Experimental study on the dynamic rupture of coal and rock caused by high-pressure gas
-
摘要: 为了研究高压气体对煤岩材料变形破坏的作用,自主设计并制造了含高压气体煤岩实验装置,通过测量气体泄压作用诱发的煤岩动力破坏现象,研究了高压气体对煤岩材料变形破坏的作用。实验表明,当气体泄压速率小时,煤岩仅会出现轻微变形;当气体泄压速率大时,煤岩会产生破裂和破碎现象。同时发现煤岩的破坏程度不仅取决于气体的泄压速率,还取决于孔隙气体的压强。当气体泄压速率和气体压强都达到一定临界值时,煤岩才会发生剧烈破碎。通过气体压强与应变之间的关系,确定了煤岩发生破裂和破碎的临界气体压强。Abstract: A special test apparatus has been designed and used to study the effect of high-pressure gas on the deformation and failure of coal and rock. Dynamic ruptures of coal and rock are carried out by gas decompression. The results show that low gas decompression rate only causes deformation of coal specimens slightly while high gas decompression rate leads to fracture and outburst phenomenon. The degree of damage of rocks depends on not only the gas decompression rate but also the gas pressure. Violent fragmentation occurs when gas decompression rate and high saturation pressure reach critical values. According to the relationship between the decompressed gas pressure and strain, the critical gas pressures are determined for the fracture and fragmentation of specimens.
-
Key words:
- gas decompression /
- deformation /
- fracture /
- fragmentation /
- critical gas pressure
-
图 2 充入气体压强为0.5 MPa时快速泄压引起的试样破裂(时间间隔16.7 ms)
a—完整试样;b—气体压强差引起破裂开始产生;c—随着气体压强差增大破裂继续扩展;d—随着气体压强差减小破裂停止
Figure 2. Specimen fracture caused by the gas decompression of 0.5 MPa (time interval between two video images is 16.7 ms). (a) Intact specimen. (b) Fractures initiate when the gas pressure gradient occurs. (c) Fractures continue growing with the gas pressure gradient increases. (d) Fractures stop when the gas pressure gradient decreases
图 3 充入气体压强为1.0 MPa时快速泄压引起的试样破裂(时间间隔16.7 ms)
a—完整试样;b—气体压强差引起破裂和破碎;c—随着气体压强差增大破碎继续扩展;d—随着气体压强差减小破碎停止
Figure 3. Specimen fragmentation caused by the gas decompression of 1.0 MPa (time interval between two video images is 16.7 ms). (a) Intact specimen. (b) Fractures and fragmentation initiate when the gas pressure gradient occurs. (c) Fragmentation continues growing with the gas pressure gradient increases. (d) Fragmentation stops when the gas pressure gradient decreases
表 1 实验参数与结果
Table 1. Summary of the experimental data and results
编号 初始条件 测试条件 测试结果 尺寸直径×高度/mm 饱和气压*/MPa 平均泄压速率/(MPa/s) 破裂压强/kPa 破碎压强/kPa 充气过程最大体积应变/×10-3 放气过程最大体积应变/×10-3 试样结果 A Φ35.00×35.58 0.5 0.4 - - 4.944 -1.286 完整 B Φ35.00×35.04 1.0 0.3 - - 7.392 -2.104 完整 C Φ35.00×34.96 0.5 6.6 340 - 5.259 7.680 破裂 D Φ35.00×36.16 1.0 8.2 - 960 7.349 12.015 破碎 *注:气体压强数值为高于大气压强的差值 -
ATES Y, BARRON K, 1988. The effect of gas sorption on the strength of coal[J]. Mining Science and Technology, 6(3): 291-300. doi: 10.1016/S0167-9031(88)90287-3 DING Y L, YUE Z Q, 2018. An experimental investigation of the roles of water content and gas decompression rate for outburst in coal briquettes[J]. Fuel, 234: 1221-1228. doi: 10.1016/j.fuel.2018.07.143 EVANS I, POMEROY C D, 1966. The strength, fracture and workability of coal[M]. London: Pergamon Press. GUAN P, WANG H Y, ZHANG Y X, 2009. Mechanism of instantaneous coal outbursts[J]. Geology, 37(10): 915-918. doi: 10.1130/G25470A.1 HE M C, MIAO J L, FENG J L, 2010. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 47(2): 286-298. doi: 10.1016/j.ijrmms.2009.09.003 HU QT, ZHANG S T, WEN G C, et al., 2015. Coal-like material for coal and gas outburst simulation tests[J]. International Journal of Rock Mechanics and Mining Sciences, 74: 151-156. doi: 10.1016/j.ijrmms.2015.01.005 HU S B, WANG E Y, LI X C, et al., 2016. Effects of gas adsorption on mechanical properties and erosion mechanism of coal[J]. Journal of Natural Gas Science and Engineering, 30: 531-538. doi: 10.1016/j.jngse.2016.02.039 HUANG S, XIA K W, YAN F, et al., 2010. An experimental study of the rate dependence of tensile strength softening of Longyou sandstone[J]. Rock Mechanics and Rock Engineering, 43(6): 677-683. doi: 10.1007/s00603-010-0083-8 KONG X G, WANG E Y, HU S B, et al., 2015. Critical slowing down on acoustic emission characteristics of coal containing methane[J]. Journal of Natural Gas Science and Engineering, 24: 156-165. doi: 10.1016/j.jngse.2015.03.020 LITWINISZYN J, 1994. Rarefaction shock waves in porous media that accumulate CO2, CH4, N2[J]. Shock Waves, 3(3): 223-232. doi: 10.1007/BF01414716 MAJEWSKA Z, MAJEWSKI S, ZIĘTEK J, 2010. Swelling of coal induced by cyclic sorption/desorption of gas: Experimental observations indicating changes in coal structure due to sorption of CO2 and CH4[J]. International Journal of Coal Geology, 83(4): 475-483. doi: 10.1016/j.coal.2010.07.001 PAN Z J, CONNELL L D, 2007. A theoretical model for gas adsorption-induced coal swelling[J]. International Journal of Coal Geology, 69(4): 243-252. doi: 10.1016/j.coal.2006.04.006 PINI R, OTTIGER S, BURLINI L, et al., 2009. Role of adsorption and swelling on the dynamics of gas injection in coal[J]. Journal of Geophysical Research: Solid Earth, 114(B4): B04203. http://www.researchgate.net/publication/255207823_Role_of_adsorption_and_swelling_on_the_dynamics_of_gas_injection_in_coal_-_article_no_B04203 RANJITH P G, JASINGE D, CHOI S K, et al., 2010. The effect of CO2 saturation on mechanical properties of Australian black coal using acoustic emission[J]. Fuel, 89(8): 2110-2117. doi: 10.1016/j.fuel.2010.03.025 SAGHAFI A, FAIZ M, ROBERTS D, 2007. CO2 storage and gas diffusivity properties of coals from Sydney Basin, Australia[J]. International Journal of Coal Geology, 70(1-3): 240-254. doi: 10.1016/j.coal.2006.03.006 SKOCZYLAS N, DUTKA B, SOBCZYK J, 2014. Mechanical and gaseous properties of coal briquettes in terms of outburst risk[J]. Fuel, 134: 45-52. doi: 10.1016/j.fuel.2014.05.037 TAN T K, KANG W F, 1991. On the locked in stress, creep and dilation of rocks, and the consititutive equations[J]. Chinese Journal of Rock Mechanics and Engineering, 10(4): 299-312. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX199104000.htm VIETE D R, RANJITH P G, 2006. The effect of CO2 on the geomechanical and permeability behaviour of brown coal: implications for coal seam CO2 sequestration[J]. International Journal of Coal Geology, 66(3): 204-216. doi: 10.1016/j.coal.2005.09.002 VIETE D R, RANJITH P G, 2007. The mechanical behaviour of coal with respect to CO2 sequestration in deep coal seams[J]. Fuel, 86(17-18): 2667-2671. doi: 10.1016/j.fuel.2007.03.020 WANG C H, GAO G Y, WANG H, et al, 2020. Integrated determination of principal stress and tensile strength of rock based on the laboratory and field hydraulic fracturing tests[J]. Journal of Geomechanics, 26(2): 167-174. (in Chinese with English abstract) WANG C J, YANG S Q, YANG D D, et al., 2018. Experimental analysis of the intensity and evolution of coal and gas outbursts[J]. Fuel, 226: 252-262. doi: 10.1016/j.fuel.2018.03.165 WANG G, LI W X, WANG P F, et al., 2017. Deformation and gas flow characteristics of coal-like materials under triaxial stress conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 91: 72-80. doi: 10.1016/j.ijrmms.2016.11.015 WANG S G, ELSWORTH D, LIU J S, 2015. Rapid decompression and desorption induced energetic failure in coal[J]. Journal of Rock Mechanics and Geotechnical Engineering, 7(3): 345-350. doi: 10.1016/j.jrmge.2015.01.004 YANG D D, CHEN Y J, TANG J, et al., 2018. Experimental research into the relationship between initial gas release and coal-gas outbursts[J]. Journal of Natural Gas Science and Engineering, 50: 157-165. doi: 10.1016/j.jngse.2017.12.015 YIN G Z, JIANG C B, WANG J G, et al., 2016. A new experimental apparatus for coal and gas outburst simulation[J]. Rock Mechanics and Rock Engineering, 49(5): 2005-2013. doi: 10.1007/s00603-015-0818-7 YUE Z Q, 2014. Gas inclusions and their expansion power as foundation of rock ""locked in"" stress hypothesis[J]. Journal of Engineering Geology, 22(4): 739-756. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201404028.htm YUE Z Q, 2015. Expansion power of compressed micro fluid inclusions as the cause of rockburst[J]. Mechanics in Engineering, 37(3): 287-294. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_mechanics-engineering_thesis/0201241946771.html ZANG J, WANG K, 2017. Gas sorption-induced coal swelling kinetics and its effects on coal permeability evolution: Model development and analysis[J]. Fuel, 189: 164-177. doi: 10.1016/j.fuel.2016.10.092 ZHANG Q B, ZHAO J, 2014. Quasi-static and dynamic fracture behaviour of rock materials: phenomena and mechanisms[J]. International Journal of Fracture, 189(1): 1-32. doi: 10.1007/s10704-014-9959-z ZHAO Y X, LIU S M, JIANG Y D, et al., 2016. Dynamic tensile strength of coal under dry and saturated conditions[J]. Rock Mechanics and Rock Engineering, 49(5): 1709-1720. doi: 10.1007/s00603-015-0849-0 陈宗基, 康文法, 1991. 岩石的封闭应力、蠕变和扩容及本构方程[J]. 岩石力学与工程学报, 10(4): 299-312. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199104000.htm 王成虎, 高桂云, 王洪, 等, 2020. 利用室内和现场水压致裂试验联合确定地应力与岩石抗拉强度[J]. 地质力学学报, 26(2): 167-174. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200202&journal_id=dzlxxb 岳中琦, 2014. 奠基岩石""封闭应力""假说的气体包裹体和膨胀能力[J]. 工程地质学报, 22(4): 739-756. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201404028.htm 岳中琦, 2015. 岩爆的压缩流体包裹体膨胀力源假说[J]. 力学与实践, 37(3): 287-294. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201503001.htm