Microstructure and geochronology of pseudotachylite from the Hamm Peak, East Antarctica, and its geological significances
-
摘要: 发育在东南极普里兹湾西南部哈姆峰地区麻粒岩相花岗质片麻岩中的假玄武玻璃沿着近东西向断裂带分布。显微构造特征表明,该地假玄武玻璃基质中普遍发育球粒结构及树枝状、放射状-针状等不同形状及组合的矿物微晶体,说明这些假玄武玻璃是地震断层快速滑移过程中摩擦熔融作用的产物。假玄武玻璃中的微晶体矿物组合大体分为两种,它们分布在构造带不同地段:一种是以"紫苏辉石+斜长石"组合为主,分布于构造带东北部地段;一种是以"黑云母+斜长石+钾长石+石英"的组合为主,分布于构造带西南部地段,说明沿构造带不同部位构造环境及应力分布的不均匀性。同时,微晶体中富铝紫苏辉石的存在,表明假玄武玻璃形成过程及其后期的结晶过程可能处于高温(麻粒岩相)的构造环境下。假玄武玻璃的基质全岩K-Ar年龄为878.1±16.8 Ma,全岩40Ar/39Ar年龄谱系中所记录的年龄值主要集中在925~626 Ma。结合区域对比看,假玄武玻璃应该形成于格林维尔期构造事件。Abstract: The pseudotachylite in granulite facies granitic gneisses from the Hamm Peak, southwestern Prydz Bay, East Antarctica, occurs along the east-west-trending ductile-brittle shear zone. The characteristics of microstructure show that the pseudotachylite was formed by the frictional-melt during the rapid faulting along the paleoseismic zone. This inference is supported by the common presence of spherulites and different morphological microlites, such as skeletal, dendritic, acicular and globular in the matrix of pseudotachylite. There exist two kinds of microlite mineral assemblage. One consists mainly of hyperite and plagioclase, which developed in the northeastern part of the shear zone. The other consists of biotite, plagioclase, alkali feldspar and quartz, etc, which developed in the southwestern part of the shear zone. The occurrence of different kinds of microlite mineral assemblage indicates the differences of tectonic surrounding and stress distribution along different parts of the shear zone. Moreover, the presence of aluminous-rich hyperite may indicates the relatively high temperature and high pressure in the ambient physical condition during the pseudotachylite formation and crystallization afterwards, i.e., under the granulite facies conditions. The K-Ar age of bulk matrix of pseudotachylite is 878.1±16.8 Ma. Bulk 40Ar/39Ar step-heating release spectrum gave the varying ages mainly from 925 to 626 Ma. Combined with the regional comparison, we conclude that the pseudotachylite formed during the Grenvillian tectonic events.
-
Key words:
- microstructure /
- microlite /
- aluminous-rich hyperite /
- K-Ar and 40Ar/39Ar dating /
- pseudotachylite /
- Hamm Peak /
- East Antarctica
-
图 1 东南极普里兹湾哈姆峰地区地质图及假玄武玻璃分布和取样位置图
a-南极大陆及研究区所在大地构造位置(埃默里冰架);b-北查尔斯王子山-普里兹湾地区地质露头范围及研究区所在位置(虚线为露头范围,实线为冰川与海岸线位置);c-假玄武玻璃分布和取样位置图
Figure 1. Map of the Hamm Peak area, Prydz Bay, East Antarctica, showing the localities where pseudotachylites have been found
(a)The Antactica continent with tectonic location of the study area; (b)The outcrops of Northern Prince Charles Mountain and location of the study area; (c) The localities where pseudotachylites have been found
图 3 D39点假玄武玻璃中显微结构照片
a-假玄武玻璃中的球粒结构,单偏光(-);b-假玄武玻璃中的球粒结构,正交偏光(+);c-假玄武玻璃中晶屑周边的针状熔蚀结构,正交偏光(+);d-放射状雏晶结构及晶屑本身的熔蚀结构,正交偏光(+);e、f-假玄武玻璃基质的SEM-BSE(背散射电子影像)影像特征及显示的针状、放射状矿物雏晶结构(Pl-斜长石/钙长石/中长石;Fer-氧化亚铁;Bt-黑云母)
Figure 3. Microphotographs of the microstructure of pseudotachylite at the locality of D39, obtained by OPT and SEM imaging
(a)Spherulitic texture in pseudotachylite, plain light (-); (b)Spherulitic texture in pseudotachylite, crossed polarized light (+); (c)Acicular and radial crystallite texture around the crystal minerals in the pseudotachylite, crossed polarized light (+); (d)Corrosion texture of crystal minerals themselves, crossed polarized light (+); (e, f)The SEM-BSE (Backscattered electron) image features and the acicular and radial crystallite textures of the matrix in pseudotachylite
Pl-plagioclase/anorthite/andesine; Fer-ferrous oxide; Bt-biotite图 4 D43点假玄武玻璃中显微结构照片
a-假玄武玻璃中放射状、晶簇状、束状紫苏辉石雏晶集合体,单偏光(-);b-玄武玻璃中晶屑本身碎粒化结构、熔蚀结构及周边的隐晶质结构,正交偏光(+);c-正常正交偏光下假玄武玻璃基质的结构;d-加锥光后强光束下假玄武玻璃基质中的矿物结构;e-紫苏辉石(Hy)和斜长石/钙长石/中长石(Pl)构成的骨架状、骸晶结构的SEM-BSE(背散射电子影像)影像特征;f-黑云母(Bt)、斜长石/钙长石/中长石(Pl)及其他矿物雏晶组成的SEM-BSE(背散射电子影像)显微晶质结构
Figure 4. Microphotographs of the microstructure of pseudotachylite at the locality of D43, obtained by OPT and SEM imaging
(a)Crystallitic acicular, drusy and beam crystal aggregate of hypersthene textures in the pseudotachylite, plain light (-); (b)Cataclastic and corrosion textures of crystal minerals themselves and the cryptocrystalline textures around the crystal minerals, crossed polarized light (+); (c)The microstructure of matrix of pseudotachylite under the crossed polarized light; (d)The microstructure of matrix of pseudotachylite under the crossed polarized light with conoscope; (e)The SEM-BSE(Backscattered electron) image features of the keleton and skeletal textures made up by hypersthene and plagioclase; (f)The SEM-BSE (Backscattered electron) image features of the microcrstalline textures made up by the crystals of biotite, plagioclase/anorthite/andesine and other crystallites
表 1 东南极哈姆峰地区花岗质片麻岩(假玄武玻璃围岩)中主要矿物化学成分(wt%)电子探针数据
Table 1. Chemical composition (wt%) of major minerals in the granitic gneisses and granulites(the wall rocks of pseudotachylite)from the Hamm Peak, East Antarctica
样品编号 序号 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O 矿物名称 41-3-1 1 45.94 0.00 34.89 0.00 0.00 0.00 17.98 1.18 0.00 钙长石(Pl) 2 49.04 0.00 0.86 37.13 0.00 12.26 0.71 0.00 0.00 紫苏辉石(Hy) 4 50.39 0.00 1.09 22.02 0.00 9.91 15.94 0.00 0.00 普通辉石(Aug) 43-10-2 1 37.96 0.00 21.15 30.29 0.43 7.99 2.17 0.00 0.00 石榴子石(Grt) 2 65.64 0.00 19.01 0.00 0.00 0.00 0.00 1.13 14.22 微斜长石(Mic) 3 57.79 0.00 27.09 0.00 0.00 0.00 9.27 6.11 0.00 中长石(Pl) 4 37.98 0.00 21.20 30.65 0.39 7.73 2.04 0.00 0.00 石榴子石(Grt) 6 39.96 5.90 14.77 13.01 0.00 16.32 0.00 0.00 9.79 黑云母(Bt) 7 38.01 0.00 20.87 30.97 0.45 7.53 2.16 0.00 0.00 石榴子石(Grt) 43-10-1 1 57.64 0.00 27.86 0.00 0.00 0.00 8.71 5.79 0.00 中长石(Pl) 2 65.69 0.00 18.83 0.00 0.00 0.00 0.00 1.59 13.88 微斜长石(Mic) 3 37.85 0.00 20.93 30.89 0.43 7.74 2.17 0.00 0.00 石榴子石(Grt) 5 39.74 7.16 14.72 13.95 0.00 14.87 0.00 0.00 9.56 黑云母(Bt) 6 40.02 5.80 14.23 12.74 0.00 16.92 0.00 0.00 9.99 黑云母(Bt) 7 65.77 0.00 18.61 0.00 0.00 0.00 0.00 1.05 14.57 微斜长石(Mic) 注:数据分析在中国科学院地质与地球物理研究所电子探针实验室完成。 表 2 D39点假玄武玻璃基质中微晶体成分
Table 2. Contents (wt%) of microlites in the matrix of pseudotachylites at the locality of D39, Hamm Peak, East Antarctica
分析点位 序号 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 矿物名称 39-4-3-4(各点位置见图 3e) 1 34.62 5.94 14.94 19.22 0.00 12.64 0.00 0.00 9.26 0.00 黑云母 2 1.34 0.00 0.76 97.90 0.00 0.00 0.00 0.00 0.00 0.00 氧化亚铁 3 58.63 59.66 26.01 0.80 0.00 0.00 7.85 6.28 0.43 0.00 中长石 4 47.56 0.00 21.81 1.66 0.00 0.59 22.08 5.86 0.43 0.00 钙长石 5 13.20 0.00 7.21 75.45 0.00 0.00 1.58 2.56 0.00 0.00 氧化亚铁 39-4-3-1 (各点位置见图 3f) 1 59.47 0.00 25.88 0.00 0.00 0.00 7.80 6.60 0.26 0.00 中长石 2 38.61 6.39 7.55 34.84 0.00 6.09 1.86 0.00 3.77 0.89 黑云母 3 42.36 4.11 12.21 16.56 0.00 13.12 3.17 0.00 7.47 0.71 黑云母 4 34.36 0.38 6.36 52.93 0.00 1.80 1.46 1.58 0.47 0.66 氧化铁 5 37.71 5.27 8.68 34.67 0.00 7.87 1.39 0.00 4.40 0.00 黑云母 6 59.35 0.00 25.84 0.59 0.00 0.00 7.48 6.73 0.00 0.00 中长石 7 46.72 4.39 10.93 14.49 0.00 10.97 2.61 0.00 7.60 1.96 黑云母 表 3 D43点假玄武玻璃基质中微晶体成分
Table 3. Contents (wt%) of microlites in the matrix of pseudotachylites at the locality of D43, Hamm Peak, East Antarctica
分析点位 序号 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O 总量 矿物名称 43-4-3-1 (各点位置见图 4e) 1 68.27 0.98 18.68 1.23 0.00 0.00 5.51 4.59 0.73 100.00 中长石 2 48.13 0.73 7.99 26.81 0.39 14.71 0.75 0.00 0.49 100.00 富铝紫苏辉石 3 66.05 1.21 19.12 2.44 0.00 0.00 5.50 4.80 0.88 100.00 中长石 4 47.77 1.02 7.56 27.30 0.39 15.06 0.50 0.00 0.40 100.00 富铝紫苏辉石 43-7-1-2 (各点位置见图 4f) 1 49.72 2.52 16.88 16.83 0.00 5.16 1.46 1.32 5.83 99.72 黑云母 2 63.24 0.50 21.31 2.23 0.00 0.38 5.37 6.01 0.96 100.00 斜长石 3 48.49 2.44 15.46 18.22 0.00 5.44 1.02 0.88 5.82 99.75 黑云母 4 65.73 0.40 19.33 1.95 0.00 0.00 3.94 4.69 3.95 100.00 微斜长石+斜长石 5 61.50 1.36 14.51 11.10 0.00 3.23 1.63 1.88 4.79 100.00 黑云母 6 48.22 2.55 17.04 17.53 0.00 4.78 1.54 1.88 6.15 99.70 黑云母 7 70.84 0.50 15.90 2.97 0.00 0.74 3.90 3.97 1.19 100.00 中长石 8 72.20 0.00 16.31 1.77 0.00 0.00 3.65 5.30 0.77 100.00 中长石 9 45.48 2.91 17.07 19.30 0.00 5.80 1.10 1.20 6.78 99.63 黑云母 10 75.58 0.00 12.84 2.62 0.00 0.58 2.52 3.47 2.39 100.00 微斜长石+斜长石 表 4 东南极哈姆峰地区假玄武玻璃基质的钾-氩同位素及K-Ar年龄数据
Table 4. Potassium-argon isotope and age data for the pseudotachylite from the Hamm Peak, East Antarctica
样品编号 K/% 40Ar放/×10-9mol/g 40Ar放/% 表面年龄/Ma 年龄/Ma ±1σ D43-7 2.48 4.865 97.54 878.1 16.8 表 5 东南极哈姆峰地区假玄武玻璃的全岩氩同位素及40Ar/39Ar数据
Table 5. Argon isotope and 40Ar/39Ar age data for the pseudotachylite from the Hamm Peak, East Antarctica
T/℃ (40Ar/39Ar)m (36Ar/39Ar)m (37Ar/39Ar)m (38Ar/39Ar)m F(40Ar*/39Ar) 39Ar×10-14/mol 39Ar累积/% 表面年龄/Ma 年龄/Ma ±1σ 400 112.9045 0.3673 6809.0000 0.1729 4.4227 8.63 0.06 92 17 500 148.7143 0.3437 0.7965 0.1155 47.2313 23.06 0.22 803 36 600 124.8157 0.2665 0.7754 0.0829 46.1468 22.39 0.38 788 24 700 81.7350 0.0932 0.4799 0.0430 54.2386 87.20 0.99 897 22 800 112.3390 0.0609 0.3536 0.0270 94.3773 223.52 2.55 1356 14 900 110.4594 0.0341 0.2870 0.0212 100.4312 289.67 4.58 1417 12 1000 85.3112 0.0185 0.3096 0.0364 79.8920 1439.14 14.65 1204 10 1100 59.6881 0.0114 0.3496 0.0384 56.3605 2121.89 29.50 924.6 7.9 1200 45.5127 0.0047 0.4132 0.0149 44.1575 2383.94 46.18 760.7 6.7 1300 36.2170 0.0046 0.5155 0.0145 34.9075 6940.86 94.74 625.8 5.8 1350 30.3554 0.0063 1.0041 0.0219 28.5944 655.59 99.33 527.5 4.8 1400 33.4198 0.0237 1.0593 0.0253 26.4969 95.61 100.00 493.7 6.0 注:表中下标m代表样品中测定的同位素比值;W=120.00 mg;J=0.011879;F=40Ar*/39Ar(放射性成因40Ar/39Ar比值) -
ALLEN A R, 1979. Mechanism of frictional fusion in fault zones[J]. Journal of Structural Geology, 1(3): 239-243. http://www.onacademic.com/detail/journal_1000036164933110_715a.html AUSTRHEIM H, BOUNDY T M, 1994. Pseudotachylytes generated during seismic faulting and eclogitization of the deep crust[J]. Science, 265(5168): 82-83. doi: 10.1126/science.265.5168.82 CHEN W, LIU X Y, ZHANG S, 2002. Continuous laser stepwise heating 40Ar/39Ar dating technique[J]. Geological Review, 48(Supplement): 127-134. (in Chinese with English abstract) BLACK L P, KINNY P D, SHERATON J W, et al., 1991. Rapid production and evolution of late Archaean felsic crust in the Vestfold Block of east Antarctica[J]. Precambrian Research, 50(3-4): 283-310. doi: 10.1016/0301-9268(91)90026-7 CLARKE G L, 1990. Pyroxene microlites and contact metamorphism in pseudotachylite veinlets from MacRobertson Land, East Antarctica[J]. Australian Journal of Earth Sciences, 37(1): 1-8. doi: 10.1080/08120099008727900 DAVIDSON C, DAVIS K J, BAILEY C M, et al., 2003. Age, origin, and significance of brittle faulting and pseudotachylyte along the coast shear zone, Prince Rupert, British Columbia[J]. Geology, 31(1): 43-46. doi: 10.1130/0091-7613(2003)031<0043:AOASOB>2.0.CO;2 DIRKS P H G M, HAND M, 1995. Clarifying temperature-pressure paths via structures in granulite from the Bolingen Islands, Antarctica[J]. Australian Journal of Earth Sciences, 42(2): 157-172. doi: 10.1080/08120099508728189 FITZSIMONS I C W, KINNY P D, HARLEY S L, 1997. Two stages of zircon and monazite growth in anatectic leucogneiss: SHRIMP constraints on the duration and intensity of Pan-African metamorphism in Prydz Bay, East Antarctica[J]. Terra Nova, 9(1): 47-51. doi: 10.1046/j.1365-3121.1997.d01-8.x HARLEY S L, SNAPE I, BLACK L P, 1998. The evolution of a layered metaigneous complex in the Rauer Group, East Antarctica: evidence for a distinct Archaean terrane[J]. Precambrian Research, 89(3-4): 175-205. doi: 10.1016/S0301-9268(98)00031-X HENSEN B J, ZHOU B, 1995. A pan-African granulite facies metamorphic episode in Prydz Bay, Antarctica: evidence from Sm-Nd garnet dating[J]. Australian Journal of Earth Sciences, 42(3): 249-258. doi: 10.1080/08120099508728199 HOBBSBE, ORDA, TEYSSIERC, 1986. Earthquakes in the ductile regime?[J]Pure and Appiled Geophysies, 124: 309-336. doi: 10.1007/BF00875730 KELLEY S P, REDDY S M, MADDOCK R, 1994. Laser-probe 40Ar/39Ar investigation of a pseudotachylyte and its host rock from the Outer Isles Thrust, Scotland[J]. Geology, 22(5): 443-446. doi: 10.1130/0091-7613(1994)022<0443:LPAAIO>2.3.CO;2 KINNY P D, BLACK L P, SHERATON J W, 1993. Zircon ages and the distribution of Archaean and Proterozoic rocks in the Rauer Islands[J]. Antarctic Science, 5(2): 193-206. doi: 10.1017/S0954102093000252 LI Z X, ZHANG L H, POWELL C M, 1995. South China in Rodinia: part of the missing link between Australia-East Antarctica and Laurentia?[J]. Geology, 23(5): 407-410. doi: 10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2 LI Z X, METCALFE I, POWELL C M, 1996. Breakup of Rodinia and Gondwanaland and assembly of Asia: Introduction[J]. Australian Journal of Earth Sciences, 43(6): 591-592. doi: 10.1080/08120099608728280 LIN A M, 1994a. Microlite morphology and chemistry in pseudotachylite from the Fuyun fault zone, China[J]. The Journal of geology, 102(3): 317-329. doi: 10.1086/629674 LIN A M, 1994b. Glassy pseudotachylite veins from the Fuyunfault zone, northwest China[J]. Journal of Structural Geology, 16 (1): 71-83. doi: 10.1016/0191-8141(94)90019-1 LIN A M, 1996. Injection veins of crushing-originated pseudotachylyte and fault gouge formed during seismic faulting[J]. Engineering Geology, 43(2-3): 213-224. doi: 10.1016/0013-7952(96)00062-2 LIN A M, SHIMAMOTO T, 1998. Selective melting processes as inferred from experimentally generated pseudotachylyte[J]. Journal of Asian Earth Sciences, 16(5-6): 533-545. doi: 10.1016/S0743-9547(98)00040-3 LIU J M, DONG S W, ZHANG J S, et al., 2003. Origin of pseudotachylites from the the eastern Dabieshan Orogenic Belt[J]. Journal of Geomechanics, 9 (2): 97-105. LIU J M, DONG S W, ZHANG J S, et al., 2004. K-Ar and 40Ar-39Ar ages of pseudotachylites and their wall rocks from the Eastern Dabie mountains and their implications[J] Acta Geologica Sinica, 78(3): 374-379. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE200403010&dbcode=CJFD&year=2004&dflag=pdfdown LIU J M, DONG S W, ZHANG J S, et al., 2004. Origin, age and significance of pseudotachylites from the eastern Dabieshan Orogenic Belt, China[J]. Acta Geologica Sinica, 78(1): 52-60. LIU J M, CHEN B L, DONG S W, et al., 2009. Ages of pseudotachylite and its wall rocks from the Keketuohai-Ertai fault zone, Xinjiang, Northwest China[J]. Geological Review, 55(4): 581-589. (in Chinese with English abstract) LIU X C, ZHAO Y, ZHAO G C, et al., 2007. Petrology and geochronology of granulites from the McKaskle Hills, Eastern Amery Ice Shelf, Antarctica, and implications for the evolution of the Prydz belt[J]. Journal of Petrology, 48(8): 1443-1470. doi: 10.1093/petrology/egm024 LIU X C, ZHAO Y, SONG B, et al., 2009. SHRIMP U-Pb zircon geochronology of high-grade rocks and charnockites from the eastern Amery Ice Shelf and southwestern Prydz Bay, East Antarctica: constraints on Late Mesoproterozoic to Cambrian tectonothermal events related to supercontinent assembly[J]. Gondwana Research, 16(2): 342-361. doi: 10.1016/j.gr.2009.02.003 LIU X C, JAHN B M, ZHAO Y, et al., 2014. Geochemistry and geochronology of Mesoproterzoic basement rocks from the eastern Amery ice shelf and southwestern Prydz Bay, East Antarctica: implications for a long-lived magmatic accretion in a continental arc[J]. American Journal of Science, 314: 508-547. doi: 10.2475/02.2014.03 LUDWIG K R, 2001. Users manual for Isoplot/Ex(rev 2.49): A geochronological toolkit for microsoft excel. Berkeley Geochronological Center Special Publication, 1a: 1-55. http://www.researchgate.net/publication/245539605_Users_manual_for_IsoplotEx_a_geochronological_toolkit_for_Microsoft_Excel MAGLOUGHLIN J F, HALL C M, VAN DER PLUIJM B A, 2001. 40Ar-39Ar geochronometry of pseudotachylytes by vacuum encapsulation: North Cascade Mountains, Washington, USA[J]. Geology, 29(1): 51-54. doi: 10.1130/0091-7613(2001)029<0051:AAGOPB>2.0.CO;2 MADDOCK R H, 1983. Melt origin of fault-generated pseudotaehylytes demonstratedbytexture[J]. Geology, 12: 105-105. MAGOFUGHILN J F, 1989. The nature and significance of pseudotachyilte from the Nason terrane, North Cascade Mountains, Washington[J]. Journal of Structural Geology, 21(7): 907-917. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-0191814189901077&originContentFamily=serial&_origin=article&_ts=1416665533&md5=1575b15e149739758af61f1a5c518d7b MAGLOUGHLIN J F, 1992. Microstructural and chemical changes associated with cataclasis and frictional melting at shallow crustallevels: the cataclasite-pseudotachylite formation[J]. Tectonophysics, 204(3-4): 243-260. doi: 10.1016/0040-1951(92)90310-3 MAGLOUGHLIN J F, SPRAY J G, 1992. Frictional melting processesand products in geological materials: introduction and discussion[J]. Tectonophysics, 204(3-4): 197-206. doi: 10.1016/0040-1951(92)90307-R MÜLLER W, KELLEY S P, VILLA I M, 2002. Dating fault-generated pseudotachylytes: comparison of 40Ar/39Ar stepwise-heating, laser-ablation and Rb-Sr microsampling analyses[J]. Contributions to Mineralogy and Petrology, 144(1): 57-77. doi: 10.1007/s00410-002-0381-6 PHILPOTTS A R, 1964. Origin of pseudotachylites[J]. American Journal of Science, 262(8): 1008-1035. doi: 10.2475/ajs.262.8.1008 PARK R G, 1961. The pesudoyachylite of the Gairloch district, Ross-Shire, Scotland[J]. American Journal of Science, 259(7): 542-550. doi: 10.2475/ajs.259.7.542 REIMOLD W U, JESSBERGER E K, STEPHAN T, 1990. 40Ar-39Ar dating of pseudotachylite from the Vredefort Dome, South Africa: a progress report[J]. Tectonophysics, 171(1-4): 139-152. doi: 10.1016/0040-1951(90)90095-P REIMOLD W U, STEPHAN T, JESSBERGER E K, 1992. Testing younger than 2 Ga 40Ar-39Ar ages for pseudotachylite from the Vredefort structure[J]. South African Journal of Science, 88(11-12): 563-573. http://reference.sabinet.co.za/webx/access/journal_archive/00382353/10981.pdf SHAND S J, 1916. The pseudotachylyte of Parijs (Orange Free State), and its relation to 'trap-shotten gneiss' and 'flinty crush-rock'[J]. Quarterly Journal of the Geological Society, 72(1-4): 198-221. doi: 10.1144/GSL.JGS.1916.072.01-04.12 SHERLOCK S C, HETZEL R, 2001. A laser-probe 40Ar/39Ar study of pseudotachylite from the Tambach Fault Zone, Kenya: direct isotopic dating of brittle faults[J]. Journal of Structural Geology, 23(1): 33-44. doi: 10.1016/S0191-8141(00)00082-1 SIBSON R H, 1975. Generation of pseudotachylyte by ancient seismic faulting[J]. Geophysical Journal International, 43(3): 775-794. doi: 10.1111/j.1365-246X.1975.tb06195.x SNAPE I, BLACK L P, HARLEY S L, 1997. Refinement of the timing of magmatism, high-grade metamorphism and deformation in the Vestfold Hills, East Antarctica, from new SHRIMP U-Pb zircon geochronology[M]//RICCI C A. The Antarctic region: geological evolution and processes. Siena: Terra Antarctica Publications: 139-148. SPRAY J G, 1995. Pseudotachylyte controversy: fact or friction?[J] Geology, 23(12): 1119-1122. doi: 10.1130/0091-7613(1995)023<1119:PCFOF>2.3.CO;2 SPRAY J G, KELLEY S P, REIMOLD W U, 1995. Laser probeargon-40/argon-39 dating of coesite- and stishovite-bearing pseudotachylytes and the age of the Vredefort impact event[J]. Meteoritics, 30(3): 335-343. doi: 10.1111/j.1945-5100.1995.tb01132.x THOST D E, HENSEN B J, MOTOYOSHI Y, 1991. Two-stage decompression in garnet-bearing mafic granulites from Søstrene Island, Prydz Bay, East Antarctica[J]. Journal of Metamorphic Geology, 9(3): 245-256. doi: 10.1111/j.1525-1314.1991.tb00520.x TRIELOFF M, REIMOLD W U, KUNZ J, et al., 1994. 40Ar-39Ar thermochronology of pseudotachylite at the Ventersdorp Contact Reef, Witwatersrand basin[J]. South African Journal of Geology, 97(3): 365-384. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9706306805&site=ehost-live WENK H R, 1978. Are pseudotachylites products of fracture or fusion?[J]. Geology, 6(8): 507-511. doi: 10.1130/0091-7613(1978)6<507:APPOFO>2.0.CO;2 WOOD B J, 1974. The solubility of alumina in orthopyroxene co-existing with garnet[J]. Contribution to Mineral and Petrology, 46: 1-15. doi: 10.1007/BF00377989 WENK H R, WEISS L E, 1982. Al-richcalcic pyroxene in pseudotaehylite: an indieator of high pressure and high temperature?[J]. Teetonophysies, 84(2-4): 329-341. http://www.onacademic.com/detail/journal_1000035691324810_c04f.html ZHAO Y, LIU X H, SONG B, et al., 1995. Constraints on the stratigraphic age of metasedimentary rocks from the Larsemann Hills, East Antarctica: possible implications for Neoproterozoic tectonics[J]. Precambrian Research, 75(3-4): 175-188. doi: 10.1016/0301-9268(95)00038-0 陈文, 刘新宇, 张思, 2002. 连续激光阶段升温40Ar/39Ar地质年代测定方法研究[J]. 地质论评, 48(增刊): 127-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1022.htm 刘建民, 董树文, 张家声, 等, 2004. 大别造山带东部假玄武玻璃及其围岩的K-Ar和40Ar-39Ar年龄及地质意义[J]. 地质学报, 78(3): 374-379. doi: 10.3321/j.issn:0001-5717.2004.03.011 刘建民, 陈柏林, 董树文, 等, 2009. 新疆富蕴可可托海-二台断裂带中假玄武玻璃及其围岩的年代学研究[J]. 地质论评, 55(4): 581-589. doi: 10.3321/j.issn:0371-5736.2009.04.012 刘建民, 董树文, 张家声, 等. 2003. 大别造山带东部假玄武玻璃的成因[J]. 地质力学学报, 9 (2): 97-105. doi: 10.3969/j.issn.1006-6616.2003.02.001