留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矿田构造变形岩相带的地球物理资料解译与找矿应用

张宝林 吕古贤 余建国 梁光河 徐兴旺 李志远 张启鹏 史晓鸣 魏竣滨 许道学 李旭 赵鹏

张宝林, 吕古贤, 余建国, 等, 2021. 矿田构造变形岩相带的地球物理资料解译与找矿应用. 地质力学学报, 27 (4): 542-556. DOI: 10.12090/j.issn.1006-6616.2021.27.04.047
引用本文: 张宝林, 吕古贤, 余建国, 等, 2021. 矿田构造变形岩相带的地球物理资料解译与找矿应用. 地质力学学报, 27 (4): 542-556. DOI: 10.12090/j.issn.1006-6616.2021.27.04.047
ZHANG Baolin, LYU Guxian, YU Jianguo, et al., 2021. Geophysical data interpretation of the tectonic deformation lithofacies belts in the ore field: Application in ore prospecting. Journal of Geomechanics, 27 (4): 542-556. DOI: 10.12090/j.issn.1006-6616.2021.27.04.047
Citation: ZHANG Baolin, LYU Guxian, YU Jianguo, et al., 2021. Geophysical data interpretation of the tectonic deformation lithofacies belts in the ore field: Application in ore prospecting. Journal of Geomechanics, 27 (4): 542-556. DOI: 10.12090/j.issn.1006-6616.2021.27.04.047

矿田构造变形岩相带的地球物理资料解译与找矿应用

doi: 10.12090/j.issn.1006-6616.2021.27.04.047
基金项目: 

内蒙古自治区地质勘查基金管理中心科研项目 2019-KY02

山东黄金矿业(玲珑)有限公司科研项目 LLYY-2019-001

山东黄金归来庄矿业有限公司科研项目 GLZZB-20191201

海南山金矿业有限公司科研项目 HNSJ191017-195

详细信息
    作者简介:

    张宝林(1963-), 男, 博士, 研究员, 从事矿田地质、构造物理化学、隐伏矿床定位预测理论和技术研究。E-mail: blzhang@mail.iggcas.ac.cn

  • 中图分类号: P313;P552

Geophysical data interpretation of the tectonic deformation lithofacies belts in the ore field: Application in ore prospecting

Funds: 

the research project of Geological Exploration Fund Management Center of Inner Mongolia Autonomous Region 2019-KY02

Shandong Gold Mining (Linglong) Co., Ltd. LLYY-2019-001

Shandong Guilaizhuang Gold Mining Co., Ltd. GLZZB-20191201

Hainan Shanjin Mining Co., Ltd. HNSJ191017-195

  • 摘要: 基于岩(矿)石物性参数和矿床成因类型建立的地球物理勘查模型,在深部找矿预测中出现了多解性的问题,急需找到地球物理方法能够高精度识别的地质体目标。多年的找矿实践表明,矿田构造变形岩相带就是一个重要的选项,业已取得显著的找矿效果。目前,大比例尺的矿区地球物理勘查工作较多,而中比例尺的矿田地球物理研究比较薄弱,且两者均缺乏分层次的战略指导。为了建立矿田构造变形岩相带的地球物理判别标志,需要厘清地质与地球物理的复杂时间-空间关系,加强地质力学与地球物理勘探方法的联系。文章提出分层次处理和解释地球物理信息的思路,即根据研究区构造形迹的"米字型"结构特征和构造体系阶段性发展的特点,从矿田、矿床2个层次解析不同尺度-维度的地球物理勘查资料,提取构造变形岩相带信息。具体操作流程为先在矿田范围内布置面积性物探,解译"米字型"断裂构造系统,选定张性和张扭性含矿断裂构造,预测找矿方向;再在含矿断裂带布置大深度物探剖面,分析剥蚀程度和埋藏深度,结合化探信息圈定找矿靶区位置。文中以内蒙古赤峰柴胡栏子金矿田为例,介绍该方法的找矿应用效果。首先从矿田地球物理资料中解译出新华夏构造体系"米字型"分布的构造形迹,然后在2个矿区内确认了北北西和北西西走向的构造变形岩相带是主要的含矿构造带,且两者之间存在时空上的先后关系,为深部找矿预测提供了依据。

     

  • 图  1  新华夏构造体系结构面及其力学分析概图(据吕古贤等,2020a修改)

    1—新华夏挤压构造;2—泰山式压剪构造;3—大义山式张剪构造;4—长江式张性构造;5—所受外力方向

    Figure  1.  Sketch map of the structural surface of the Neocathaysian tectonic system and its mechanical analysis (modified after Lyu et al., 2020a).

    1-Neocathaysian compressional structure. 2-Taishan-type compression-shear structure. 3-Dayishan-type tension-shear structure. 4-Changjiang-type tensile structure.5-Modes of external forces

    图  2  赤峰北部航磁资料解译的新华夏构造体系“米字型”结构图

    Figure  2.  Sketch map showing the "-shaped" structure of the Neocathaysian tectonic system interpreted by the aeromagnetic data in the northern area of Chifeng

    图  3  柴胡栏子地区航磁资料解译的成矿带分界示意图

    Figure  3.  Boundary diagram of the metallogenic belt in the Chaihulanzi area by the aeromagnetic data interpretation

    图  4  柴胡栏子金矿区Ⅰ号含矿断裂带平面图(据李德亭和袁怀雨,2005修改)

    Figure  4.  Plan of No.Ⅰ ore-bearing fracture zone in the Chaihulanzi gold mining area (Base map is modified after Li and Yuan, 2005)

    图  5  柴胡栏子矿区北西向成矿构造变形特征

    a—697 m中段坑道顶板Ⅰ-5号脉照片;b—素描与运动学分析

    Figure  5.  NW trending metallogenic structural deformation features of the Chaihulanzi mining area. (a) Photograph of No.Ⅰ-5 vein in the 697 m middle tunnel roof. (b) Sketch and kinematic analysis

    图  6  红花沟金矿区Ⅱ号矿脉群779 m中段平面分布图(据曾庆栋等,2003修改)

    Figure  6.  Plan distribution map of the 779 m middle section of No.Ⅱ vein group in the Honghuagou gold mining area (Base map is modified after Zeng et al., 2003)

    表  1  复成地质作用下的构造变形岩相岩石的物性特征(据吕古贤等,2020b修改)

    Table  1.   Physical characteristics of tectonic deformation lithofacies rocks under complex geological processes (modified after Lyu et al., 2020b)

    构造变形岩相 构造变形亚岩相 岩石物性特征 典型矿产
    层控改造岩相和构造热液岩相 矽卡岩化构造变形岩相 密度低、弱中磁、中高阻 钨、锡、钼、铁、铜、铅、锌等
    云英岩化构造变形岩相 密度低、弱磁、中高阻 钨、锡、钼、铋、铌、钽、铍、锂等
    钾长石化构造变形岩相 密度低、弱磁、中低阻 铅、锌、金、铀、稀土等
    钠长石化构造变形岩相 密度低、弱磁、高阻 钨、锡、金、铁、铜、磷、黄铁矿
    绢英岩化构造变形岩相 密度低、弱磁、中低阻 金、铜、铅、锌、钼、铋等
    绿泥石化构造变形岩相 密度低、弱磁、中低阻 铜、铅、锌、金、银、锡、黄铁矿等
    硅化构造变形岩相 密度低、弱磁、高阻 铜、钼、铅、锌、金、银、汞、黄铁矿
    碳酸盐化构造变形岩相 密度低、弱磁、高阻 铌、钽、锆等
    下载: 导出CSV

    表  2  地球物理方法的有效探测深度分级表

    Table  2.   Classification table of effective sounding depths by geophysical methods

    能力级别 找矿目标 探测目标 探测方法 有效深度
    初级 矿体、矿床 与已知矿相似的物性异常体 电阻率、磁性、密度、速度、放射性等 几十米~几百米
    中级 矿床、成矿带,常常越位使用 断裂构造带的三维分布 地震、大地电磁测深、瞬变电磁、重磁法等 几百米~几十千米
    高级 矿田 含矿构造变形岩相带的三维分布 地震、大深度电磁法、重磁法等 几百米~几千米
    下载: 导出CSV
  • CHEN Y C, CHEN Z H, ZENG Z L, et al., 2013. Research on the site selection of Nanling Scientific Drilling-1[J]. Geology in China, 40(3): 659-670. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/zgdizhi201303001
    CHENG C, HAN R S, WANG L, et al., 2019. The generation, development and ore-controlling of structures of the Fulaichang lead-zinc deposit, northeastern Guizhou[J]. Journal of Geomechanics, 25(1): 90-104. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201901038.htm
    DENG Z Q, WANG X G, 1993. Electrical prospecting in discovery of copper deposit, Ashele, Xinjiang[J]. Xinjiang Geology, 11(1): 43-56. (in Chinese with English abstract)
    FAN J, GUO Y Y, CHENG Y S, 2019. An introduction to deep resources exploration and mining, a special project of national key R&D program of China[J]. Geology in China, 46(4): 919-926. (in Chinese with English abstract)
    FAN X, LÜ G X, WANG Z Y, et al., 2015. Tectonic-alteration mapping and geochemical characteristic analysis of Jiaojia Orefield[J]. Earth Science Frontiers, 22(4): 46-52. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201504007.htm
    FANG W X, 2016. On tectonic system of hydrothermal breccia: objective, methodology and lithofacies-mapping applications[J]. Geotectonica et Metallogenia, 40(2): 237-265. (in Chinese with English abstract) http://www.researchgate.net/publication/304942792_On_tectonic_system_of_hydrothermal_breccia_Objective_methodology_and_lithofacies-mapping_applications
    FANG W X, 2017. Preliminary research demonstration on geochemical lithofacies: objective, methodology, and case applications[J]. Acta Mineralogica Sinica, 37(5): 509-527. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB201705001.htm
    FANG W X, DU Y L, LI J X, et al., 2018. Large scale tectonic petrographic mapping technology and prospecting prediction[M]. Beijing: Geological Publishing House: 1-377. (in Chinese)
    FANG W X, 2019. Magmatic intrusive tectonic system Ⅰ: tectonic lithofacies mapping and ore-predication[J]. Geotectonica et Metallogenia, 43(3): 473-506. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DGYK201903008.htm
    GAN F W, WANG J B, ZHU S C, et al., 2018. Rapid exploration methods of VMS type of Cu polymetallic deposits in northern Ethiopia[J]. Mineral Exploration, 9(8): 1611-1621. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSJS201808019.htm
    GAO W L, KONG G S, PAN H P, et al., 2015. Geophysical logging in scientific drilling borehole and find of deep Uranium anomaly in Luzong basin[J]. Chinese Journal of Geophysics, 58(12): 4522-4533. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201512016.htm
    HAN R S, 2005. Orefield/deposit tectono-geochemical method for the localization and prognosis of concealed orebodies[J]. Geological Bulletin of China, 24(10-11): 978-984. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2005Z1018.htm
    HAN R S, WANG L, FANG W X, et al., 2011. The preliminary discussion on diapir structure-lithofacies zonation model for the Fengshan copper deposit, Yimen area, Yunnan, China[J]. Geological Bulletin of China, 30(4): 495-504. (in Chinese with English abstract) http://www.researchgate.net/publication/296340765_The_preliminary_discussion_on_diapir_structure-lithofacies_zonation_model_for_the_Fengshan_copper_deposit_Yimen_area_Yunnan_China
    KOZLOWSKI E A, 1989. Kola ultra deep drilling (1)[M]. ZHANG Q S, trans in chief. Beijing: Geological Publishing House: 1-218. (in Chinese)
    LEE J S, 1953. Three basic concepts of geological structure[J]. Acta Geologica Sinica, 33(4): 253-260. (in Chinese)
    LI D T, YUAN H Y, 2005. Ore-controlling law of structures and ore prospecting direction in Chaihulanzi gold deposit, Chifeng region[J]. Metal Mine(6): 30-32, 66. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSKS200506010.htm
    LI Z P, 2014. The application of integrated geophysical methods to the prospecting for gold-copper deposits on the periphery and in the depth of Sarsuk area, Xinjiang[J]. Geophysical and Geochemical Exploration, 38(3): 417-422. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_geophysical-geochemical-exploration_thesis/0201254301172.html
    LIANG G H, XU X W, LIU X J, et al., 2019. Structural deformation and deep ore prediction for Satani potash deposit in Vientiane basin, Laos[J]. Geotectonica et Metallogenia, 43(5): 934-942. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DGYK201905006.htm
    LIU G D, HAO T Y, LIU Y K, 1997. Tectonic framework of China and its relation with mineral resources: cognition from geophysical data[J]. Chinese Science Bulletin, 42(2): 89-95. doi: 10.1007/BF03182775
    LIU G D, 2015. Deep exploration: interpretation of metallogenic process and expansion of deep resources[J]. Chinese Journal of Geophysics, 58(12): 4317-4318. (in Chinese with English abstract)
    LIU J X, ZHAO R, GUO Z W, 2019. Research progress of electromagnetic methods in the exploration of metal deposits[J]. Progress in Geophysics, 34(1): 151-160. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQWJ201901020.htm
    LIU Z D, LÜ Q T, YAN J Y, et al., 2012. Tomographic velocity structure of shallow crust and target prediction for concealed ore deposits in the Luzong basin[J]. Chinese Journal of Geophysics, 55(12): 3910-3922. (in Chinese with English abstract) http://www.researchgate.net/publication/278179724_Tomographic_velocity_structure_of_shallow_crust_and_target_prediction_for_concealed_ore_deposits_in_the_Luzong_basin
    LIU Z H, CHEN Y S, JIA Z Y, et al., 2020. Deformation mechanism and tectonic rock types at different tectonic levels of the crust[J]. Acta Petrologica Sinica, 36(8): 2344-2356. (in Chinese with English abstract) doi: 10.18654/1000-0569/2020.08.05
    LU G X, 1991. The concept of tectonophysicochemiststry[J]. Regional Geology of China, 10(3): 254-261, 253. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD199103008.htm
    LÜ G X, 1989. On the tectono-petrofacies form and Linglong-Jiaojia-type gold deposits in the Jiaodong peninsula, China[D]. Beijing: Chinese Academy of Geological Sciences: 1-164. (in Chinese with English abstract)
    LÜ G X, DENG J, GUO T, et al., 1998. Large-scale geological mapping of tectono-deformation-facies features and research of tectonic metallogenesis for the Linglong-Jiaojia type gold deposits[J]. Acta Geologica Sinica, 19(2): 177-186. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB802.010.htm
    LÜ G X, GUO T, SHU B, et al., 2001. Large-scale mapping of tectonic deformation and facies features and their implications for the prediction of hidden deposits: a case study of the Linglong-Jiaojia style gold deposit, Jiaodong[J]. Regional Geology of China, 20(3): 313-321. (in Chinese with English abstract)
    LÜ G X, 2015. A discussion on the classification in ore field geology[J]. Earth Science Frontiers, 22(4): 1-12. (in Chinese with English abstract)
    LÜ G X, WU J C, ZHU S Z, et al., 2016. Concept of Orefield geology and classification of structural lithofacies of Orefield[J]. Geological Review, 62(S1): 321-322. (in Chinese with English abstract)
    LÜ G X, WANG H C, HAN L, et al., 2020a. Mathematical simulation study on the distribution and evolution of the mi-shaped structure surface of neocathaysian structural system[J/OL]. Geoscience, [2021-07-17]. https://doi.org/10.19657/j.geoscience.1000-8527.2020.064. (in Chinese with English abstract)
    LÜ G X, ZHANG B L, LÜ C X, et al., 2020c. Characteristics of mi-shaped structure of neocathaysian structural system in the middle and lower reaches of the yangtze river[J/OL]. Geoscience, [2021-07-17]. https://doi.org/10.19657/j.geoscience.1000-8527.2020.065. (in Chinese with English abstract)
    LYU G X, KONG Q C, 1993. Geology of Linglong-Jiaojia type gold deposit in Jiaodong[M]. Beijing: Science Press: 1-253. (in Chinese)
    LYU G X, LIN W W, LUO Y H, et al., 1999. Tectonophysicochemistry and gold metallogenic prognosis[M]. Beijing: Geological Press: 1-400. (in Chinese)
    LYU G X, 2003. Research and developments of tectonic physicochemistry[J]. Chinese Science Bulletin, 48(2): 101-109. (in Chinese) doi: 10.1360/03tb9021
    LYU G X, 2019. Research on tectonic dynamo-petrogenesis and metallogenesis and tectonophysicochemistry[J]. Journal of Geomechanics, 25(5): 962-980. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905025.htm
    LYU G X, ZHANG B L, HU B Q, et al., 2020b. Classification and application effect of tectonic deformation lithofacies in ore fields[J]. Geological Bulletin of China, 39(11): 1669-1680. (in Chinese with English abstract)
    LYU Q T, DONG S W, TANG J T, et al., 2015. Multi-scale and integrated geophysical data revealing mineral systems and exploring for mineral deposits at depth: a synthesis from SinoProbe-03[J]. Chinese Journal of Geophysics, 58(12): 4319-4343. (in Chinese with English abstract)
    REN G L, WANG H, LIU J P, et al, 2009. Geological characteristics and prospecting prediction of the Duolanalecopper deposit in Altay area, Xinjiang[J]. Xinjiang Geology, 27(1): 24-27. (in Chinese with English abstract)
    REN G L, WANG H, LIU J P, et al., 2009. The geological characteristics and mineralization forecast of Duolanale cu deposit in Altay, Xinjiang[J]. Xinjiang Geology, 27(1): 24-27. (in Chinese with English abstract)
    SONG D H, HAN R S, WANG M Z, et al., 2020. Model of tectonite-lithofacies zoning in ore-controlling faults of the Qingshan lead-zinc deposit in northwestern Guizhou[J]. Journal of Geomechanics, 26(3): 376-390. (in Chinese with English abstract)
    TIAN J L, QIN J H, ZHENG K P, et al., 2014. Application of controlled-source audio-frequency magnetotelluric sounding in deep prospecting of the Ashele Cu-Zn deposit[J]. Mineral Deposits, 33(S1): 821-822. (in Chinese)
    TU G C, 1959. Tectonic lithological belt of the Qilian Mountains[J]. Chinese Journal of Geology, 2(7): 193-198. (in Chinese)
    WAN G P, 1994. Geologic-geophysical prospecting model for the gold deposits of crush-zone-altered & rock type in Jiaodong (Eastern Shandong)[J]. Geology of Shandong, 10(2): 41-50. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SDDI402.004.htm
    WEI X, YANG Z F, YAN X F, 2019. Multi-scale issue in seismic exploration and its research progress[J]. Progress in Geophysics, 34(6): 2353-2360. (in Chinese with English abstract)
    WU C L, DONG S W, WANG L T, et al., 2016. The discovery of the syenogranite with an age of 126 Ma in the depth of Tongling: evidence from 3000 meters scientific drilling[J]. Geology in China, 43(5): 1495-1513. (in Chinese with English abstract) http://www.researchgate.net/publication/316543669_The_discovery_of_the_syenogranite_with_an_age_of_126_Ma_in_the_depth_of_Tongling_Evidence_from_3000_meters_scientific_drilling
    WU X G, QIN J H, CHEN P, et al., 2019. Volcanic conduits and metallogenic model of Ashele Cu-Zn deposit[J]. Xinjiang Geology, 37(4): 510-515. (in Chinese with English abstract)
    WU X G, QIN J H, HU L C, et al., 2020. 3D geological model and geospatial information interpretation on the basis of GeoModeller for Ashele Cu-Zn deposit, Xinjiang[J]. Mineral Resources and Geology, 34(4): 826-831. (in Chinese with English abstract)
    XIAO F, WANG Z H, 2017. Geological interpretation of Bouguer gravity and aeromagnetic data from the Gobi-desert covered area, Eastern Tianshan, China: implications for porphyry Cu-Mo polymetallic deposits exploration[J]. Ore Geology Reviews, 80: 1042-1055. doi: 10.1016/j.oregeorev.2016.08.034
    XIAO X, TANG J T, ZHOU C, et al., 2011. Magnetotelluric sounding in the Lujiang-Zongyang ore-district and preliminary study of electrical structure[J]. Acta Geologica Sinica, 85(5): 873-886. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201105022.htm
    XU S P, 2009. Gold exploration model and mineralization predication in Zhao-Ping fault zone[D]. Beijing: China University of Geosciences (Beijing): 1-186. (in Chinese with English abstract)
    XUE H M, WU M A, MA F, 2014. Deep rock assemblage, alteration and mineralization of Luzong volcanic basin revealed by pre-drilling hole (LZSD)[C]//Proceedings of 2014 annual meeting of China joint Geosciences: topic 62: deep exploration technology and experiment: scientific drilling and geochemical benchmark papers. Beijing: Chinese Geophysical Society: 2735-2737. (in Chinese)
    YIN X Y, ZONG Z Y, WU G C, 2015. Research on seismic fluid identification driven by rock physics[J]. Science China: Earth Sciences, 45(1): 8-21. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JDXG201502002.htm
    ZENG Q D, CHEN Y, LI G L, et al., 2003. The controlling ore law of the structures and exploration ore direction in Honghuagou gold deposit, Lnner Mongolia[J]. Gold Science and Technology, 11(5): 7-11. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJKJ200305002.htm
    ZHANG B L, SU Y P, ZHANG G L, et al., 2017. Predicting method of typical ore-bearing tectonic lithofacies zones by integrated geological-geophysical information and its prospecting practice in eastern Shandong, China[J]. Earth Science Frontiers, 24(2): 85-94. (in Chinese with English abstract) http://www.researchgate.net/publication/317829466_Predicting_method_of_typical_ore-bearing_tectonic_lithofacies_zones_by_integrated_geological-geophysical_information_and_its_prospecting_practice_in_eastern_Shandong_China
    ZHANG B L, MIAO Y N, SU Y P, et al., 2018. The geological-geophysical-geochemical three fields anomalies coupling theory and its application in the positioning prognosis of concealed gold-polymetallic deposits[J]. Gold Science and Technology, 26(4): 431-442. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HJKJ201804008.htm
    ZHANG B L, LYU G X, LIANG G H, et al., 2019. Preliminary study on deep geophysical exploration model of gold ore fields in Eastern Shandong, China[J]. Journal of Geomechanics, 25(S1): 150-156. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX2019S1026.htm
    ZHANG B L, LÜ G X, YU J G, et al., 2020. A comparative study of the characteristics of tectonic deformation lithofacies belts in different ore blocks of the Linglong gold orefield in Jiaodong and the deep ore-prospecting prognosis[J]. Geological Bulletin of China, 39(11): 1681-1691. (in Chinese with English abstract)
    ZHANG W, ZENG Z G, ZHOU J, et al., 2020. Broadband magnetotelluric sounding (BMT) technology search for "interface" hidden gold deposits: a case of deep prospecting in the Getang area, southwestern Guizhou[J/OL]. Geology in China, [2021-07-17]. https://kns.cnki.net/kcms/detail/11.1167.P.20200709.1339.002.html. (in Chinese with English abstract)
    ZHAO Z, CHEN Y C, GUO N X, et al., 2014. The geological information and investigation progresses of Nanling Scientific Drilling in the depth between 0 and 2000 m[J]. Acta Petrologica Sinica, 30(4): 1130-1144. (in Chinese with English abstract) http://www.researchgate.net/publication/286620564_The_geological_information_and_investigation_progresses_of_Nanling_Scientific_Drilling_in_the_depth_between_0_and_2000m
    ZHOU G F, 2009. The study of tectonic-alteration-facies zoneing and its prospecting forecast in Linglong gold ore-field[D]. Beijing: China University of Geosciences (Beijing): 1-113. (in Chinese with English abstract)
    ZHOU Q, DU Y S, YUAN L J, et al., 2017. Exploration models of ancient natural gas seep sedimentary-type manganese ore deposit: a case study of the Nanhua period "Datangpo" type manganese ore in the conjunction area of Guizhou, Hunan and Chongqing[J]. Acta Geologica Sinica, 91(10): 2285-2298. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201710010&dbcode=CJFD&year=2017&dflag=pdfdown
    陈毓川, 陈郑辉, 曾载淋, 等, 2013. 南岭科学钻探第一孔选址研究[J]. 中国地质, 40(3): 659-670. doi: 10.3969/j.issn.1000-3657.2013.03.001
    成晨, 韩润生, 王雷, 等, 2019. 黔西北福来厂铅锌矿床构造成生发展及其控矿作用[J]. 地质力学学报, 25(1): 90-104. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190109&journal_id=dzlxxb
    邓振球, 王欣观, 1993. 新疆阿舍勒铜矿的发现与电法勘探[J]. 新疆地质, 11(1): 43-56. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI199301004.htm
    樊俊, 郭源阳, 成永生, 2019. 国家重点研发计划"深地资源勘查开采"攻关目标与任务剖析[J]. 中国地质, 46(4): 919-926. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201904021.htm
    范潇, 吕古贤, 王宗永, 等, 2015. 焦家金矿田构造蚀变岩填图及其地球化学特征分析[J]. 地学前缘, 22(4): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201504007.htm
    方维萱, 2016. 论热液角砾岩构造系统及研究内容、研究方法和岩相学填图应用[J]. 大地构造与成矿学, 40(2): 237-265. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201602006.htm
    方维萱, 2017. 地球化学岩相学的研究内容、方法与应用实例[J]. 矿物学报, 37(5): 509-527. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201705001.htm
    方维萱, 杜玉龙, 李建旭, 等, 2018. 大比例尺构造岩相学填图技术与找矿预测[M]. 北京: 地质出版社: 1-377.
    方维萱, 2019. 岩浆侵入构造系统Ⅰ: 构造岩相学填图技术研发与找矿预测效果[J]. 大地构造与成矿学, 43(3): 473-506. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201903008.htm
    甘凤伟, 王京彬, 朱思才, 等, 2018. 埃塞俄比亚北部VMS型铜多金属矿快速勘查方法[J]. 矿产勘查, 9(8): 1611-1621. doi: 10.3969/j.issn.1674-7801.2018.08.019
    高文利, 孔广胜, 潘和平, 等, 2015. 庐枞盆地科学钻探地球物理测井及深部铀异常的发现[J]. 地球物理学报, 58(12): 4522-4533. doi: 10.6038/cjg20151215
    韩润生, 2005. 隐伏矿定位预测的矿田(床)构造地球化学方法[J]. 地质通报, 24(10-11): 978-984. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2005Z1018.htm
    韩润生, 王雷, 方维萱, 等, 2011. 初论云南易门地区凤山铜矿床刺穿构造岩-岩相分带模式[J]. 地质通报, 30(4): 495-504. doi: 10.3969/j.issn.1671-2552.2011.04.006
    科兹洛夫斯基E A, 1989. 科拉超深钻井(上)[M]. 张秋生主译. 北京: 地质出版社: 1-218.
    李德亭, 袁怀雨, 2005. 赤峰柴胡栏子金矿构造控矿规律及找矿方向[J]. 金属矿山(6): 30-32, 66. doi: 10.3321/j.issn:1001-1250.2005.06.010
    李四光, 1953. 关于地质构造的三重基本概念[J]. 地质学报, 33(4): 253-260. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE195304000.htm
    李忠平, 2014. 应用综合物探方法探测新疆萨尔苏克外围及深部金铜矿床[J]. 物探与化探, 38(3): 417-422. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201403002.htm
    梁光河, 徐兴旺, 刘兴江, 等, 2019. 老挝万象盆地萨塔尼钾盐矿的构造变形与深部矿预测[J]. 大地构造与成矿学, 43(5): 934-942. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201905006.htm
    刘光鼎, 郝天珧, 刘伊克, 1997. 中国大地构造宏观格架及其与矿产资源的关系: 根据地球物理资料的认识[J]. 科学通报, 42(2): 113-118. doi: 10.3321/j.issn:0023-074X.1997.02.001
    刘光鼎, 2015. 深部探测: 诠释成矿过程、拓展深部资源[J]. 地球物理学报, 58(12): 4317-4318. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201512001.htm
    柳建新, 赵然, 郭振威, 2019. 电磁法在金属矿勘查中的研究进展[J]. 地球物理学进展, 34(1): 151-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201901020.htm
    刘振东, 吕庆田, 严加永, 等, 2012. 庐枞盆地浅表地壳速度成像与隐伏矿靶区预测[J]. 地球物理学报, 55(12): 3910-3922. doi: 10.6038/j.issn.0001-5733.2012.12.004
    刘正宏, 陈煜嵩, 贾振杨, 等, 2020. 地壳不同构造层次岩石变形机制及其构造岩类型[J]. 岩石学报, 36(8): 2344-2356. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202008006.htm
    吕古贤, 1989. 胶东半岛构造-岩相形式及玲珑-焦家式金矿的构造动力成岩成矿地质特征研究[D]. 北京: 中国地质科学院: 1-164.
    吕古贤, 1991. 构造物理化学的初步探讨[J]. 中国区域地质, (3): 254-261, 253. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD199103008.htm
    吕古贤, 2003. 构造物理化学的研究进展[J]. 科学通报, 48(2): 101-109. doi: 10.3321/j.issn:0023-074X.2003.02.001
    吕古贤, 2015. 矿田地质分类研究[J]. 地学前缘, 22(4): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201504002.htm
    吕古贤, 2019. 构造动力成岩成矿和构造物理化学研究[J]. 地质力学学报, 25(5): 962-980. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190523&journal_id=dzlxxb
    吕古贤, 邓军, 郭涛, 等, 1998. 玲珑-焦家式金矿构造变形岩相形迹大比例尺填图与构造成矿研究[J]. 地球学报, 19(2): 177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB802.010.htm
    吕古贤, 郭涛, 舒斌, 等, 2001. 构造变形岩相形迹的大比例尺填图及其对隐伏矿床地质预测——以胶东玲珑-焦家式金矿为例[J]. 中国区域地质, 20(3): 313-321. doi: 10.3969/j.issn.1671-2552.2001.03.016
    吕古贤, 孔庆存, 1993. 胶东玲珑-焦家式金矿地质[M]. 北京: 科学出版社: 1-253.
    吕古贤, 林文蔚, 罗元华, 等, 1999. 构造物理化学与金矿成矿预测[M]. 北京: 地质出版社: 1-400.
    吕古贤, 王红才, 韩璐, 等, 2020a. 新华夏构造体系结构面"米字型"分布与演化的数学模拟研究[J/OL]. 现代地质, [2021-07-17]. https://doi.org/10.19657/j.geoscience.1000-8527.2020.064.
    吕古贤, 武际春, 朱随洲, 等, 2016. 矿田地质学的概念和构造岩相分类[J]. 地质论评, 62(S1): 321-322.
    吕古贤, 张宝林, 胡宝群, 等, 2020b. 矿田构造变形岩相分类与应用效果[J]. 地质通报, 39(11): 1669-1680. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202011002.htm
    吕古贤, 张宝林, 吕承训, 等, 2020c. 长江中下游地区新华夏构造体系的"米字型"结构特征[J/OL]. 现代地质, [2021-07-17]. https://doi.org/10.19657/j.geoscience.1000-8527.2020.065.
    吕庆田, 董树文, 汤井田, 等, 2015. 多尺度综合地球物理探测: 揭示成矿系统、助力深部找矿: 长江中下游深部探测(SinoProbe-03)进展[J]. 地球物理学报, 58(12): 4319-4343. doi: 10.6038/cjg20151201
    任广利, 王核, 刘建平, 等, 2009. 新疆阿勒泰地区多拉纳勒铜矿地质特征与找矿预测[J]. 新疆地质, 27(1): 24-27. doi: 10.3969/j.issn.1000-8845.2009.01.006
    宋丹辉, 韩润生, 王明志, 等, 2020. 黔西北青山铅锌矿床主要控矿断裂构造岩-岩相分带模式[J]. 地质力学学报, 26(3): 376-390. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200307&journal_id=dzlxxb
    田建磊, 秦纪华, 郑开平, 等, 2014. 可控源音频大地电磁测深在阿舍勒铜锌矿床深部找矿中的应用[J]. 矿床地质, 33(S1): 821-822. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2014S1413.htm
    涂光熾, 1959. 祁连山的构造-岩相带[J]. 地质科学, 2(7): 193-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX195907000.htm
    万国普, 1994. 胶东破碎带蚀变岩型金矿地质-地球物理找矿模型[J]. 山东地质, 10(2): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI402.004.htm
    未晛, 杨志芳, 晏信飞, 2019. 地震勘探中的多尺度问题及其研究进展[J]. 地球物理学进展, 34(6): 2353-2360. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201906027.htm
    吴才来, 董树文, 王陆太, 等, 2016. 铜陵矿集区深部发现126 Ma的正长花岗岩: 来自3000 m科学钻探的证据[J]. 中国地质, 43(5): 1495-1513. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201605003.htm
    吴晓贵, 秦纪华, 陈鹏, 等, 2019. 阿尔泰阿舍勒铜锌矿床模型及找矿靶区预测[J]. 新疆地质, 37(4): 510-515. doi: 10.3969/j.issn.1000-8845.2019.04.012
    吴晓贵, 秦纪华, 胡林朝, 等, 2020. 基于GeoModeller的新疆阿舍勒铜锌矿三维地质模型及地质空间信息解译[J]. 矿产与地质, 34(4): 826-831. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD202004025.htm
    肖晓, 汤井田, 周聪, 等, 2011. 庐枞矿集区大地电磁探测及电性结构初探[J]. 地质学报, 85(5): 873-886. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201404004.htm
    徐述平, 2009. 招平断裂带金矿勘查模型与成矿预测[D]. 北京: 中国地质大学(北京): 1-186.
    薛怀民, 吴明安, 马芳, 2014. 庐枞科学钻探预导孔(LZSD)揭示的庐枞火山岩盆地深部岩石组合与蚀变矿化作用[C]//2014年中国地球科学联合学术年会: 专题62: 深部探测技术与实验: 科学钻探与地球化学基准论文集. 北京: 中国地球物理学会: 2735-2737.
    印兴耀, 宗兆云, 吴国忱, 2015. 岩石物理驱动下地震流体识别研究[J]. 中国科学: 地球科学, 45(1): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201501002.htm
    曾庆栋, 陈岩, 李国良, 等, 2003. 内蒙红花沟金矿构造控矿规律及找矿方向[J]. 黄金科学技术, 11(5): 7-11. doi: 10.3969/j.issn.1005-2518.2003.05.002
    张宝林, 苏艳平, 张国梁, 等, 2017. 胶东典型含矿构造岩相带的地质-地球物理信息预测方法与找矿实践[J]. 地学前缘, 24(2): 85-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201702015.htm
    张宝林, 苗雅娜, 苏艳平, 等, 2018. "地物化三场异常耦合理论"及其在隐伏金多金属矿床定位预测中的应用[J]. 黄金科学技术, 26(4): 431-442. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKJ201804008.htm
    张宝林, 吕古贤, 梁光河, 等, 2019. 胶东金矿田的深部地球物理勘查模式初步研究[J]. 地质力学学报, 25(S1): 150-156. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=2019S126&journal_id=dzlxxb
    张宝林, 吕古贤, 余建国, 等, 2020. 胶东玲珑金矿田不同矿段构造变形岩相带特征与深部找矿预测[J]. 地质通报, 39(11): 1681-1691. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202011003.htm
    张伟, 曾昭光, 周军, 等, 2020. 宽频大地电磁法寻找"界面型"隐伏金矿床: 以黔西南戈塘地区深部找矿为例[J/OL]. 中国地质, [2021-07-17]. https://kns.cnki.net/kcms/detail/11.1167.P.20200709.1339.002.html.
    赵正, 陈毓川, 郭娜欣, 等, 2014. 南岭科学钻探0~2000 m地质信息及初步成果[J]. 岩石学报, 30(4): 1130-1144. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201404018.htm
    周国发, 2009. 玲珑金矿田构造蚀变岩带及找矿预测研究[D]. 北京: 中国地质大学(北京): 1-113.
    周琦, 杜远生, 袁良军, 等, 2017. 古天然气渗漏沉积型锰矿床找矿模型: 以黔湘渝毗邻区南华纪"大塘坡式"锰矿为例[J]. 地质学报, 91(10): 2285-2298. doi: 10.3969/j.issn.0001-5717.2017.10.010
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  156
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-01
  • 修回日期:  2021-07-06
  • 刊出日期:  2021-08-28

目录

    /

    返回文章
    返回