Sequence and tectonic deformation process of metamorphic complex in the Larsemann Hills, East Antarctica
-
摘要: 东南极拉斯曼丘陵地区位于兰伯特裂谷东缘普里兹湾东岸,该地区主要出露一套麻粒岩相变质岩,前期对原岩时代、变质过程等进行了详细研究,但是对于变质杂岩的层序和变形过程研究相对薄弱。文章通过大比例尺地质填图,发现拉斯曼丘陵地区变质杂岩总体成层有序,在此基础上建立拉斯曼岩群,并将其划分成6个岩组,原岩形成时代为中元古代。拉斯曼岩群经历了格林维尔期和泛非期变质作用的叠加,变质程度均达到高角闪岩相-麻粒岩相。拉斯曼丘陵地区主体构造线方向为北东东—南西西方向,总体上构成往北东东方向翘起的复式向斜构造,几个岩组的分布也显示由东向西逐渐变新。东部米洛半岛一带明显叠加了北北西—南南东向的构造变形。研究表明,拉斯曼岩群经历了6次重要的构造变形,包括新元古代格林维尔期(D1)、新元古代—早古生代泛非期变质变形作用(D2,D3,D4,D5)以及中新生代伸展作用(D6)。目前岩石中保存的主变形面理是格林维尔期和泛非期两次构造热事件的复合型面理,主要是泛非事件形成,格林维尔期变形面理呈残留状。综合拉斯曼岩群变质年龄及早古生代进步花岗岩体形成时代,认为D2~D5变形时代为550~500 Ma左右。因此,拉斯曼丘陵地区变质变形特征显示,中元古代拉斯曼岩群经历了格林维尔期和泛非期两次重要的造山作用,以及冈瓦纳大陆的裂解。Abstract: The Larsemann Hills are located on the eastern coast of the Prydz Bay in East Antarctica. Based on large-scale geological mapping, metamorphic complex in the Larsemann Hills was found to be layered orderly in general, and therefore, the Larsemann Group is established. The Larsemann Group is subdivided into 6 rock formations, and the protolith formation age is the Mesoproterozoic. The group has experienced the superposition of the Grenvillian and Pan-African metamorphism, and the metamorphic grade reached upper amphibolite facies to granulite facies. The main structural line in the Larsemann Hills is in the NEE-SWW strain, which generally constitutes a synclinorum structure verging to NEE. The distribution of several rock formations also shows the gradually younging from east to west. The NNW-SSE deformation of the structural line is obviously superimposed on the eastern Mirror Peninsula. The study shows that the Larsemann Group has suffered 6 periods of deformation, including the early Neoproterozoic Grenvillian period (D1), the late Neoproterozoic to early Paleozoic Pan-African periods (D2, D3, D4 and D5) and the Meso-Cenozoic extension (D6). The foliations presented in the rocks are actually the composite foliations of both the Grenvillian and Pan-African events, and the Pan-African event is demonstrated stronger than the Grenvillian event, which is rarely preserved in the gneisses. Constrained with both the metamorphic age of the Larsemann Group and the intrusion time of the Progress granite, it is believed that the D2~D5 deformations occurred during the span of 550~500 Ma. Thus, both the metamorphism and deformation features of rocks from the Larsemann Hills show that the Mesoproterozoic Larsemann Group have witnessed two orogenies of Grenvillian and Pan-African periods, respectively, and the breakup of the Gondwana.
-
Key words:
- East Antarctica /
- Larsemann Hills /
- Larsemann Group /
- tectonic deformation /
- tectonic framework
-
图 3 拉斯曼岩群各岩组代表性岩石
a—深灰色薄层状含辉石长英质片麻岩;b—混合岩化石榴黑云长英质片麻岩;c—含磁铁矿泥质长英质片麻岩;d—混合岩化长英质片麻岩;e—基性麻粒岩;f—细粒块状片麻岩
Figure 3. Typical rocks of the Larsemann Group in the Larsemann Hills
(a) Dark gray thin bedded pyroxene-bearing quartzofeldspathic gneiss; (b) Migmatized garnet-biotite quartzofeldspathic gneiss; (c) Magnetite-bearing pelitic-quartzofeldspathic gneiss; (d) Migmatized quartzofeldspathic gneiss; (e) Mafic granulite; (f) Fine-grained massive gneiss
图 6 高温变质泥质片麻岩中发育的不同期次变形面理(S1、S1-2及S3)
a—S3、S1-2及残留早期面理S1;b—S3平行于S1和S2叠加形成的复合变形面理
Figure 6. Deformation foliations (S1, S1-2, and S3) developed in the high-temperature metamorphic pelitic gneiss
(a) S3, S1-2 and residual early foliation S1; (b) S3 is parallel to the composite foliation formed by the superimposition of S1 and S2
图 8 中山站附近低角度韧性剪切带内发育的A型褶皱群
a、b—平行于低角度韧性剪切带的A型褶皱轴,深色岩石为基性麻粒岩,浅色岩石为泥质长英质片麻岩;c—变形岩石中发育的拉伸线理平行于褶皱轴;d—剪切带中面理与线理投影
Figure 8. A-type fold group developed in a low angle ductile shear zone near the Zhongshan Station
(a and b) The A-type fold parallel to the extensional lineation in the low angle ductile shear zone (The dark rock is mafic granulite, and the light rock is pelitic-quartzofeldspathic gneiss); (c) The extensional lineation developed in the deformed rock is parallel to the fold axis; (d) Polar stereographic projection of foliation and lineation in the shear zone
图 9 剪切变形带中泥质长英质片麻岩矿物定向组构
Qtz—石英;Pl—斜长石;Bt—黑云母;Sil—矽线石
a—富矽线石黑云斜长片麻岩中片柱状矿物强烈定向;b—韧性变形的长英质浅色脉体,石英与斜长石塑形变形呈长条状Figure 9. Mineral oriented fabric of pelitic-quartzofeldspathic gneiss in ductile shear zone
(a) Schistose and columnar minerals are strongly oriented in biotite plagioclase gneiss rich in sillimanite; (b) Ductile deformed granitic leucosome veins, in which quartz and plagioclase are plastically deformed into strips
Qtz—quartz; Pl—plagioclase; Bt—biotite; Sil—sillimanite -
AN M J, WIENS D A, ZHAO Y, et al., 2015. S-velocity model and inferred Moho topography beneath the Antarctic Plate from Rayleigh waves[J]. Journal of Geophysical Research: Solid Earth, 120(1): 359-383. doi: 10.1002/2014JB011332 BLACK L P, HARLEY S L, SUN S S, et al., 1987. The Rayner complex of East Antarctica: complex isotopic systematics within a Proterozoic mobile belt[J]. Journal of Metamorphic Geology, 5(1): 1-26. doi: 10.1111/j.1525-1314.1987.tb00366.x BOGER S D, WILSON C J L, FANNING C M, 2001. Early Paleozoic tectonism within the East Antarctic craton: the final suture between East and West Gondwana?[J]. Geology, 29(5): 463-466. doi: 10.1130/0091-7613(2001)029<0463:EPTWTE>2.0.CO;2 CARSON C J, DIRKS P G H M, HAND M, et al., 1995. Compressional and extensional tectonics in low-medium pressure granulites from the Larsemann Hills, East Antarctica[J]. Geological Magazine, 132(2): 151-170. doi: 10.1017/S0016756800011729 CARSON C J, FANNING C M, WILSON C J L, 1996. Timing of the progress granite, Larsemann Hills: additional evidence for early Palaeozoic orogenesis within the East Antarctic shield and implications for Gondwana assembly[J]. Australian Journal of Earth Sciences, 43(5): 539-553. doi: 10.1080/08120099608728275 CHEN X H, MA Z G, ,JIANG R B, et al., 2007. Apatite f ission track thermochronology of Cenozoic exhumation in Larsemann Hills, East Antarctica. Ea rt h Science Frontiers, 14(4): 175-188 (in Chinese with Englishi Abstract). DIRKS P H G M, HAND M, 1995. Clarifying temperature-pressure paths via structures in granulite from the Bolingen Islands, Antarctica[J]. Australian Journal of Earth Sciences, 42(2): 157-172. doi: 10.1080/08120099508728189 FITZSIMONS I C W, HARLEY S L, 1991. Geological relationships in high-grade gneiss of the Brattstrand Bluffs coastline, Prydz Bay, East Antarctica[J]. Australian Journal of Earth Sciences, 38(5): 497-519. doi: 10.1080/08120099108727987 FITZSIMONS I C W, 1997. The Brattstrand paragneiss and the Søstrene orthogneiss: a review of Pan-African metamorphism and Grenvillian relics in southern Prydz Bay[M]//RICCI C A. The antarctic region: geological evolution and processes: proceedings of the 7th international symposium on antarctic earth sciences. Siena, Italy: Terra Antarctica Publication: 121-130. FITZSIMONS I C W, 2000. Grenville-age basement provinces in East Antarctica: evidence for three separate collisional orogens[J]. Geology, 28(10): 879-882. doi: 10.1130/0091-7613(2000)28<879:GBPIEA>2.0.CO;2 GREW E S, CARSON C J, CHRISTY A G, et al., 2012. New constraints from U-Pb, Lu-Hf and Sm-Nd isotopic data on the timing of sedimentation and felsic magmatism in the Larsemann Hills, Prydz Bay, East Antarctica[J]. Precambrian Research, 206-207: 87-108. doi: 10.1016/j.precamres.2012.02.016 HENSEN B J, ZHOU B, 1995. A Pan-African granulite facies metamorphic episode in Prydz Bay, Antarctica: evidence from Sm-Nd garnet dating[J]. Australian Journal of Earth Sciences, 42(3): 249-258. doi: 10.1080/08120099508728199 HENSEN B J, ZHOU B, THOST D E, 1997. Recognition of multiple high grade metamorphic events with garnet Sm-Nd chronology in the northern Prince Charles Mountains, Antarctica[M]//RICCI C A. The antarctic region: geological evolution and processes. Siena: Terra Antarctica Publication: 97-104. HU J M, LIU X C, ZHAO Y, et al., 2008. Advances in the study of the orogeny and structural deformation of Prydz Tectonic Belt in East Antarctica. Acta Geoscientica Sinica 29, 343-354 (in Chinese with Englishi Abstract). http://www.oalib.com/paper/1559361 HU J M, WANG W, LIU X C, et al., 2021. Geological map of the Larsemann Hills in East Antarctica (1: 25000). Beijing: Science Press. (in Chinese) JACOBS J, FANNING C M, HENJES-KUNST F, et al., 1998. Continuation of the mozambique belt into East antarctica: grenville-age metamorphism and polyphase pan-african high-grade events in central dronning maud land[J]. Journal of Geology, 106(4): 385-406. doi: 10.1086/516031 KELSEY D E, WADE B P, COLLINS A S, et al., 2008. Discovery of a Neoproterozoic basin in the Prydz belt in East Antarctica and its implications for Gondwana assembly and ultrahigh temperature metamorphism[J]. Precambrian Research, 161(3-4): 355-388. doi: 10.1016/j.precamres.2007.09.003 LI M, LIU X C, ZHAO Y, et al., 2007. Zircon U-Pb ages and geochemistry of granitoids from Prydz Bay, East Antarctica, and their tectonic significance. Acta Petrologica Sinica, 23(5): 1055-1066 (in Chinese with Englishi Abstract). http://www.oalib.com/paper/1472267 LIU X C, JAHN B M, ZHAO Y, et al., 2006. Late Pan-African granitoids from the Grove Mountains, East Antarctica: age, origin and tectonic implications[J]. Precambrian Research, 145(1-2): 131-154. doi: 10.1016/j.precamres.2005.11.017 LIU X C, JAHN B M, ZHAO Y, et al., 2007a. Geochemistry and geochronology of high-grade rocks from the Grove Mountains, East Antarctica: evidence for an Early Neoproterozoic basement metamorphosed during a single Late Neoproterozoic/Cambrian tectonic cycle[J]. Precambrian Research, 158(1-2): 93-118. doi: 10.1016/j.precamres.2007.04.005 LIU X C, ZHAO Y, ZHAO G C, et al., 2007b. Petrology and geochronology of granulites from the McKaskle Hills, Eastern Amery Ice Shelf, Antarctica, and implications for the evolution of the Prydz Belt[J]. Journal of Petrology, 48(8): 1443-1470. doi: 10.1093/petrology/egm024 LIU X C, ZHAO Y, SONG B, et al., 2009. SHRIMP U-Pb Zircon geochronology of high-grade rocks and charnockites from the Eastern Amery Ice Shelf and southwestern Prydz Bay, East Antarctica: constraints on Late Mesoproterozoic to Cambrian tectonothermal events related to supercontinent assembly[J]. Gondwana Research, 16(2): 342-361. doi: 10.1016/j.gr.2009.02.003 LIU X C, ZHAO Y, HU J M, 2013. The c, 1000~900 Ma and c. 550~500 Ma tectonothermal events in the Prince Charles Mountains-Prydz Bay region, East Antarctica, and their relations to supercontinent evolution[M]//HARLEY S L, FITZSIMON I C W, ZHAO Y. Antarctica and supercontinent evolution. Geological Society, London, Special Publication, 383(1): 95-112. LIU X.H., ZHAO Y, LIU X C, et al., 2003. Geology of the Grove Mountains in East Antarctica-new evidence for the final suture of Gondwana Land. Sci. China (Ser. D), 46, 305-319. http://d.wanfangdata.com.cn/Periodical_zgkx-ed200304001.aspx MEERT J G, VAN DER VOO R, 1997. The assembly of Gondwana 800~550 Ma[J]. Journal of Geodynamics, 23(3-4): 223-235. doi: 10.1016/S0264-3707(96)00046-4 SHERATON J W, BLACK L P, MCCULLOCH M T, 1984. Regional geochemical and isotopic characteristics of high-grade metamorphics of the Prydz Bay area: the extent of proterozoic reworking of Qrchaean continental crust in East Antarctica[J]. Precambrian Research, 26(2): 169-198. doi: 10.1016/0301-9268(84)90043-3 SHIRAISHI K, ELLIS D J, HIROI Y, et al., 1994. Cambrian orogenic belt in East Antarctica and Sri Lanka: implications for Gondwana assembly[J]. Journal of Geology, 102(1): 47-65. doi: 10.1086/629647 STÜWE K, POWELL R, 1989. Low-pressure granulite facies metamorphism in the Larsemann Hills area, East Antarctica; petrology and tectonic implications for the evolution of the Prydz Bay area[J]. Journal of Metamorphic Geology, 7(4): 465-483. doi: 10.1111/j.1525-1314.1989.tb00609.x TINGEY R J, 1981. Geological investigations in Antarctica 1968-1969: the Prydz Bay-Amery Ice Shelf-Prince Charles Mountains area[R]. Canberra: Commonwealth of Australia (Geoscience Australia). TONG L X, LIU X H, ZHANG L S, et al., 1998. The 40Ar-39Ar ages of hornblendes in Grt-Pl-bearing amphibolite from the Larsemann Hils, East Antarctica and their geological implications[J]. Chinese Journal of Polar Science, 9(2): 79-91. http://qikan.cqvip.com/Qikan/Article/Detail?id=4000971879 TONG L X, WILSON C J L, 2006. Tectonothermal evolution of the ultrahigh temperature metapelites in the Rauer Group, East Antarctica[J]. Precambrian Research, 149(1-2): 1-20. doi: 10.1016/j.precamres.2006.04.004 TONG L X, LIU X H, WANG Y B, et al., 2014. Metamorphic P-T paths of metapelitic granulites from the Larsemann Hills, East Antarctica[J]. Lithos, 192-195: 102-115. doi: 10.1016/j.lithos.2014.01.013 WANG Y B, LIU D Y, CHUNG S L, et al., 2008. SHRIMP zircon age constraints from the Larsemann Hills region, Prydz Bay, for a late Mesoproterozoic to early Neoproterozoic tectono-thermal event in East Antarctica[J]. American Journal of Science, 308(4): 573-617. doi: 10.2475/04.2008.07 WILSON T J, GRUNOW A M, HANSON R E, 1997. Gondwana Assembly: the view from Southern Africa and East Gondwana[J]. Journal of Geodynamics, 23(3-4): 263-286. doi: 10.1016/S0264-3707(96)00048-8 YOSHIDA M, 1995. Cambrian orogenic belt in East Antarctica and Sri Lanka: implications for Gondwana assembly: a discussion[J]. Journal of Geology, 103(4): 467-468. doi: 10.1086/629766 YOSHIDA M, JACOBS J, SANTOSH M, et al., 2003. Role of pan-african events in the circum-East antarctic orogen of East gondwana: a critical overview[M]//YOSHIDA M, WINDLEY B F, DASGUPTA S. Proterozoic East gondwana: supercontinent assembly and breakup. Geological Society, London, Special Publications, 206(1): 57-75. ZHANG L S, TONG L X, LIU X H, et al., 1996. Conventional U-Pb age of the high-grade metamorphic rocks in the Larsemann Hills, East Antarctica[M]//PANG Z H. Advances in solid earth science. Beijing: Science Press: 27-35. ZHAO Y, SONG B, WANG Y B, et al., 1992. Geochronology of the late granite in the Larsemann Hills, East Antarctica[M]//YOSHIDA Y, KAMINUMA K, SHIRASHI K. Recent progress in antarctic earth science. Tokyo: Terra Scientific Publishing: 155-161. ZHAO Y, SONG B, ZHANG Z Q, et al., 1993. Early Paleozoic (Pan-Africa) thermal event of the Larsemann Hills and its neighbours Prydz Bay, East Antarctica[J]. Sciences in China (Series B), 38(1): 74-84. http://chem.scichina.com:8081/sciBe/CN/article/downloadArticleFile.do?attachType=PDF&id=398318 ZHAO Y, LIU X H, SONG B, et al., 1995a. Constraints on the stratigraphic age of metasedimentary rocks from the Larsemann Hills, East Antarctica: possible implications for Neoproterozoic tectonics[J]. Precambrian Research, 75(3-4): 175-188. doi: 10.1016/0301-9268(95)00038-0 ZHAO Y, SONG B, ZHANG Z Q, et al., 1995b. Early paleozoic (Pan African) thermal event of the Larsemann Hills and its neighbours, Prydz Bay, East Antarctica[J]. Science in China. Series B, Chemistry, Life Sciences & Earth Sciences, 38(1): 74-84. ZHAO Y, LIU X H, LIU X C, et al., 2003. Pan-African events in Prydz Bay, East Antarctica, and their implications for East Gondwana tectonics[M]//YOSHIDA M, WINDLEY B F, DASGUPTA S. Proterozoic East gondwana: supercontinent assembly and breakup. Geological Society, London, Special Publications, 206(1): 231-245. 陈宣华, 马宗晋, 蒋荣宝, 等, 2007. 拉斯曼丘陵新生代剥露作用的裂变径迹证据[J]. 地学前缘, 14(4): 175-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200704022.htm 胡健民, 刘晓春, 赵越, 等, 2008. 南极普里兹造山带性质及构造变形过程[J]. 地球学报, 29(3): 343-354. doi: 10.3321/j.issn:1006-3021.2008.03.008 胡健民, 王伟, 刘晓春, 等, 2021. 东南极拉斯曼丘陵地区地质图(1: 25000)[M]. 北京: 科学出版社. 李淼, 刘晓春, 赵越, 2007. 东南极普里兹湾地区花岗岩类的锆石U-Pb年龄、地球化学特征及其构造意义[J]. 岩石学报, 23(5): 1055-1066. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200705019.htm 赵越, 宋彪, 张宗清, 等, 1993. 东南极拉斯曼丘陵及其邻区的泛非热事件[J]. 中国科学(B), 23(9): 1000-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199309016.htm