Seismogenic fault and it's rupture characteristics of the 21 May, 2021 Yangbi MS 6.4 earthquake: Analysis results from the relocation of the earthquake sequence
-
摘要: 据中国地震台网测定,2021年5月21日21时48分在云南省大理州漾濞县发生MS6.4地震,及时查明此次地震的发震构造及震源破裂特征,可为认识该区孕震条件和判别未来强震危险性提供关键依据。采用双差定位方法对漾濞地震序列进行重新定位,得到3863次地震事件的精确震源位置。结果显示:漾濞地震序列整体呈北西—南东向分布,长约25 km;整体走向135°;MS6.4主震震中位置为25.688°N,99.877°E;震源深度约9.6 km。综合地震序列深度剖面和震源机制解结果可知,发震断层应为北西走向、整体向西南方向陡倾的右旋走滑断层,倾角具有自北西向南东逐渐变缓的趋势。进一步分析地震序列的时空演化过程发现,该地震具有典型的"前震-主震-余震型"地震序列活动特点,其破裂过程主要包括3个阶段。破裂成核阶段:首先在发震断层10~12 km深度处相对脆弱部位产生小尺度破裂,之后失稳加速破裂,发生MS5.6地震;主震破裂阶段:在构造应力场持续加载和周围小尺度破裂的共同影响下,促使浅部较高强度断层闭锁区破裂,形成MS6.4主震;尾端拉张破裂阶段:主震破裂向东南扩展过程中,在东南端形成与之呈马尾状斜交的、具有正断性质的次级破裂,并产生MS5.2余震。而且此次地震还在源区北东侧触发了北北东向的左旋走滑破裂。综合分析认为,漾濞地震是兰坪-思茅地块内部北西向草坪断裂在近南北向区域应力挤压作用下发生右旋走滑运动的结果,具有明显的新生断裂特征。近年来兰坪-思茅地块内部一系列中强地震的发生表明,青藏高原物质向东南持续挤出的过程中,遇到该地块的阻挡,正在导致地块内部早期断层贯通形成新的活动断裂。因此,川滇地块西南边界带上或相邻地块内部老断层的复活和新生断裂的产生是区域中强地震危险性分析评价中值得关注的重要课题,同时建议需重视未来该区中强地震进一步向东南和向北的迁移或扩展的可能性。
-
关键词:
- 2021年漾濞MS6.4地震 /
- 草坪断裂 /
- 新生地震断裂 /
- 震源破裂过程 /
- 地震重定位
Abstract: According to China Earthquake Network Center (CENC), the MS 6.4 Yangbi earthquake struck northwestern Yunnan Province on 21 May, 2021 at 21:48(Beijing time). Figuring out the seismogenic fault and source rupture characteristics in time can provide a key basis for understanding the dynamic conditions in this region and estimating the risk of strong earthquakes in the future. We employed the double-difference relocation algorithm to relocate the Yangbi earthquake sequence, and obtained precise locations of 3, 863 earthquakes. In general, the result revealed a narrow 25-km-long, linear southeast seismicity trend concentrated in the 2~14 km depth range, and the orientation is 135°. The MS 6.4 mainshock located at (25.688°N, 99.877°E) after relocation, and the focal depth is 9.6 km. Based on the results of precise locations and focal mechanism solutions, the seismogenic fault might be a NW dextral strike-slip fault with southwest dip, and the dip angle tends to gradually decrease from NW to SE. The Yangbi earthquake sequence belongs to the "foreshock-mainshock-aftershock" type, revealed by the temporal and spatial evolution process of the earthquake sequence, and the fracture process mainly includes three stages: fracture nucleation stage, mainshock rupture stage, and tension rupture stage. In the first stage, small-scale fractures occurred at the relatively weak part of the seismogenic fault at the depth between 10~12 km, after two-days' nucleation, the fault entered into an unstably accelerated rupture state, resulting in the MS 5.6 foreshock. Under the joint influence of continuous loading of tectonic stress and surrounding small-scale fractures, the higher strength blocking area in the shallow part of the fault ruptured, and the MS 6.4 mainshock occurred. The tension rupture mainly occurred at the southeast end of the seimogenic fault. A horsetail splay with normal fault features was formed at the southeast end of the aftershock sequence, started by the largest aftershock of MS 5.2. In addition, the mainshock triggered small-scale fractures on a NEN sinistral strike-slip fault near the source area. The comprehensive study shows that the seismogenic fault of the Yangbi earthquake is not the well-known Weixi-Qiaohou fault, but the Caoping fault in the Lanping-Simao block. The Yangbi MS 6.4 mainshock is the result of the dextral strike-slip motion of the Caoping fault, which has been revived under the NWN-SES regional principal compressive stress, and the fault has obviously new fracture characteristics. This study indicates that the continuous southeastward extrusion of material from the Tibetan Plateau is leading to the reconnection and reactivation of the old faults in the junction zone between the eastern Lanping-Simao block and the Lijiang-Dali fault system, resulting in relatively frequent moderate-to-strong earthquakes in this area. Therefore, the reactivation of old faults and the generation of new faults in the southwestern boundary zone of Sichuan-Yunnan block are worthy to pay attention on the risk estimation and evaluation of regional moderate-to-strong earthquakes. We suggest that more attention should be paid to the possibility of further southern or northern migration (or expansion) of moderate-to-strong earthquakes. -
图 1 漾濞地震周边的主要活动断裂、历史地震与台站分布
F1—实皆断裂;F2—红河断裂;F3—鲜水河-小江断裂;F4—龙门山断裂;F5—东昆仑断裂;F6—阿尔金断裂;F7—海原断裂
a—活动断裂与历史地震分布;b—研究区构造环境;c—测震台站分布图Figure 1. Distribution of active faults, historical earthquakes and seismic stations around the Yangbi earthquake. (a) Distribution of active faults and historical earthquakes. (b)Tectonic setting of the study area. (c) Station distribution around the Yangbi earthquake
F1-the Sagaing fault; F2-the Honghe fault; F3-the Xianshuihe-Xiaojiang fault; F4-the Longmenshan fault; F5-the East Kunlun fault; F6-the Altyn Tagh fault; F7-the Haiyuan fault
图 4 漾濞地震序列重定位后的震中分布图
蓝色虚线—深度剖面的位置(辅助线);AA*—平行地震序列长轴的剖面位置;BB*、CC*、DD*—不同段落上垂直于地震序列长轴的剖面位置,EE*—垂直于东南端马尾状分布的地震序列
Figure 4. Epicenter distribution of the relocated Yangbi earthquake sequence
Blue dash lines represent the depth profile locations in Fig. 5; AA* represents the profile parallel to the major axis of the Yangbi earthquake sequence; BB*, CC*, DD* are profiles located at different section perpendicular to AA*, and EE* is the profile perpendicular to earthquakes distributed like a horsetail splay
图 5 漾濞地震序列不同方向的深度剖面(剖面位置见图 4)
图中的红色虚线为推测的发震断层及产状;黑色虚线为余震密集区
a—e—不同方向深度剖面;f—基于InSAR得到的漾濞地震断层滑动分布特征(应急管理部国家自然灾害研究院http://www.ninhm.ac.cn/content/details_35_2206.html)Figure 5. Depth profiles of the Yangbi earthquake sequence in different orientations.(a-e) Different depth profiles of the Yangbi earthquake sequence. (f) Distribution characteristics of the fault slip of the Yangbi earthquake based on InSAR.
Location is shown in Fig. 4; Red dash lines represent the inferred seismogenic faults, black dash line represents the intensive area of aftershocks; Subgraphs are quoted from National Institute of Nature Hazards.
图 6 漾濞地震序列的时间发展过程
AA′、BB′表示辅助线;圆圈表示M≤5.0地震,圆圈直径与震级相关;五角星表示M≥5.0地震
a—5月18日至5月21日MS5.6地震前地震序列; b—MS5.6地震至MS6.4主震前地震序列; c—MS6.4主震至MS5.2余震前地震序列; d—MS5.2余震至5月22日23时59分地震序列; e—5月23日地震序列; f—5月23日至6月5日地震序列Figure 6. Temporal development process of the Yangbi earthquake sequence
(a) Foreshock sequence of the MS 5.6 earthquake between May 18 and May 21. (b) Earthquake sequence after the MS 5.6 earthquake and before the MS 6.4 earthquake. (c) Earthquake sequence after the MS 6.4 earthquake and before MS 5.2 aftershock. (d) Earthquake sequence after the MS 5.2 aftershock until May 22 at 23:59 (Beijing Time). (e) Aftershock sequence through May 23. (f) Aftershock sequence between May 23 and June 5.
表 1 漾濞地区一维速度模型
Table 1. Velocity model of the Yangbi focal area
地壳厚度/km VP/(km·s-1) VS/(km·s-1) 1.25 4.30 2.10 16.75 5.92 3.43 18.00 6.49 3.60 9.00 6.93 3.74 50.00 7.96 4.35 表 2 漾濞地震序列中MS≥3.0地震的震源机制解一览表
Table 2. Focal mechanism solutions of the Yangbi earthquake sequence
发震时刻 拟合深度/km 矩震级/MW 节面Ⅰ 节面Ⅱ 数据来源 走向/(°) 倾角/(°) 滑动角/(°) 走向/(°) 倾角/(°) 滑动角/(°) 5-18T18:49 5.0 3.8 50 75 0 320 90 165 earthX 5-18T20:20 6.0 3.5 30 75 0 300 90 165 earthX 5-18T20:56 6.0 3.7 50 75 0 320 90 165 earthX 5-18T21:39 5.0 4.3 30 85 20 298 70 175 earthX 5-19T03:27 3.0 3.8 50 75 20 315 71 164 earthX 5-19T20:05 4.0 4.7 50 85 20 318 70 175 earthX 5-20T01:58 4.0 3.9 50 85 -20 142 70 5 earthX 5-21T20:55 10.0 4.3 210 65 -40 320 54 31 earthX 5-21T21:21 6.0 5.2 122 70 5 30 85 -20 earthX 5-21T21:48 17.0 6.1 135 82 -165 43 75 -9 USGS1 5-21T22:31 11.5 5.1 151 72 -132 43 46 -26 USGS2 5-21T22:52 4.0 3.9 10 45 -60 151 52 63 earthX 5-21T22:59 5.0 4.0 210 55 20 108 74 143 earthX 5-21T23:08 5.0 3.8 210 65 -20 309 72 26 earthX 5-21T23:13 5.0 4.0 30 85 0 300 90 175 earthX 5-21T23:18 3.0 3.8 30 75 -20 125 71 164 earthX 5-21T23:33 9.0 3.7 50 85 -40 144 50 7 earthX 5-22T00:56 5.0 3.9 190 25 -40 317 74 70 earthX 5-22T01:36 3.0 4.0 190 65 -20 289 72 26 earthX 5-22T01:50 3.0 3.8 30 85 20 298 70 175 earthX 5-22T08:36 4.0 3.9 10 55 -40 126 58 42 earthX 5-22T09:48 3.0 4.2 30 65 -20 129 72 26 earthX 5-22T11:17 6.0 3.4 30 65 -60 156 38 43 earthX 5-22T12:40 4.0 3.6 10 65 -20 109 72 26 earthX 5-22T17:24 3.0 4.0 50 85 0 320 90 175 earthX 5-22T20:14 6.0 4.6 210 85 -40 304 50 7 earthX 5-22T22:30 6.0 3.8 210 75 -20 305 71 16 earthX 5-22T23:30 6.0 3.6 350 45 -80 156 46 80 earthX 5-23T00:17 4.0 3.6 230 45 -40 351 63 53 earthX 5-23T17:26 8.0 3.5 230 85 60 131 30 170 earthX 5-24T08:10 7.0 3.6 230 75 0 140 90 165 earthX 5-24T08:43 8.0 3.6 250 75 20 155 71 164 earthX 5-26T06:37 6.0 3.8 30 85 -20 122 70 5 earthX 5-26T14:20 3.0 3.6 10 75 20 275 71 164 earthX 5-27T19:52 3.0 4.3 190 85 0 100 90 175 earthX 5-27T23:03 6.0 3.9 30 45 -40 151 63 53 earthX 5-28T00:03 3.0 3.5 30 85 20 298 70 175 earthX 5-28T20:43 8.0 3.4 172 60 -89 350 30 -92 earthX 注:USGS1数据来源:https://earthquake.usgs.gov/earthquakes/eventpage/us7000-e532/moment-tensor;USGS2数据来源:https://earthquake.usgs.gov/earthquakes/eventpage/us7000e53a/moment-tensor -
AN X W, CHANG Z F, CHEN Y J, et al., 2018. Quaternary active faults in Yunnan: Distribution map of Quaternary active faults in Yunnan[M]. Beijing, Seismological Press, 11-19(in Chinese). Bureau of Geology and Mineral Resources of Yunnan Province, 1990. Regional Geology of Yunnan Province[M]. Beijing: Geological Publishing House: 728. (in Chinese) CHANG Z F ZHANG Y F, ZHOU Q Y, et al., 2014. Intensity distribution characteristics and active tectonic background in area of the 2013 Eryuan MS5.5 earthquake[J]. Earthquake Research in China, 30(4): 560-570. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGZD201404009.htm CHANG Z F, CHANG H, ZANG Y, et al., 2016a. Recent active features of Weixi-Qiaohou fault and its relation with Honghe fault[J]. Journal of Geomechanics, 22(3);517-530. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201603009.htm CHANG Z F, CHANG H, LI J L, et al., 2016b. The characteristic of active normal faulting of the southern segment of Weixi-Qiaohou fault[J]. Journal of Seismological Research, 39(4): 579-586. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ201604007.htm CHANG Z F, MAO Z B, MA B Q, et al., 2019. The Amojiang fault zone and Mojiang M5.9 earthquake in 2018 in southern Yunnan province[J]. Geological Bulletin of China, 38(6): 967-976. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201906008.htm CUI X F, XIE F R, ZHANG H Y, 2006. Recent tectonic stress field zoning in Sichuan-Yunnan region and its dynamic interest[J]. Acta Seismologica Sinica, 28(5): 451-461. (in Chinese with English abstract) DING G Y, LI Y S, 1979. Seismicity and the recent fracturing pattern of the earth crust in China[J]. Acta Geologica Sinica(1): 22-34. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE197901001.htm FANG L H, WU J P, WANG W L, et al., 2015a. Aftershock observation and analysis of the 2013 MS 7.0 Lushan earthquake[J]. Seismological Research Letters, 86(4): 1135-1142. doi: 10.1785/0220140186 FANG L H, WU J P, LIU J, et al., 2015b. Preliminary report on the 22 November 2014 MW6.1/MS6.3 Kangding earthquake, Western Sichuan, China[J]. Seismological Research Letters, 86(6): 1603-1613. doi: 10.1785/0220150006 FANG L H, WU J P, SU J R, et al., 2018. Relocation of mainshock and aftershock sequence of the MS7.0 Sichuan Jiuzhaigou earthquake[J]. Chinese Science Bulletin, 63(7): 649-662. (in Chinese with English abstract) doi: 10.1360/N972017-01184 GUO S M, XIANG H F, XU X W, et al., 2000. Characteristics and formation mechanism of the Longling-Lancang newly emerging fault zone in Quaternary in the southwest Yunnan[J]. Seismology and Geology, 22(3): 277-284, 237. (in Chinese with English abstract) HAN Z J, HE Y L, AN Y F, et al., 2009. A new seismotectonic belt: Features of the latest structural deformation style in the Mabian Seismotectonic Zone[J]. Acta Geologica Sinica, 83(2): 218-229. (in Chinese with English abstract) http://www.researchgate.net/publication/289793790_A_new_seismotectonic_belt_Features_of_the_latest_structural_deformation_style_in_the_Mabian_seismotectonic_zone HAUKSSON E, SHEARER P, 2005. Southern California hypocenter relocation with waveform cross-correlation, Part 1: results using the double-difference method[J]. Bulletin of the Seismological Society of America, 95(3): 896-903. doi: 10.1785/0120040167 HAUKSSON E, YANG W Z, SHEARER P M, 2012. Waveform relocated earthquake catalog for southern California (1981 to June 2011)[J]. Bulletin of the Seismological Society America, 102(5): 2239-2244. doi: 10.1785/0120120010 HUANG X L, WU Z H, JIANG Y, et al., 2015. Seismic intensity distribution and seismogenic structure analysis of the March 3, 2013 Eryuan MS5.5 earthquake in Dali, Yunnan province[J]. Geological Bulletin of China, 34(1): 135-145. (in Chinese with English abstract) http://www.researchgate.net/publication/282687959_Seismic_intensity_distribution_and_seismogenic_structure_analysis_of_the_March_3_2013_Eryuan_Ms55_earthquake_in_Dali_Yunnan_Province HUANG Y, 2008. Study on the application and development of the DD algorithm with cross correlation of waveform data in the earthquake location[J]. Recent Developments in World Seismology(4): 29-34. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GJZT200804005.htm Institute of Crustal Dynamics, CEA, 2006. Active fault identification and seismic safety evaluation report of Dali-Ruili railway. [R]. JIANG H K, YANG M L, FU H, et al., 2015. Reference guidance for determination of post earthquake trend[M]. Beijing: Seismological Press: 2-3. (in Chinese) JIANG J Z, LI J, FU H, 2019. Seismicity analysis of the 2016 MS5.0 Yunlong earthquake, Yunnan, China and its tectonic implications[J]. Pure and Applied Geophysics, 176(3): 1225-1241. doi: 10.1007/s00024-018-2067-7 KAN R J, ZHANG S C, YAN F T, et al., 1977. Present tectonic stress field and its relation to the characteristics of recent tectonic activity in southwestern China[J]. Acta Geophysica Sinica, 20(2): 96-109. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX197702001.htm KUANG W H, YUAN C C, ZHANG J, 2021. Real-time determination of earthquake focal mechanism via deep learning[J]. Nature Communications, 12: 1432. doi: 10.1038/s41467-021-21670-x LELOUP P H, LACASSIN R, TAPPONNIER P, et al., 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina[J]. Tectonophysics, 251(1-4): 3-10, 13-84. doi: 10.1016/0040-1951(95)00070-4 LI J, JIANG J Z, YANG J Q, 2020. Microseismic detection and relocation of the 2017 MS4.8 andMS5.1 Yangbi earthquake sequence, Yunnan[J]. Acta Seismologica Sinica, 42(5): 527-542. (in Chinese with English abstract) LI P, WANG L M, 1975. Exploration of the seismo-geological features of the Yunnan-west Sichuan region[J]. Chinese Journal of Geology, 10(4): 308-326. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX197504001.htm LUO R J, WU Z H, HUANG X L, et al., 2015. The main active faults and the active tectonic system of Binchuan area, northwestern Yunnan[J]. Geological Bulletin of China, 34(1): 155-170. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201501013.htm MAO Y P, HAN X M, 2003. Study on strong earthquakes (M ≥ 6) in Yunnan[M]. Kunming: Yunnan Science and Technology Press. (in Chinese) MICHELINI A, LOMAX A. 2004. The effect of velocity structure errors on double-difference earthquake location[J]. Geophysical Research Letters, 31(9): L09602. doi: 10.1029/2004GL020731/epdf REN J J, ZHANG S M, HOU Z H, et al., 2007. Study of late quaternary slip rate in the mid-segment of the Tongdian-Weishan fault[J]. Seismology and Geology, 29(4): 756-764. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZDZ200704005.htm Regional Geological Investigation Division of Yunnan Geological Survey, 1990. 1: 250000 geological map and regional geological survey report of Dali City (G47C003003)[R]. SHEN Z K, LǙ J N, WANG M, et al., 2005. Contemporary crustal deformation around the southeast borderland of the Tibetan plateau[J]. Journal of Geophysical Research: Solid Earth, 110(B11): B11409, doi: 1029/2004JB003421. UTSU T, 2002. Statistical features of seismicity, international handbook of earthquake and engineering seismology[M]. Amsterdam: Academic Press: 719-731. WALDHAUSER F, ELLSWORTH W L, 2000. A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California[J]. Bulletin of the Seismological Society of America, 99(6): 1353-1368. WALDHAUSER F, SCHAFF D P, 2008. Large-scale relocation of two decades of Northern California seismicity using cross-correlation and double-difference methods[J]. Journal of Geophysical Research: Solid Earth, 113(B8): B08311. doi: 10.1029/2007JB005479/full WANG G M, LIU Z F, ZHAO X Y, et al., 2018. Relocation of Tonghai MS5.0 earthquake sequence in 2018 and discussion of it's seismogenic fault[J]. Journal of Seismological Research, 41(4): 503-510. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZYJ201804003.htm WANG Q D, CHU R S, YANG H, et al., 2018. Complex rupture of the 2014 MS6.6 Jinggu earthquake sequence in Yunnan province inferred from double-difference relocation[J]. Pure and Applied Geophysics, 175(12): 4253-4274. doi: 10.1007/s00024-018-1913-y WANG W L, WU J P, FANG L H, et al., 2014. Double difference location of the Ludian MS6.5 earthquake sequences in Yunnan province in 2014[J]. Chinese Journal of Geophysics, 57(9): 3042-3051. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201409030.htm WANG Q D, CHU R S, YANG H, et al., 2018. Complex Rupture of the 2014 MS6.6 Jinggu Earthquake Sequence in Yunnan Province Inferred from Double-Difference Relocation[J]. Pure Appl. Geophys. 175: 4253-4274. doi: 10.1007/s00024-018-1913-y WESSEL P, LUIS J F, UIEDA L, et al., 2019. The generic mapping tools version 6[J]. Geochemistry, Geophysics, Geosystems, 20(11): 5556-5564. doi: 10.1029/2019GC008515 WU K G, WU Z H, XU F K, et al., 2016. Geological origin of Jinggu earthquake swarm in 2014 in southwest Yunnan: A response to propagation process of the Chafang-Puwen fault zone[J]. Geological Bulletin of China, 35(1): 140-151. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201601013.htm WU Z H, ZHANG Y S, HU D G, et al., 2009. Late Quaternary normal faulting and its kinematic mechanism of eastern piedmont fault of the Haba-Yulong Snow Mountains in northwestern Yunnan, China[J]. Science in China Series D: Earth Sciences, 52(10): 1470-1484, doi: 10.1007/s11430-009-0148-2. WU Z H, ZHAO X T, FAN T Y, et al., 2012. Active faults and seismologic characteristics along the Dali-Ruili railway in western Yunnan province[J]. Geological Bulletin of China, 31(2): 191-217. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2012Z1001.htm WU Z H, LI G S, MAO X C, et al., 2013. The basic geology and main engineering geology problems along the Dali-Ruili section of Trans-Asian railway, in Yunnan province of China[M]. Beijing: Geological Publishing House: 467. (in Chinese) WU Z H, LONG C X, FAN T Y, et al., 2015. The arc rotational-shear active tectonic system on the southeastern margin of Tibetan Plateau and its dynamic characteristics and mechanism[J]. Geological Bulletin of China, 34(1): 1-31. (in Chinese with English abstract) WU Z H, 2019. The definition and classification of active faults: History, current status and Progress[J]. Acta Geoscientica Sinica, 40(5): 661-697, doi: 10.3975/cagsb.2019.051001.(in Chinese with English abstract) XIAO K Z, TONG H M, 2020. Progress on strike-slip fault research and its significance[J]. Journal of Geomechanics, 26(2): 151-166. (in Chinese with English abstract) XU J, 2011. Studies on cenozoic seismic tectonic zones: A new field of earthquake geology[J]. South China Journal of Seismology, 31(4): 23-28. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNDI201104002.htm YANG J, SU Y J, LI X B, et al., 2015. Research on focal mechanism solutions of ML ≥ 3.4 earthquakes of Eryuan MS5.5 earthquake sequence in 2013[J]. Journal of Seismological Research, 38(2): 196-202. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ201502003.htm YANG Z X, CHEN Y T, ZHENG Y J, et al., 2003. Accurate relocation of earthquakes in central-western China using the double-difference earthquake location algorithm[J]. Science in China Series D: Earth Sciences, 46(S2): 181-188. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical_zgkx-ed2003z2014.aspx YI G X, LONG F, LIANG M J, et al., 2019. Focal mechanism solutions and seismogenic structure of the 17 June 2019 MS6.0 Sichuan Changning earthquake sequence[J]. Chinese Journal of Geophysics, 62(9): 3432-3447. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201909017.htm Yunnan Seismological Bureau, Geological Research Institute of the State Seismological Bureau, 1990. Active faults in the northwest Yunnan region[M]. Beijing: Seismological Press: 69-128. (in Chinese) ZHAO G M, WU Z H, LIU J, 2020. The types, characteristics and mechanism of seismic migration[J]. Journal of Geomachanics, 26(1): 13-32. (in Chinese with English abstract) ZHAO X Y, FU H, 2014. Seismogenic structure identification of the 2013 Eryuan MS5.5 and MS5.0 earthquake sequence[J]. Acta Seismologica Sinica, 36(4): 640-650. (in Chinese with English abstract) http://www.researchgate.net/publication/287775090_Seismogenic_structure_identification_of_the_2013_Eryuan_MS55_and_MS50_earthquake_sequence 安晓文, 常祖峰, 2018. 云南第四纪活动断裂暨《云南第四纪活动断裂分布图》[M]. 北京: 地震出版社: 11-19. 常祖峰, 张艳凤, 周青云, 等, 2014. 2013年洱源MS5.5地震烈度分布及震区活动构造背景研究[J]. 中国地震, 30(4): 560-570. doi: 10.3969/j.issn.1001-4683.2014.04.009 常祖峰, 常昊, 臧阳, 等, 2016a. 维西-乔后断裂新活动特征及其与红河断裂的关系[J]. 地质力学学报, 22(3): 517-530. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20160309&journal_id=dzlxxb 常祖峰, 常昊, 李鉴林, 等, 2016b. 维西-乔后断裂南段正断层活动特征[J]. 地震研究, 39(4): 579-586. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201604007.htm 常祖峰, 毛泽斌, 马保起, 等, 2019. 滇西南阿墨江断裂带与2018年墨江M5.9地震[J]. 地质通报, 38(6): 967-976. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201906008.htm 崔效锋, 谢富仁, 张红艳, 2006. 川滇地区现代构造应力场分区及动力学意义[J]. 地震学报, 28(5): 451-461. doi: 10.3321/j.issn:0253-3782.2006.05.001 丁国瑜, 李永善, 1979. 我国地震活动与地壳现代破裂网络[J]. 地质学报(1): 22-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE197901001.htm 房立华, 吴建平, 苏金蓉, 等, 2018. 四川九寨沟MS 7.0地震主震及其余震序列精定位[J]. 科学通报, 63(7): 649-662. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201807007.htm 国家地震局地质研究所云南省地震局, 1990. 滇西北地区活动断裂[M]. 北京: 地震出版社: 69-128. 虢顺民, 向宏发, 徐锡伟, 等, 2000. 滇西南龙陵-澜沧第四纪新生断裂带的特征和变形机制研究[J]. 地震地质, 22(3): 277-284, 237. doi: 10.3969/j.issn.0253-4967.2000.03.008 韩竹军, 何玉林, 安艳芬, 等, 2009. 新生地震构造带: 马边地震构造带最新构造变形样式的初步研究[J]. 地质学报, 83(2): 218-229. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200902008.htm 黄小龙, 吴中海, 蒋瑶, 等, 2015. 2013年3月3日云南大理洱源MS5.5地震烈度分布及发震构造[J]. 地质通报, 34(1): 135-145. doi: 10.3969/j.issn.1671-2552.2015.01.011 黄媛, 2008. 结合波形互相关技术的双差算法在地震定位中的应用探讨[J]. 国际地震动态(4): 29-34. doi: 10.3969/j.issn.0253-4975.2008.04.003 蒋海昆, 杨马陵, 付虹, 等, 2015. 震后趋势判定参考指南[M]. 北京: 地震出版社: 2-3. 阚荣举, 张四昌, 晏凤桐, 等, 1977. 我国西南地区现代构造应力场与现代构造活动特征的探讨[J]. 地球物理学报, 20(2): 96-109. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX197702001.htm 李姣, 姜金钟, 杨晶琼, 2020. 2017年漾濞MS 4.8和MS 5.1地震序列的微震检测及重定位[J]. 地震学报, 42(5): 527-542. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB202005002.htm 李玶, 汪良谋, 1975. 云南川西地区地震地质基本特征的探讨[J]. 地质科学, 10(4): 308-326. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX197504001.htm 罗睿洁, 吴中海, 黄小龙, 等, 2015. 滇西北宾川地区主要活动断裂及其活动构造体系[J]. 地质通报, 34(1): 155-170. doi: 10.3969/j.issn.1671-2552.2015.01.013 毛玉平, 韩新民, 2003. 云南地区强震(M ≥ 6级)研究[M]. 昆明: 云南科技出版社. 任俊杰, 张世民, 侯治华, 等, 2007. 滇西北通甸-巍山断裂中段的晚第四纪滑动速率[J]. 地震地质, 29(4): 756-764. doi: 10.3969/j.issn.0253-4967.2007.04.006 王光明, 刘自凤, 赵小艳, 等, 2018. 2018年云南通海MS5.0地震序列重定位及发震构造讨论[J]. 地震研究, 41(4): 503-510. doi: 10.3969/j.issn.1000-0666.2018.04.003 王未来, 吴建平, 房立华, 等, 2014. 2014年云南鲁甸MS6.5地震序列的双差定位[J]. 地球物理学报, 57(9): 3042-3051. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201409030.htm 吴坤罡, 吴中海, 徐甫坤, 等, 2016. 滇西南2014年景谷中-强震群的地质构造成因: 茶房-普文断裂带贯通过程的构造响应[J]. 地质通报, 35(1): 140-151. doi: 10.3969/j.issn.1671-2552.2016.01.013 吴中海, 赵希涛, 范桃园, 等, 2012. 泛亚铁路滇西大理至瑞丽沿线主要活动断裂与地震地质特征[J]. 地质通报, 31(2): 191-217. doi: 10.3969/j.issn.1671-2552.2012.02.002 吴中海, 李贵书, 毛晓长, 等, 2013. 泛亚铁路云南大理至瑞丽沿线基础地质与主要工程地质问题[M]. 北京: 地质出版社: 467. 吴中海, 龙长兴, 范桃园, 等, 2015. 青藏高原东南缘弧形旋扭活动构造体系及其动力学特征与机制[J]. 地质通报, 34(1): 1-31. doi: 10.3969/j.issn.1671-2552.2015.01.002 吴中海, 2019. 活断层的定义与分类: 历史、现状和进展[J]. 地球学报, 40(5): 661-697, doi: 10.3975/cagsb.2019.051001. 肖坤泽, 童亨茂, 2020. 走滑断层研究进展及启示[J]. 地质力学学报, 26(2): 151-166. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200201&journal_id=dzlxxb 徐杰, 2011. 新生地震构造带的研究: 地震地质研究新开拓的一项工作[J]. 华南地震, 31(4): 23-28. doi: 10.3969/j.issn.1001-8662.2011.04.003 杨军, 苏有锦, 李孝宾, 等, 2015. 2013年洱源MS5.5地震序列ML ≥ 3.4地震的震源机制解研究[J]. 地震研究, 38(2): 196-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201502003.htm 杨智娴, 陈运泰, 郑月军, 等, 2003. 双差地震定位法在我国中西部地区地震精确定位中的应用[J]. 中国科学(D辑), 33(S1): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2003S1013.htm 易桂喜, 龙锋, 梁明剑, 等, 2019. 2019年6月17日四川长宁MS6.0地震序列震源机制解与发震构造分析[J]. 地球物理学报, 62(9): 3432-3447. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201909017.htm 云南省地质矿产局, 1990. 云南省区域地质志[M]. 北京: 地质出版社, 728 p. 云南省地质调查院区域地质调查所, 2008. 1: 25万大理市幅(G47C003003)地质图和区域地质调查报告[R]. 赵小艳, 付虹, 2014. 2013年洱源MS5.5和MS5.0地震发震构造识别[J]. 地震学报, 36(4): 640-650. doi: 10.3969/j.issn.0253-3782.2014.04.010 赵根模, 吴中海, 刘杰, 2020. 地震迁移的类型、特征及机制讨论[J]. 地质力学学报, 26(1): 13-32. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200102&journal_id=dzlxxb 中国地震局地壳应力研究所, 2006. 大理-瑞丽铁路线工程场地活动断层鉴定及地震安全性评价报告[R].