: 10.1130/0016-7606(1980)91<414:PEFOBO>2.0.CO;2
    KENNETT J P, 1977. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography[J]. Journal of Geophysical Research, 82(27): 3843-3860. doi: 10.1029/JC082i027p03843
    KRISTJANSSON L, GUDMUNDSSON M T, SMELLIE J L, et al., 2005. Palaeomagnetic, 40Ar/39Ar, and stratigraphical correlation of Miocene-Pliocene basalts in the Brandy Bay area, James Ross Island, Antarctica[J]. Antarctic Science, 17(3): 409-417. doi: 10.1017/S0954102005002853
    KUMP L R, BRANTLEY S L, ARTHUR M A, 2000. Chemical weathering, atmospheric CO2, and climate[J]. Annual Review of Earth and Planetary Sciences, 28(1): 611-667. doi: 10.1146/annurev.earth.28.1.611
    LAGABRIELLE Y, GODDÉRIS Y, DONNADIEU Y, et al., 2009. The tectonic history of Drake Passage and its possible impacts on global climate[J]. Earth and Planetary Science Letters, 279(3-4): 197-211. doi: 10.1016/j.epsl.2008.12.037
    LARTER R D, BARKER P F, 1991. Effects of ridge crest-trench interaction on Antarctic-Phoenix Spreading: Forces on a young subducting plate[J]. Journal of Geophysical Research Atmospheres: Solid Earth, 96(B12): 19583-19607. doi: 10.1029/91JB02053
    LATIMER J C, FILIPPELLI G M, 2002. Eocene to Miocene terrigenous inputs and export production: geochemical evidence from ODP Leg177, Site 1090[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 182(3-4): 151-164. doi: 10.1016/S0031-0182(01)00493-X
    LAWVER L A, GAHAGAN L M, 2003. Evolution of Cenozoic seaways in the circum-Antarctic region[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 198(1-2): 11-37. doi: 10.1016/S0031-0182(03)00392-4
    LI F, GAO Y Q, WAN X, et al., 2021. Earth's 'three-poles' climate change under global warming[J]. Transactions of Atmospheric Sciences, 44(1): 1-11. (in Chinese with English abstract)
    LI S Z, SUO Y H, WANG G Z, et al., 2019. Tripole on seafloor and tripole on Earth surface: dynamic connections[J]. Marine Geology & Quaternary Geology, 39(5): 1-22. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HYDZ201905001.htm
    LIU X H, ZHENG X S, 1988. Geology of volcanic rocks on Fildes Peninsula, King George Island, West Antarctica[J]. Antarctic Research, 1(1): 25-35. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-JDYZ198801004.htm
    LIVERMORE R, EAGLES G, MORRIS P, et al., 2004. Shackleton Fracture Zone: No barrier to early circumpolar ocean circulation[J]. GEOLOGY, 32(9): 797-800. doi: 10.1130/G20537.1
    LIVERMORE R, HILLENBRAND C D, MEREDITH M, et al., 2007. Drake Passage and Cenozoic climate: An open and shut case?[J]. Geochemistry Geophysics Geosystems, 8(1): Q01005. http://www.researchgate.net/profile/Michael_Meredith2/publication/248820608_Drake_Passage_and_Cenozoic_climate_An_open_and_shut_case/links/00463527cad06da663000000
    LODOLO E, DONDA F, TASSONE A, 2006. Western Scotia Sea margins: Improved constraints on the opening of the Drake Passage[J]. Journal of Geophysical Research: Solid Earth, 111(B6): B06101. doi: 10.1029/2006JB004361/full
    LYLE M, BARRON J, BRALOWER T J, et al., 2008. Pacific Ocean and Cenozoic evolution of climate[J]. Reviews of Geophysics, 46(2): RG2002.
    MA L, XING J, 2020. Structure inversion and its tectonic interpretation in bransfield strait and the adjacent area, Antarctic[J]. Oceanologia et Limnologia Sinica, 51(2): 265-273. (in Chinese with English abstract)
    MCCARRON J J, MILLAR I L, 1997. The age and statigraphy of fore-arc magmatism on Alexander Island, Antarctica[J]. Geological Magazine, 134(4): 507-522. doi: 10.1017/S0016756897007437
    MCKENNA M C, 1973. Sweepstakes, filters, corridors, Noah's Arks, and beached viking funeral ships in palaeogeography[M]//TARLING DH, RUNCORN SK. Implications of continental drift to the earth sciences. New York: Academic Press: 295-308.
    MILANESEF, RAPALINIA, SLOTZNICKSP, et al., 2019. Late cretaceouspaleogeography of the Antarctic Peninsula: New paleomagnetic pole from the James Ross Basin[J]. Journal of South American Earth Sciences, 91: 131-143. doi: 10.1016/j.jsames.2019.01.012
    MILANESE F N, OLIVERO E B, KIRSCHVINK J L, et al., 2017. Magnetostratigraphy of the Rabot formation, upper cretaceous, James Ross Basin, Antarctic Peninsula[J]. Cretaceous Research, 72: 172-187. doi: 10.1016/j.cretres.2016.12.016
    MILANESE F N, OLIVERO E B, SLOTZNICK S P, et al., 2020. Coniacian-Campanian magnetostratigraphy of the Marambio Group: The Santonian-Campanian boundary in the Antarctic Peninsula and the complete Upper Cretaceous-Lowermost Paleogene chronostratigraphical framework for the James Ross Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 555: 109871. doi: 10.1016/j.palaeo.2020.109871.
    MÜLLER R D, SETON M, ZAHIROVIC S, et al., 2016. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup[J]. Annual Review of Earth and Planetary Sciences, 44: 107-138. doi: 10.1146/annurev-earth-060115-012211
    MÜLLER R D, CANNON J, QIN X D, et al., 2018. GPlates: Building a Virtual Earth Through Deep Time[J]. Geochemistry, Geophysics, Geosystems, 19(7): 2243-2261. doi: 10.1029/2018GC007584
    MÜLLER R D, ZAHIROVIC S, WILLIAMS S E, et al., 2019. A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic[J]. Tectonics, 38(6): 1884-1907. doi: 10.1029/2018TC005462
    MUNDAY D R, JOHNSON H L, MARSHALL D P, 2015. The role of ocean gateways in the dynamics and sensitivity to wind stress of the early Antarctic Circumpolar Current[J]. Paleoceanography, 30(3): 284-302. doi: 10.1002/2014PA002675
    PAGANI M, ZACHOS J C, FREEMAN K H, et al., 2005. Marked decline in atmospheric carbon dioxide concentrations during the paleogene[J]. Science, 309(5734): 600-603. doi: 10.1126/science.1110063
    PATERSON S R, DUCEA M N, 2015. Arc magmatic tempos: gathering the evidence[J]. Elements, 11(2): 91-98. doi: 10.2113/gselements.11.2.91
    PEDRO J B, JOCHUMM, BUIZERT C, et al., 2018. Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling[J]. Quaternary Science Reviews, 192: 27-46. doi: 10.1016/j.quascirev.2018.05.005
    PFUHL H A, MCCAVE I N, 2005. Evidence for late Oligocene establishment of the Antarctic Circumpolar Current[J]. Earth and Planetary Science Letters, 235(3-4): 715-728. doi: 10.1016/j.epsl.2005.04.025
    POBLETE F, ARRIAGADA C, ROPERCH P, et al., 2011. Paleomagnetism and tectonics of the South Shetland Islands and the northern Antarctic Peninsula[J]. Earth Planetary Science Letters, 302 (3-4): 299-313. doi: 10.1016/j.epsl.2010.12.019
    RIGNOT E, MOUGINOT J, SCHEUCHL B, et al., 2019. Four decades of Antarctic Ice Sheet mass balance from 1979-2017[J]. Proceedings of the National Academy of Sciencesof the United States of America, 116(4): 1095-1103. doi: 10.1073/pnas.1812883116
    RILEY T R, BURTON-JOHNSON A, FLOWERDEW M J, et al., 2018. Episodicity within a mid-Cretaceous magmatic flare-up in West Antarctica: U-Pb ages of the Lassiter Coast intrusive suite, Antarctic Peninsula, and correlations along the Gondwana margin[J]. GSA Bulletin, 130(7-8): 1177-1196. doi: 10.1130/B31800.1
    ROBINSON S A, KLEKOCIUK A R, KING D H, et al., 2020. The 2019/2020 summer of Antarctic heatwaves[J]. Global Change Biology, 26(6): 3178-3180. doi: 10.1111/gcb.15083
    RYE C D, MARSHALL J, KELLEY M, et al., 2020. Antarctic glacial melt as a driver of recent Southern Ocean climate trends[J]. Geophysical Research Letters, 47(11): e2019GL086892. doi: 10.1029/2019GL086892
    SCHER H D, MARTIN E E, 2006. Timing and climatic consequences of the opening of Drake Passage[J]. Science, 312(5772): 428-430. doi: 10.1126/science.1120044
    SCHER H D, WHITTAKER J M, WILLIAMS S E, et al., 2015. Onset of Antarctic circumpolar current 30 million years ago as Tasmanian Gateway aligned with westerlies[J]. Nature, 523(7562): 580-583. doi: 10.1038/nature14598
    SCHER H D, 2017. Carbon-ocean gateway links[J]. Nature Geoscience, 10(3): 164-165. doi: 10.1038/ngeo2895
    SCHREIDER A A, SCHREIDER A A, EVSENKO E I, 2014. The stages of the development of the basin of the Bransfield Strait[J]. Oceanology, 54(3): 365-373. doi: 10.1134/S0001437014020234
    SETON M, Müller R D, Zahirovic S, et al., 2012. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 113(3-4): 212-270. doi: 10.1016/j.earscirev.2012.03.002
    SHEN Y B. 1990. Progress in Stratigraphy and Palaeontology of FildesPeninsula, King GeorgeIsl and, Antarctica[J]. Acta PalaeontologicaSinica, 29(2): 129-139. (in Chinese with English abstract) http://en.cnki.com.cn/article_en/cjfdtotal-gswx199002000.htm
    SMELLIE J L, JOHNSON J S, MCINTOSH W C, et al., 2008. Six million years of glacial history recorded in volcanic lithofacies of the James Ross Island Volcanic Group, Antarctic Peninsula[J]. Palaeogeography Palaeoclimatology Palaeoecology, 260(1-2): 122-148. doi: 10.1016/j.palaeo.2007.08.011
    SONG Z S, 1997. Research on Tertiary palynoflora from the petrified forest member of King George Island, Antarctica[J]. Acta Micropalaeontologica Sinica, 14(3): 255-272. (in Chinese with English abstract)
    STAGG H M J, COLWEL J B, DIREEN N G, et al., 2004. Geology of the Continental Margin of Enderby and Mac. Robertson Lands, East Antarctica: Insights from a Regional Data Set[J]. Marine Geophysical Researches, 25(3): 183-219. http://www.onacademic.com/detail/journal_1000034518554710_bd26.html
    SIJP W P, ANNA S, DIJKSTRA H A, et al., 2014. The role of ocean gateways on cooling climate on long time scales[J]. Global and Planetary Change, 119: 1-22. doi: 10.1016/j.gloplacha.2014.04.004
    TIKKU A A, CANDES C, 1999. The oldest magnetic anomalies in the Australian-Antarctic Basin: Are they isochrons?[J]. Journal of Geophysical Research: Solid Earth, 104(B1): 661-677. doi: 10.1029/1998JB900034
    TIKKU A A, DIREEN N G, 2008. Comment on "Major Australian-Antarctic Plate Reorganization at Hawaiian-Emperor Bend Time"[J]. Science, 321(5888): 490. http://pdfs.semanticscholar.org/701f/65ba6dc9ee4f378c0adc5b5718a05538e54d.pdf
    TORSVIK T H, DOUBROVINE P V, STEINBERGER B, et al., 2017. Pacific plate motion change caused the Hawaiian-Emperor Bend[J]. Nature Communications, 8(1): 1-12. doi: 10.1038/s41467-016-0009-6
    VAN DE LAGEMAAT S H A, SWART M L A, VAES B, et al., 2021. Subduction initiation in the Scotia Sea region and opening of the Drake Passage: When and why?[J]. Earth-Science Reviews, 215: 103551, doi: 10.1016/j.earscirev.2021.103551.
    VAES B, VAN HINSBERGEN D J, BOSCHMAN L M, 2019. Reconstruction of subduction and back-arc spreading in the NW Pacific and Aleutian Basin: Clues to causes of Cretaceous and Eocene plate reorganizations[J]. Tectonics, 38(4): 1367-1413. doi: 10.1029/2018TC005164
    VEEVERS J J, 1986. Breakup of Australia and Antarctica estimated as mid-Cretaceous (95±5 Ma) from magnetic and seismic data at the continental margin[J]. Earth and Planetary Science Letters, 77(1): 91-99. doi: 10.1016/0012-821X(86)90135-4
    VÉRARD C, FLORES K, STAMPFLIG, 2012. Geodynamic reconstructions of the South America-Antarctica plate system[J]. Journal of Geodynamics, 53, 43-60. doi: 10.1016/j.jog.2011.07.007
    WANG Z P, 1998. Ecology features of coastal saline lakes related to environmental evolution in the area of Antarctic continental ice edge[J]. Chinese Journal of Polar Research, 10(1): 17-25. (in Chinese with English abstract) http://www.cqvip.com/QK/86655X/19982/4000971885.html
    WATTSDR, WATTSGC, BRAMALLA, 1984. Cretaceous and early Tertiary paleomagnetic results from the Antarctic Peninsula[J]. Tectonics, 3(3): 333-346. doi: 10.1029/TC003i003p00333
    WESSEL P, LUIS J F, UIEDA L, et al., 2019. The generic mapping tools version 6[J]. Geochemistry, Geophysics, Geosystems, 20(11): 5556-5564. doi: 10.1029/2019GC008515
    WESTERHOLD T, MARWAN N, DRURY A D, et al., 2020. An astronomically dated record of Earth's climate and its predictability over the last 66 million years[J]. Science, 369(6509): 1383-1387. doi: 10.1126/science.aba6853
    WHITTAKER J M, GONCHAROV A, WILLIAMS S E, et al., 2013. Global sediment thickness data set updated for the Australian-Antarctic Southern Ocean[J]. Geochemistry, Geophysics, Geosystems, 14(8): 3297-3305. doi: 10.1002/ggge.20181
    WHITTAKER R J, TRIANTIS K A, LADLE R J, 2008. ORIGINAL ARTICLE: A general dynamic theory of oceanic island biogeography[J]. Journal of Biogeography, 35(6): 977-994. doi: 10.1111/j.1365-2699.2008.01892.x
    WILSON D S, POLLARD D, DECONTO R M, et al., 2013. Initiation of the West Antarctic Ice Sheet and estimates of total Antarctic ice volume in the earliest Oligocene[J]. Geophysical Research Letters, 40(16): 4305-4309. doi: 10.1002/grl.50797
    WISE S W J, BREZA J R, HARWOOD D M, et al., 1992. Paleogene glacial history of Antarctica in light of leg 120 drilling results[M]//WISE S W JR, SCHLISH R, PALMER A A. Proceedings of the ocean drilling program, scientific results. Texas: College Station, 120: 1001-1029.
    XUE Y S, SHEN Y B, ZHUO E J, 1996. Petrological characteristics of the sedimentary volcaniclastic rocks of the Fossil Hill Formation (Eocene) in King George Island, West Antarctica[J]. Antarctic Research, 8(4): 31-40, 42-46. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-JDYJ602.002.htm
    ZACHOS J, PAGANI M, SLOAN L, et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 292(5517): 686-693. doi: 10.1126/science.1059412
    ZHAO Y, LIU J M, 2008. New progress of oil and gas geology in arctic: sidelights of the 33rd International Geological Congress[J]. Journal of Geomechanics, 14(3): 292. (in Chinese)
    ZHENG G G, LIU X C, ZHAO Y, 2015. Mesozoic-Cenozoic tectonom-agmatic evolution of the Antarctic Peninsula and its correlation with Patagonia of southernmost South America[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 34(6): 1090-1102. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-KYDH201506004.htm
    ZHENG X S, LIU X H, YANG R Y, 1988. The petrological characteristics of Tertiary volcanic rocks near the Chinese Great Wall Station, west Antarctica[J]. Acta Petrologica Sinica, 4(1): 34-47. (in Chinese with English abstract) http://www.researchgate.net/publication/316939470_The_petrological_characteristics_of_Tertiary_volcanic_rocks_near_the_Chinese_Great_Wall_Station_west_Antarctica
    2021-2030地球科学发展战略研究组, 2021. 2021-2030地球科学发展战略: 宜居地球的过去、现在与未来[M]. 北京: 科学出版社.
    陈廷愚, 沈炎彬, 赵越, 等, 2008. 南极洲地质发展与冈瓦纳古陆演化[M]. 北京: 商务印书馆.
    段威武, 曹流, 1998. 南极乔治王岛海军湾亨内克角早第三纪晚期孢粉化石及其地层学意义[J]. 极地研究, 10(2): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ802.002.htm
    高亮, 赵越, 杨振宇, 等. 2015. 西南极乔治王岛白垩纪末-中新世火山-沉积地层研究新进展[J]. 矿物岩石地球化学通报, 34(6): 1109-1122. doi: 10.3969/j.issn.1007-2802.2015.06.004
    胡世玲, 郑祥身, 戴憧谟, 等, 1995. 南极乔治王岛北海岸A635玄武岩激光质谱微区40Ar/39Ar等时年龄[J]. 科学通报, 40(16): 1495-1496. doi: 10.3321/j.issn:0023-074X.1995.16.017
    李菲, 郜永祺, 万欣, 等, 2021. 全球变暖与地球"三极"气候变化[J]. 大气科学学报, 44(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202101001.htm
    李三忠, 索艳慧, 王光增, 等, 2019. 海底"三极"与地表"三极": 动力学关联[J]. 海洋地质与第四纪地质, 39(5): 1-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201905001.htm
    刘小汉, 郑祥身, 1988. 西南极乔治王岛菲尔德斯半岛火山岩地质初步研究[J]. 南极研究, 1(1): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ198801004.htm
    马龙, 邢健, 2020. 南极布兰斯菲尔德海峡及邻区地壳结构反演及构造解析[J]. 海洋与湖沼, 51(2): 265-273. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ202002006.htm
    沈炎彬, 1990. 南极乔治王岛菲尔德斯半岛地层、古生物研究新见[J]. 古生物学报, 29(2): 129-139. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX199002000.htm
    宋之深, 1997. 南极乔治王岛第三纪石化林段孢粉植物群研究[J]. 微体古生物学报, 14(3): 255-272. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT703.001.htm
    王自磐, 1998. 南极大陆冰缘环境变迁与沿海盐湖生态特征[J]. 极地研究, 10(1): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ801.002.htm
    薛耀松, 沈炎彬, 卓二军, 1996. 南极乔治王岛始新统化石山组沉积火山碎屑岩特征[J]. 南极研究, 8(4): 31-40, 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ604.003.htm
    赵越, 刘建民, 2008. 北极油气地质的新进展: 第33届国际地质大会侧记[J]. 地质力学学报, 14(3): 292. doi: 10.3969/j.issn.1006-6616.2008.03.012
    郑光高, 刘晓春, 赵越, 2015. 南极半岛中新生代构造岩浆演化及与南美巴塔哥尼亚对比[J]. 矿物岩石地球化学通报, 34(6): 1090-1102. doi: 10.3969/j.issn.1007-2802.2015.06.002
    郑祥身, 刘小汉, 杨瑞英, 1988. 西南极长城站地区第三系火山岩岩石学特征[J]. 岩石学报, 4(1): 34-47. doi: 10.3321/j.issn:1000-0569.1988.01.004
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  468
  • HTML全文浏览量:  456
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-09-28
  • 预出版日期:  2021-12-31
  • 刊出日期:  2021-10-28

目录

    /

    返回文章
    返回