留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东南极拉斯曼丘陵长英质片麻岩的深熔作用与铁钛氧化物的聚集机制

任留东

任留东, 2021. 东南极拉斯曼丘陵长英质片麻岩的深熔作用与铁钛氧化物的聚集机制. 地质力学学报, 27 (5): 736-746. DOI: 10.12090/j.issn.1006-6616.2021.27.05.060
引用本文: 任留东, 2021. 东南极拉斯曼丘陵长英质片麻岩的深熔作用与铁钛氧化物的聚集机制. 地质力学学报, 27 (5): 736-746. DOI: 10.12090/j.issn.1006-6616.2021.27.05.060
REN Liudong, 2021. Anatexis and enrichment mechanism of the Fe-Ti oxide minerals in the quartzofeldspathic gneisses from the Larsemann Hills, East Antarctica. Journal of Geomechanics, 27 (5): 736-746. DOI: 10.12090/j.issn.1006-6616.2021.27.05.060
Citation: REN Liudong, 2021. Anatexis and enrichment mechanism of the Fe-Ti oxide minerals in the quartzofeldspathic gneisses from the Larsemann Hills, East Antarctica. Journal of Geomechanics, 27 (5): 736-746. DOI: 10.12090/j.issn.1006-6616.2021.27.05.060

东南极拉斯曼丘陵长英质片麻岩的深熔作用与铁钛氧化物的聚集机制

doi: 10.12090/j.issn.1006-6616.2021.27.05.060
基金项目: 

国家自然科学基金项目 41941004

国家自然科学基金项目 41472172

详细信息
    作者简介:

    任留东(1965-), 男, 博士, 研究员, 从事南极地质研究工作。E-mail: ldren@cags.ac.cn

  • 中图分类号: P588.345

Anatexis and enrichment mechanism of the Fe-Ti oxide minerals in the quartzofeldspathic gneisses from the Larsemann Hills, East Antarctica

Funds: 

the National Natural Science Foundation of China 41941004

the National Natural Science Foundation of China 41472172

  • 摘要: 东南极拉斯曼丘陵高级变质长英质岩石中铁钛氧化物的局部聚集与高级变质作用过程中的深熔作用有关,并非原岩富集这些组分。深熔作用造成惰性组分如铁钛氧化物滞留原地或略有聚集及活动性组分的迁移,而流体挥发组分优先聚集于熔体之中。当体系中水含量较低、处于不饱和状态时,深熔作用过程中形成局部"熔体",其结晶所成的浅色体不具低共结组分,没有熔体结晶结构,不是真正的熔体,可能是(准)熔体。较粗粒的浅色体或伟晶岩也是与深熔作用有关的产物,其形成早于花岗岩脉或岩体,而与花岗质岩浆分异无关。伴随(准)熔体的出现,体系中组分的萃取、分异效果较为明显,即可造成组分分异,形成截然不同的异地、二相分异结构,分别形成固相残留物(组成可以不固定)和(准)熔体相。固相残留体中富铝、铁组分,形成矽线石和铁钛氧化物团块,其中少或无挥发分;与此对应,短距离迁移浅色体中往往贫铁钛组分,可见石榴子石、偶见铁钛氧化物矿物。这种挥发分不饱和状态下的深熔作用基本属于封闭体系,整体失水不显著,高级变质岩中的一些特征矿物如矽线石、石榴子石、堇青石、尖晶石的形成也与这种分异作用有关,但组分迁移范围有限,并可保存组分分异各阶段的产物。拉斯曼丘陵长英质岩系中大量铁钛氧化物和矽线石类矿物组合的形成,反映了临界状态下的局部或差异抬升,变形作用的非均匀性及相伴随的组分分异作用,很可能相当于早期格林维尔期构造的泛非期再活动。

     

  • 图  1  拉斯曼丘陵铁钛氧化物的野外宏观产状

    Op-不透明矿物
    a-拉斯曼丘陵米洛半岛铁钛氧化物富集区;b-淡色花岗岩中铁钛氧化物不规则团块;c-雁列状排列铁钛氧化物和浅色体;d-浅色体中夹有铁钛氧化物

    Figure  1.  Mesoscopic occurrence of the Fe-Ti oxides in the Larsemann Hills

    (a) Fe-Ti oxide minerals abundant in Mirror Peninsula, Larsemann Hills; (b) Irregular patches of Fe-Ti oxides within the leucocratic granite; (c) En echelon Fe-Ti oxides and leucosomes; (d) Fe-Ti oxide minerals interlayered with leucosomes
    Op-opaque mineral

    图  2  拉斯曼丘陵与铁钛氧化物有关的岩石结构和矿物

    Crd-堇青石;Qtz-石英
    a-铁钛氧化物与伟晶岩相邻;b-铁钛氧化物-富黑云母条带与伟晶岩相邻;c-原地深熔形成含石榴子石的浅色体团块;d-深熔形成不规则含石榴子石的浅色体团块;e-透镜状伟晶岩一侧有铁钛氧化物;f-布丁状张裂处充填堇青石-石英,附近为不规则浅色体

    Figure  2.  Minerals related to the Fe-Ti oxides in the Larsemann Hills

    (a) Fe-Ti oxides with adjacent pegmatite; (b) Fe-Ti oxide and biotite-rich band with pegmatitic leucosome; (c) In situ anatexis with garnet-bearing leucosome patch; (d) Irregular garnet-bearing leucosome; (e) Fe-Ti oxide band with granitic lens; (f) Crd-Qtz emplaced between boudin fissure and nearby leucosome patch
    Crd-cordierite; Qtz-quartz

    图  3  拉斯曼丘陵铁钛氧化物的露头产状

    Bt-黑云母;Grt-石榴子石;Sil-矽线石;其他矿物缩写同图 2
    a-铁钛氧化物及矽线石、石英;b-铁钛氧化物及矽线石;c-与浅色体相伴的堇青石;d-浅色体中的铁钛氧化物、石榴子石和黑云母条带;e-铁钛氧化物及石榴子石;f-伟晶质铁钛氧化物及长石、石英

    Figure  3.  Outcrops of the Fe-Ti oxides in the Larsemann Hills

    (a) Fe-Ti oxides with sillimanite and quartz; (b) Fe-Ti oxides and sillimanite; (c) Leucosome and accompanying cordierite; (d) Fe-Ti oxides, garnet and biotite bands within leucosome; (e) Fe-Ti oxides and garnet; (f) Pegmatitic Fe-Ti oxides and feldspar, quartz
    Bt-biotite; Grt-garnet; Sil-sillimanite; Abbreviations for other minerals are shown in Fig. 2

    图  4  与铁钛氧化物有关的显微结构

    Spl-尖晶石;Crn-刚玉;Hem-赤铁矿;Ilm-钛铁矿;Mgt-磁铁矿;Sulphide-硫化物;其他矿物缩写同图 2图 3
    a-部分的矽线石转化为堇青石、尖晶石;b-矽线片麻岩中的尖晶石、堇青石;c-铁钛氧化物和刚玉;d-磁铁矿、尖晶石和黑云母的先后关系;e-与铁钛氧化物相伴的硫化物;f-石榴子石边缘转化为尖晶石、石英

    Figure  4.  Microscopic textures with Fe-Ti oxides

    (a) Sillimanite partially transformed into cordierite and spinel; (b) Spinel and cordierite in the sillimanite gneiss; (c) Fe-Ti oxides and corundum; (d) The successive magnetite, spinel and biotite; (e) Sulphides accompanying the Fe-Ti oxides and sillimanite; (f) Garnet rim retrograded to spinel and quartz. a, b, d, f-plane polarized in transmitted light; c, e-plane polarized in reflection light.
    Spl-spinel; Crn-corundum; Hem-hematite; Ilm-ilmenite; Mgt-magnetite; Sulphide-sulfide; Abbreviations for other minerals are shown in Fig. 2 and Fig. 3

    表  1  拉斯曼丘陵赤铁-钛铁矿及相关矿物的电子探针成分分析

    Table  1.   Microprobe composition of Fe-Ti oxides and related minerals in the Larsemann Hills

    矿物成分/% Sil Mgt Hem-Ilm Ilm-Hem Spr Spl Bt1 Bt2
    SiO2 35.81 0.02 0.02 0.02 10.84 0.03 37.91 38.27
    TiO2 0.01 0.03 45.63 18.48 0.03 0.01 4.36 4.40
    Al2O3 63.11 0.10 0.00 0.02 64.41 62.61 14.75 14.94
    Cr2O3 0.04 0.28 0.03 0.15 0.11 0.31 0.05 0.04
    MgO 0.12 0.08 0.87 0.26 14.30 12.07 17.57 17.94
    CaO 0 0 0 0 0 0 0 0
    MnO 0 0 0.02 0 0.01 0 0.01 0
    FeO 0.49 92.63 53.05 75.18 10.19 25.71 10.37 9.80
    ZnO 0.005 0 0 0.027 0.068 0 0.017
    Na2O 0 0.04 0 0 0 0.01 0.12 0.11
    K2O 0 0 0 0 0 0 10.57 10.45
    Total 100.54 93.18 99.62 94.09 99.92 100.83 95.70 95.96
    O 5 4 3 3 20 4 11 11
    Si 0.9741 0.0009 0.0005 0.0006 1.3092 0.0008 2.7754 2.7814
    Ti 0.0002 0.0012 0.9001 0.4567 0.0029 0.0002 0.2402 0.2406
    Al 2.0238 0.0060 0.0008 9.1689 1.9590 1.2729 1.2802
    Cr 0.0043 0.0111 0.0004 0.0039 0.0102 0.0064 0.0031 0.0022
    Fe3+ 0.0100
    Mg 0.0049 0.0061 0.0006 0.0128 2.5749 0.4777 1.9179 1.9441
    Ca 0
    Mn 0.0005 0.0010 0.0004
    Fe2+ 3.9618 1.1635 2.0655 1.0291 0.5709 0.6353 0.5958
    Zn 0.0002 0.0022 0.0013 0.0009
    Na 0.0040 0 0.0005 0.0172 0.0157
    K 0.9860 0.9671
    注:电子探针WDS(波谱仪)分析在中国地质科学院地质研究所电子探针室完成,仪器型号JXA-8230,电压15KV,电流20nA,束斑直径5 μm,标样为天然或合成的矿物和氧化物,主要氧化物的分析误差约为1%。其中Hem-Ilm、Ilm-Hem为铁、钛氧化物混溶体,前者以赤铁矿(Hem)为主,后者以钛铁矿(Ilm)为主。矿物缩写:Sil-矽线石;Mgt-磁铁矿;Hem-赤铁矿;Ilm-钛铁矿;Spl-尖晶石;Bt-黑云母(Bt1和Bt2分别为早期和晚期黑云母);Spr-假蓝宝石
    下载: 导出CSV
  • ARSON C J, FANNING C M, WILSON C J L, 1996. Timing of the progress granite, Larsemann hills: additional evidence for early Palaeozoicorogenesis within the east Antarctic shield and implications for Gondwanaassembly[J]. Australian Journal of Earth Sciences, 43(5): 539-553. doi: 10.1080/08120099608728275
    DIRKS PHGM, CARSON C J, WILSON C J L, 1993. The deformational history of the Larsemann Hills, Prydz Bay: the importance of the Pan-African (500 Ma) in East Antarctica[J]. Antarctic Science, 5(2): 179-192. doi: 10.1017/S0954102093000240
    GREW E S, CARSON C J, CHRISTY A G, et al., 2013. Boron- and phosphate-rich rocks in the Larsemann Hills, Prydz Bay, East Antarctica: tectonic implications[J]. Geological Society, London, Special Publications, 383(1): 73-94. doi: 10.1144/SP383.8
    HARLEY S L, 2008. Refining the P-T records of UHT crustal metamorphism[J]. Journal of Metamorphic Geology, 26(2): 125-154. doi: 10.1111/j.1525-1314.2008.00765.x
    LI M, LIU X C, ZHAO Y, 2010. A review of research on late Neoproterozoic-early Paleozoic (Pan-African) granitoids from East Antarctica[J]. Chinese Journal of Polar Research, 22(4): 348-374. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-JDYZ201004004.htm
    LIU X C, ZHAO Y, HU J M, 2013. The c. 1000~900 Ma and c. 550~500 Ma tectonothermal events in the Prince Charles Mountains-Prydz Bay region, East Antarctica, and their relations to supercontinent evolution[M]//HARLEY S L, FITZSIMONS I C W, ZHAO Y. Antarctica and supercontinent evolution. Geological Society, London, Special Publications, 383(1): 95-112.
    MARSHAK S, ALKMIM F, JORDT-EVANGELISTA H, 1992. Proterozoic crustal extension and the generation of dome-and-keel structure in an Archaean granite-greenstone terrane[J]. Nature, 357(6378): 491-493. doi: 10.1038/357491a0
    PIAZOLO S, DACZKO N R, SILVA D, et al., 2020. Melt-present shear zones enable intracontinental orogenesis[J]. Geology, 48(7): 643-648. doi: 10.1130/G47126.1
    REN L D, ZHAO Y, LIU X H, et al., 1992. Re-examination of the metamorphic evolution of the Larsemann Hills, East Antarctica[M]//YOSHIDA Y, KAMINUMA K, SHIRAISHI K. Recent progress in Antarctic earth science. Tokyo: Terra Scientific Publishing: 145-153.
    REN L D, 2005. On back reaction[J]. Earth Science Frontiers, 12(4): 630-636. (in Chinese with English abstract) http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRVDAQ000072000002023507000001&idtype=cvips&gifs=Yes
    REN L D, YANG C H, WANG Y B, et al., 2009. Formation of sillimanite in the high-grade quartzofeldspathic gneisses and its relations with deformation-metamorphism-anatexis: a case study in the Larsemann Hills, east Antarctica[J]. ActaPetrologicaSinica, 25(8): 1937-1946. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200908020.htm
    REN L D, ZONG S, WANG Y B, et al., 2021. Formation process and petrological implication of the borosilicate assemblage grandidierite, prismatine and tourmaline in the high-grade quartzofeldspathic gneisses in the Larsemann Hills, East Antarctica[J]. ActaPetrologicaSinica, 37(2): 575-588. (in Chinese with English abstract)
    RIESCO M, STÜWE K, RECHE J, et al., 2004. Silica depleted melting of pelites. Petrogenetic grid and application to the Susqueda Aureole, Spain[J]. Journal of Metamorphic Geology, 22(5): 475-494. doi: 10.1111/j.1525-1314.2004.00527.x
    RODAROBLES E R, PEREZ A P, ROLDAN F V, et al., 1999. The granitic pegmatites of the Fregeneda area (Salamanca, Spain): Characteristics and petrogenesis[J]. Mineralogical Magazine, 63(4): 535-558. doi: 10.1180/002646199548709
    SONG H F, XU Z Y, LIU Z H, 2005. Geochemical characteristics and origin of garnet migmatitic granites in Daqingshan area, Inner Mongolia[J]. Acta Petrologicaet Mineralogica, 24(5): 489-495. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200505022.htm
    STÜWE K, BRAUN H M, PEER H, 1989. Geology and structure of the Larsemann Hills area, Prydz Bay, East Antarctica[J]. Australian Journal of Earth Sciences, 36(2): 219-241. doi: 10.1080/08120098908729483
    THOMPSON AB, 1983. Fluid-absent metamorphism[J]. Journal of the Geological Society, 140(4): 533-547. doi: 10.1144/gsjgs.140.4.0533
    TONG L X, LIU X H, XU P, et al., 1996. Occurrence of sapphirine-bearing hyperthine-quartzite in the Larsemann Hills, east Antarctica and its geological implication[J]. Chinese Science Bulletin, 41(13): 1205-1208. (in Chinese) doi: 10.1360/csb1996-41-13-1205
    TONG L X, ZHANG Z Y, LIU X H, et al., 1997. Mineralogical characteristics of cordierites in Krn-Hy-Crdgranulites from the Larsemann Hills, East Antarctica[J]. ActaPetrologicaSinica, 13(3): 395-405. (in Chinese with English abstract) http://www.oalib.com/paper/1473025
    TONG L X, LIU X H, WANG Y B, et al., 2012. Metamorphism evolution of peliticgranulites from the Larsemann Hills, East Antarctica[J]. ActaGeologicaSinica, 86(8): 1273-1290. (in Chinese with English abstract) http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201208011&dbcode=CJFD&year=2012&dflag=pdfdown
    TONG L X, LIU X H, WANG Y B, et al., 2014. Metamorphic P-T paths of metapeliticgranulites from the Larsemann Hills, East Antarctica[J]. Lithos, 192-195: 102-115. doi: 10.1016/j.lithos.2014.01.013
    VERNON R H, COLLINS W J, 1988. Igneous microstructures in migmatites[J]. Geology, 16(12): 1126-1129. doi: 10.1130/0091-7613(1988)016<1126:IMIM>2.3.CO;2
    VIELZEUF D, HOLLOWAY J R, 1988. Experimental determination of the fluid-absent melting relations in the peliticsystem[J]. Contributions to Mineralogy and Petrology, 98(3): 257-276. doi: 10.1007/BF00375178
    WANG Y B, LIU D Y, CHUNG S L, et al., 2008. SHRIMP zircon age constraints from the Larsemann Hills region, Prydz Bay, for a late Mesoproterozoic to early Neoproterozoic tectono-thermal event in East Antarctica[J]. American Journal of Science, 308(4): 573-617. doi: 10.2475/04.2008.07
    WEI C J, ZHANG Y Y, DONG J, 2021. Some advances and research approaches on granulite[J]. ActaPetrologicaSinica, 37(1): 52-64. (in Chinese with English abstract)
    WU X W, XU Z Y, LIU Z H, et al., 2013. Geology and petrography of the garnet granite in Daqingshan area, Inner Mongolia[J]. Geology and Resources, 22(5): 347-354, 359. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJSD201305001.htm
    ZHAO Y, SONG B, WANG Y B, et al., 1992. Geochronology of the late granite in the Larsemann Hills, East Antarctica[M]//YOSHIDA Y, KAMINUMA K, SHIRAISHI K. Recent progress in Antarctic earth science. Tokyo: Terra Scientific Publishing: 153-169.
    李淼, 刘晓春, 赵越, 2010. 东南极新元古代晚期-早古生代(泛非期)花岗岩类研究综述[J]. 极地研究, 22(4): 348-374. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ201004004.htm
    任留东, 2005. 论逆(熔)反应[J]. 地学前缘, 12(4): 630-636. doi: 10.3321/j.issn:1005-2321.2005.04.036
    任留东, 杨崇辉, 王彦斌, 等, 2009. 长英质高级片麻岩中夕线石的形成与变形-变质-深熔作用的关系: 以南极拉斯曼丘陵区为例[J]. 岩石学报, 25(8): 1937-1946. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200908020.htm
    任留东, 宗师, 王彦斌, 等, 2021. 东南极拉斯曼丘陵硼硅酸盐矿物组合硅硼镁铝矿-硼柱晶石-电气石的形成过程及其岩石学意义[J]. 岩石学报, 37(2): 575-588. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202102015.htm
    宋海峰, 徐仲元, 刘正宏, 2005. 内蒙古大青山地区石榴混合花岗质岩石地球化学特征及成因[J]. 岩石矿物学杂志, 24(5): 489-495. doi: 10.3969/j.issn.1000-6524.2005.05.022
    仝来喜, 刘小汉, 徐平, 等, 1996. 东南极拉斯曼丘陵含假蓝宝石紫苏辉石石英岩的发现及其地质意义[J]. 科学通报, 41(13): 1205-1208. doi: 10.3321/j.issn:0023-074X.1996.13.014
    仝来喜, 张振禹, 刘小汉, 等, 1997. 东南极拉斯曼丘陵柱晶紫苏堇青麻粒岩中堇青石的矿物学特征[J]. 岩石学报, 13(4): 395-405. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB703.009.htm
    仝来喜, 刘小汉, 王彦斌, 等, 2012. 东南极拉斯曼丘陵泥质麻粒岩的变质作用演化[J]. 地质学报, 86(8): 1273-1290. doi: 10.3969/j.issn.0001-5717.2012.08.010
    魏春景, 张媛媛, 董杰, 2021. 麻粒岩的研究进展与方法[J]. 岩石学报, 37(1): 52-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202101007.htm
    吴新伟, 徐仲元, 刘正宏, 等, 2013. 内蒙古大青山地区石榴花岗岩的地质特征和岩相学特征[J]. 地质与资源, 22(5): 347-354, 359. doi: 10.3969/j.issn.1671-1947.2013.05.001
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  185
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-30
  • 修回日期:  2021-08-25
  • 预出版日期:  2021-12-31
  • 刊出日期:  2021-10-28

目录

    /

    返回文章
    返回