The migration rule of the ore-forming fluids in the Meso-Cenozoic Basins, Southwestern Tianshan, China
-
摘要: 乌拉根铅锌矿床和萨热克铜矿床是西南天山中新生代盆地最有代表性的两个层控砂砾岩型矿床,乌拉根铅锌矿床产于下白垩统克孜勒苏群第五岩性段(K1kz5)的粗砂质细砾岩中,后期经历了弱的构造改造作用;萨热克铜矿床产于上侏罗统库孜贡苏组上段(J3k2)杂砾岩中,其北矿段后期经历了强烈的构造改造作用,南矿段可见岩浆热液蚀变作用后的褪色化及叠加成矿作用。为了研究成矿流体和岩浆热液在岩石中的运移规律,分别对上述两个矿区以沉积作用、构造改造作用和岩浆作用为主的代表性岩石测定了孔隙度和渗透率。测试结果表明乌拉根矿区岩(矿)石的孔隙度和渗透率总体比萨热克矿区岩石的孔隙度和渗透率要小;乌拉根铅锌矿区和萨热克铜矿区北矿段矿石的孔隙度和渗透率均小于下盘围岩的孔隙度和渗透率;萨热克铜矿区南矿段经历了岩浆热液蚀变,岩石的孔隙度和渗透率明显小于未受岩浆作用的岩石孔隙度和渗透率,且辉绿岩脉下盘岩石的孔隙度和渗透率明显小于上盘。同时通过岩(矿)石组构分析,上述岩(矿)石在成岩和成矿后孔隙度和渗透率的变化均与成矿流体或岩浆热液的作用密切相关。在西南天山中新生代层控型矿床中,当成矿流体沿切层断裂上升后会优先选择孔隙度和渗透率高的岩层进行渗滤、扩散、充填和交代作用。岩石中的砾石砾径越大,砾石间隙越大;岩石的硬度越大,其在后期构造变形中越容易形成构造裂隙,对成矿越有利,这也是造成萨热克铜矿北矿带中的金属硫化物颗粒明显大于乌拉根铅锌矿中金属硫化物的重要原因。上述结果表明沉积盆地中成矿流体或岩浆热液的成矿作用越强,岩石受其影响在成岩成矿后的孔隙度和渗透率越会变小,从岩石的孔隙度和渗透率可间接反映成矿过程中成矿作用的强弱,为寻找富矿体提供理论依据。Abstract: The Wulagen pb-zn deposit and the Sareke copper deposit, two most representative strata-bound glutenite deposits in the Meso-Cenozoic Basins in Southwestern Tianshan, are the subjects of our study. The Wulagen pb-zn deposit occurred in the coarse sandy fine conglomerates in the Section 5 of the Lower Cretaceous Kizilsu group(K1kz5) and have underwent weak tectonic reworking in the late period; The Sareke copper deposit occurred in anagenites in the upper section of Upper Jurassic Kuzigongsu formation (J3k2), and the northern part shows obvious tectonic reworking and enrichment mineralization, while the southern part shows discoloration and superposition mineralization after magmatic hydrothermal alteration. In order to study the migration law of ore-forming fluids and magmatic hydrothermal fluids in rocks, the porosity and permeability of the representative rocks dominated by sedimentation, tectonic reworking and magmatic hydrothermal alteration in the two mining areas were measured respectively. The test results show that the rocks in the Wulagen deposit area generally have low porosity and permeability than those in the Sareke deposit; the rocks in the Wulagen lead-zinc deposit and the northern part of the Sareke copper deposit have low porosity and permeability than their footwall rocks; the porosity and permeability of the rocks subjected to magmatic hydrothermal alteration in the southern part of the Sareke copper deposit are obviously lower than those not subjected to magmatic alteration, and the porosity and permeability of the footwall rocks of diabase dike are significantly lower than those of the upper rocks. According to the analysis of rock (ore) fabric, the changes of porosity and permeability after diagenesis and mineralization are closely related to the action of ore-forming fluids or magmatic hydrothermal fluids. In the Meso-Cenozoic strata-bound deposits in the southwestern Tianshan Mountains, rock strata with high porosity and permeability are preferred to be permeated, diffused, filled and metasomatized when ore-forming fluids rise along the cutting layer faults. The larger the gravel diameter is in the rock, the larger the gravel gap is; the greater the hardness of the rock, the easier it is to form structural cracks in the later tectonic deformation, and the more favorable it is for mineralization. This is also the important reason that the metal sulfide particles in the northern part of the Sareke copper deposit are obviously larger than those in the Wulagen lead-zinc deposit. In the process of magma intrusion, the alteration of the footwall quartz sandstone by the magmatic hydrothermal fluids is stronger than that of the hanging wall. The above results indicate that the stronger the mineralization of ore-forming fluids or magmatic hydrothermal fluids are in sedimentary basins, the lower the porosity and permeability of affected rocks will be after diagenesis and mineralization. The porosity and permeability of rocks can indirectly reflect the strength of mineralization and provides a theoretical basis for searching for ore shoots.
-
图 1 西南天山区域地质图
1—第四系;2—新近系;3—渐新统—中新统克孜洛依组;4—古近系;5—白垩系;6—侏罗系;7—三叠系;8—二叠系;9—石炭系;10—泥盆系;11—志留系;12—中元古代长城系阿克苏群;13—晚志留世—早泥盆世超铁镁质岩石;14—辉绿岩脉;15—地质界线;16—角度不整合;17—正断层;18—逆断层;19—性质不明断层;20—推测断层;21—铜矿点;22—铅锌矿点;23—金矿;24—锶矿点;25—铁矿点;26—铝土矿点;27—铅锌铜矿点;28—地名;29—水系;30—矿区; 31—构造缝合带;32—逆冲推覆构造带
Figure 1. Regional geological map of the southwestern Tianshan area
1-Quaternary system; 2-Neogene system; 3-Oligocene-Miocene Keziluoyi formation; 4-Paleogene system; 5-Cretaceous system; 6-Jurassic system; 7-Triassic system; 8-Permian system; 9-Carboniferous system; 10-Devonian system; 11-Silurian system; 12-Mesoproterozoic Changcheng system Akesu group; 13-Late Silurian-Early Devonian ultramafic rocks; 14-Diabasic dike; 15-Geological boundary; 16-Angular unconformity; 17-Fault; 18-Copper occurrence; 19-Lead-Zinc occurrence; 20-Gold deposit; 21-Strontium occurrence; 22-Iron occurrence; 23-Bauxite occurrence; 24-Copper polymetallic occurrence; 25-Place name; 26-River; 27-Mine area; 28-Structural suture zone; 29-Thrust nappe belt
图 2 乌拉根铅锌矿床和萨热克铜矿床岩不同(矿)石特征
a—乌拉根露天采场;b—乌拉根含矿粗砂质细砾岩;c—萨热克铜矿北矿带含矿杂砾岩与上覆紫红色泥岩界线;d—萨热克铜矿北矿带含矿杂砾岩;e—萨热克铜矿南矿带辉绿岩脉切层侵入;f—萨热克铜矿南矿带辉绿岩脉顺层侵入
Figure 2. The characteristics of different rocks (ores) in the Wulagen Pb-Zn deposit and the Sareke copper deposit. (a) Open pit of the Wulagen deposit. (b) Ore-bearing coarse sandy fine conglomerate of the Wulagen deposit. (c) The boundary between the ore-bearing anagenite and the overlying purplish mudstone in the northern part of the Sareke copper deposit. (e) Cutting layer intrusion of the diabasic dike in the southern part of the Sareke deposit. (f) Concordant intrusion of the diabasic dike in the southern part of the Sareke deposit.
图 3 乌拉根铅锌床S7-N15号勘探线剖面图(据王勃等,2013修改)
1—中新统安居安组;2—渐新统—中新统克孜洛伊组;3—始新统—渐新统巴什布拉克组;4—始新统乌拉根组;5—始新统卡拉塔尔组;6—古新统—始新统齐姆根组;7—古新统阿尔塔什组;8—下白垩统克孜勒苏群五段;9—地质界线;10—角度不整合界线;11—铅锌矿体;12—铅锌矿化体;13—钻孔
Figure 3. Section of the exploration line S7-N15 in the Wulagan Pb-Zn deposit (Modified after Wang et al., 2013)
1-Miocene Anju'an formation; 2-Oligocene-Miocene Keziluoyi formation; 3-Eocene-Oligocene Bashibulake formation; 4-Eocene Wulagen formation; 5-Eocene Kalataer formation; 6-Palaeocene-Eocene Qimugen formation; 7-Palaeocene Aertashi formation; 8-The fifth section of the Kezilesu Group in the Lower Cretaceous; 9-Geological boundary; 10-Angular unconformity; 11-Pb-Zn orebody; 12-Pb-Zn mineralized body; 13-borehole
图 4 萨热克铜矿床成矿地质模型
1—砂砾岩型铜矿化;2—砂岩型铜矿化;3—砂岩型铅锌矿化;4—辉绿岩脉;5—沥青化;6—砂砾岩;7—石英砂岩;8—泥质灰岩;9—粉砂质泥岩;10—煤层;11—变质片岩;12—大理岩;13—基性火山岩;14—中元古代长城系阿克苏群;15—断层
Figure 4. Metallogenic model of the Sareke copper deposit
1-Glutenite-type copper mineralization; 2-Sandstone-type copper mineralization; 3-Sandstone-type Pb-Zn mineralization; 4-Diabasic dike; 5-Bituminization; 6-Glutenite; 7-Quartz Sandstone; 8-Argillaceous limestone; 9-Silty mudstone; 10-Coal bed; 11-Metamorphic schist; 12-Marble; 13-Basic volcanic rock; 14-Mesoproterozoic Changcheng system Akesu group; 15-Fault
图 5 萨热克铜矿岩矿石显微组构特征
a—沉积成因石英砂岩(正交光);b—沉积成因石英砂岩(反射光);c—岩浆热液蚀变石英砂岩(正交光);d—岩浆热液蚀变石英砂岩(反射光)
Figure 5. Feature of micro-fabric for the rocks (ores) of the Sareke copper deposit. (a) Sedimentary quartz sandstone (orthogonal polarized light). (b) Sedimentary quartz sandstone(reflected light). (c) Magmatic hydrothermal alteration of quartz sandstone(orthogonal polarized light). (d) Magmatic hydrothermal alteration of quartz sandstone(reflected light)
表 1 乌拉根-萨热克不同岩(矿)石渗透率和孔隙度测试结果
Table 1. Test results of permeability and porosity for different rocks (ores) from the Wulagen deposit and the Sareke deposit
序号 采样位置 样号 地质特征简述 地层代号 气测渗透率/×10-3μm2 孔隙度/% 备注 1 乌拉根铅锌矿 A01 粗砂质细砾岩 K1kz5 2.9138 10.100 矿化蚀变 2 A02 岩屑砂岩 0.0395 10.920 3 A03 浅紫红色含砾砂岩 K1kz4 71.1967 23.880 沉积成因 4 A04 灰绿色含砾粗砂岩 K1kz3 80.3025 23.450 5 A05 深紫红色砂质泥岩 K1kz1 10.4536 18.120 6 萨热克铜矿北矿带 B01 褐红色粉砂质泥岩 K1kz1 0.00212 1.555 沉积成因 7 B02 褐红色粉砂质泥岩 0.00311 1.409 8 B03 褐红色粉砂质泥岩 0.00295 1.212 9 B04 杂砾岩 J3k2 0.04306 2.662 盆地改造弱碳酸盐化胶结 10 B05 杂砾岩 0.09354 2.423 11 B06 杂砾岩 0.04786 2.140 12 B08 含铜砾岩 0.01010 1.798 盆地改造强碳酸盐-硅化-硫化物胶结 13 B09 含铜砾岩 0.00353 1.552 14 B10 含铜砾岩 0.06578 1.767 15 B11 含铜砾岩 0.00815 1.331 16 B12 含铜砾岩 0.02900 1.750 17 B13 灰绿色石英砂岩 J3k1 0.01364 3.212 沉积成因 18 B14 灰绿色石英砂岩 0.01454 3.129 19 B15 灰绿色石英砂岩 0.02514 4.819 20 萨热克铜矿南矿带 C01 紫红色石英砂岩 K1kz2 2.33821 9.080 沉积成因 21 C02 浅灰绿色石英砂岩 0.18142 8.950 22 C03 灰白色石英砂岩 0.06108 7.700 23 C04 灰白色石英砂岩(辉绿岩脉上盘) K1kz2 0.01599 6.340 岩浆热液蚀变 24 C05 灰白色石英砂岩(辉绿岩脉下盘) 0.02333 3.460 25 C06 灰白色石英砂岩(辉绿岩脉上盘) 0.08403 5.890 26 C07 灰白色含铜石英砂岩(辉绿岩脉下盘) 0.02381 2.500 27 C08 灰白色石英砂岩(辉绿岩脉上盘) 0.15856 6.710 28 C09 灰白色石英砂岩(辉绿岩脉下盘) 0.02705 3.790 29 C10 灰白色石英砂岩(辉绿岩脉上盘) 0.04870 5.250 30 C11 灰白色石英砂岩(辉绿岩脉下盘) 0.03250 4.270 表 2 乌拉根-萨热克不同岩(矿)石力学参数
Table 2. Mechanical parameters of different rocks (ores) from the Wulagen deposit and the Sareke deposit
序号 采样位置 样号 岩石名称 地层代号 单轴抗压强度/MPa 抗拉强度/MPa 单轴压缩变形/MPa 泊松比 资料来源 饱和 烘干 饱和 烘干 弹性模量 变形模量 1 乌拉根铅锌矿 R10-岩-719 (顶板)白云岩 E1a 20.0 38.8 1.46 2.6 5.59 8.14 0.22 王勃等, 2013 2 R10-岩-720 (矿体)粗砂质细砾岩 K1kz5 2.43 7.24 0.08 0.22 0.36 0.198 0.35 3 R10-岩-721 (底板)砂岩 K1kz1 2.6 10.9 0.28 1.07 0.23 0.24 0.35 4 萨热克铜矿 Y1、Y2、Y6、Y10 (顶板)粉砂岩 K1kz1 64.3 96.1 4.56 8.89 19.8 15.6 0.24 陈和焰等,2012 5 Y3、Y4、Y7、Y8 (矿体)杂砾岩 J3k2 39.0 117.0 2.69 8.39 14.6 11.0 0.25 6 Y5、Y9、Y11、Y12 (底板)含砾砂岩 J3k1 34.7 106.0 3.74 10.9 7.83 6.12 0.25 -
CHEN H Y, WANG H B, WU K Q, et al., 2012. The exploration report of North part of Sareke copper deposit in Wuqia, Xinjiang Xinjiang[R]. Kashi: Huixiang Yongjin Mining Co., Ltd. (in Chinese) CHEN Z Q, MIAO X X, 2001. The influenced factors of rock permeability[J]. Ground Pressure and Strata Control(2): 83-84, 86. (in Chinese) DENG J, CHEN X M, FANG Y, et al., 2000. Characteristics of late Paleozoic fluid system of the Yuebei sedimentary basin[J]. Earth Science Frontiers, 7(3): 95-102. (in Chinese with English abstract) FANG W X, JIA R X, GUO Y Q, et al., 2016. Hydrocarbon-rich basin fluid with reductibility and metallogenic mechanism for Glutenite-type Cu-Pb-Zn-U deposits in the western of Tarim basin[J]. Journal of Earth Sciences and Environment, 38(6): 727-752. (in Chinese with English abstract) http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX201606001.htm FANG W X, WANG L, LU J, et al., 2017a. Chloritization facies and restoration of heat flux for tectonic-magmatic-thermal events of sareke copper mine in the Xinjiang Uygur autonomous region, China[J]. Acta Mineralogica Sinica, 37(5): 661-675. (in Chinese with English abstract) FANG W X, JIA R X, WANG L, 2017b. Types of basin fluids, mechanism of discolored alterations and metal mineralizations of Glutenite-type Cu-Pb-Zn-U deposits in intercontinental Red-Bed basin of the Western Tarim basin[J]. Journal of Earth Sciences and Environment, 39(5): 585-619. (in Chinese with English abstract) FENG J W, DAI J S, LIU M L, 2011. Theoretical model about fracture porosity, permeability and stress field in the low-permeability sandstone[J]. Journal of Geomechanics, 17(4): 303-311. (in Chinese with English abstract) GU J Y, FAN T Z, FANG H, et al., 2001. Fluid migration and oil reservoirs in the Tarim Basin[J]. Geological Review, 47(2): 201-206. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200102016.htm HAN F B, CHEN Z L, LIU Z R, et al., 2013. Organic geochemistry of Wulagen Pb-Zn deposit in Southwest Tianshan Mountains and its implications[J]. Mineral Deposits, 32(3): 591-602. (in Chinese with English abstract) http://www.researchgate.net/publication/284862731_Organic_geochemistry_of_the_Wulagen_Pb-Zn_deposit_in_the_Southwest_Tianshan_mountains_and_its_implications JIA R X, FANG W X, WANG L, et al., 2016. Mineral prediction methods in Sareke copper polymetallic deposit, Xinjiang[J]. Mineral Exploration, 7(6): 965-970. (in Chinese with English abstract) JIA R X, FANG W X, WANG L, et al., 2017. Hydrocarbon-rich reducing basin fluid with in Sareke Glutenite type copper deposit, Wuqia, Xinjiang[J]. Geotectonica et Metallogenia, 41(4): 721-733. (in Chinese with English abstract) JIA R X, FANG W X, LI J X, et al., 2018. Re-Os isotopic dating and its geological significance from Sareke copper deposit in Wuqia, Xinjiang[J]. Mineral Deposits, 37(1): 151-162. (in Chinese with English abstract) LI X D, WANG K Z, 2000. The Tethys framework and its tectonic significance of southwest Tarim and the adjacent region[J]. Xinjiang Geology, 18(2): 113-120. (in Chinese with English abstract) LI Z D, XUE C J, XIN J, et al., 2011. Geological characteristics and sulfur-lead-isotope geochemistry of Sareke copper deposit in Wuqia County, Xinjiang[J]. Geoscience, 25(4): 720-729. (in Chinese with English abstract) LIU J J, LIU X G, 2001. The effect of effective pressure on porosity and permeability of low permeability porous media[J]. Journal of Geomechanics, 7(1): 41-44. (in Chinese with English abstract) LIU J M, YE J, LIU J J, et al., 2000. Oil accumulation and ore-formation[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 19(3): 164-171. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200003004.htm LIU Z R, TIAN P R, ZHU X Y, et al., 2011. Ore-forming geological characteristics and metallogenic model on Wulagen lead-zinc deposit, Xinjiang[J]. Mineral Exploration, 2(6): 669-680. (in Chinese with English abstract) OU G X, LI L Q, SUN Y M, 2006. Theory and application of the fluid inclusion research on the sedimentary basins[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 25(1): 1-11. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200601000.htm SHANG C J, KANG Y S, DENG Z, et al., 2019. The influence mechanism of filled natural fractures on the variation law of shale permeability in loading process[J]. Journal of Geomechanics, 25(3): 382-391. (in Chinese with English abstract) WANG B, MO X H, YANG Z J, 2013. The exploration report of Wulugantashi lead-zinc deposit in Wuqia, Xinjiang[R]. Kashi: Zijin Mining Group Co., Ltd. (in Chinese) WANG G Z, HU R Z, SU W C, et al., 2003. Fluid flow and mineralization of Youjiang Basin in the Yunnan-Guizhou-Guangxi area, China[J]. Science in China Series D: Earth Sciences, 46(1): 99-109. http://www.cnki.com.cn/Article/CJFDTotal-JDXG2003S1008.htm WANG H L, XU W Y, ZUO J, et al., 2015. Evolution law of the permeability and porosity for low-permeability rock based on gas permeability test[J]. Journal of Hydraulic Engineering, 46(2): 208-216. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB201502010.htm WANG Z L, 2000. Development characteristics of fluid dynamics in reformed basins[J]. Oil & Gas Geology, 21(1): 24-27, 37. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_oil-gas-geology_thesis/0201218403738.html WU G Y, LIANG J P, YANG J G, et al., 2012. Application of basin-orogeny coupling in study of abnormally high pressured basin fluids[J]. Petroleum Geology & Experiment, 34(3): 223-233. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201203000.htm WU W, GU B H, WANG K, et al., 2009. Code for investigation of geotechnical engineering/(GB 50021-2001)[S]. Beijing: china building industry press. (in Chinese) XUE C J, CHI G X, CHEN Y C, et al., 2007. Fluid dynamic processes of large-scale mineralization in the Lanping Basin, Yunnan, SW-China: evidence from fluid inclusions and basin fluid modeling[J]. Earth Science Frontiers, 14(5): 147-157. (in Chinese with English abstract) doi: 10.1016/S1872-5791(07)60042-6 XUE C J, XUE W, KANG M, et al., 2008. The fluid dynamic processes and its uranium mineralization of sandstone-type in the Ordos Basin, China[J]. Geoscience, 22(1): 1-8. (in Chinese with English abstract) http://www.researchgate.net/publication/283408915_The_fluid_dynamic_processes_and_its_uranium_mineralization_of_sandstone-type_in_Ordos_Basin_China?ev=auth_pub XIE X N, CHENG J M, MENG Y L, 2009. Basin Fluid flow and associated diagenetic processes[J]. Acta Sedimentologica Sinica, 27(5): 863-871. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200905011.htm YANG Q J, LIU L, CHI Y L, et al., 2000. The basic type and drive mechanism of basinfluid[J]. World Geology, 19(1): 15-19. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJDZ200001003.htm YANG R Y, MA D S, PAN J Y, 2005. Effect of permeability on the thermal and fluid fields of ore-forming fluids: a case study from Xikuangshan Antimony deposit[J]. Geological Science and Technology Information, 24(3): 80-84. (in Chinese with English abstract) http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200503017.htm YU Y X, WANG Z X, ZHANG K X, et al., 2020. Advances in quantitative characterization of shale pore structure by using fluid injection methods[J]. Journal of Geomechanics, 26(2): 201-210. (in Chinese with English abstract) ZENG Z P, WANG Q J, LI J, et al., 2019. Study on seepage characterstics of tight reservoirs under multi-field coupling[J]. Journal of Geomechanics, 25(6): 1068-1074. (in Chinese with English abstract) ZHAO C Y, JIN J Q, 2009. Fluid drainage system of petroliferous basins and its hydrocarbon accumulation principle[J]. Acta Petrolei Sinica, 30(5): 635-641. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200905002.htm ZHOU L M, ZHANG D H, XI B B, 2008. Rock permeability, fluid flow and hydrothermal ore-forming processes[J]. Earth Science Frontiers, 15(3): 299-310. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200803030.htm ZOU H Y, HAO F, ZHANG B Y, et al., 2005. Fluid-conduit framework and its control on petroleum accumulation in the Junggar Basin[J]. Earth Science-Journal of China University of Geosciences, 30(5): 609-616. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200505013.htm 陈和焰, 王华斌, 吴克强等, 2012. 新疆维吾尔自治区乌恰县萨热克铜矿床北矿段勘探报告[R]. 喀什: 新疆汇祥永金矿业有限公司. 陈占清, 缪协兴, 2001. 影响岩石渗透率的因素分析[J]. 矿山压力与顶板管理(2): 83-84, 86. doi: 10.3969/j.issn.1673-3363.2001.02.032 邓军, 陈学明, 方云, 等, 2000. 粤北盆地流体系统及其矿化特征[J]. 地学前缘, 7(3): 95-102. doi: 10.3321/j.issn:1005-2321.2000.03.010 方维萱, 贾润幸, 郭玉乾, 等, 2016. 塔西地区富烃类还原性盆地流体与砂砾岩型铜铅锌-铀矿床成矿机制[J]. 地球科学与环境学报, 38(6): 727-752. doi: 10.3969/j.issn.1672-6561.2016.06.001 方维萱, 王磊, 鲁佳, 等, 2017a. 新疆萨热克铜矿床绿泥石化蚀变相与构造-岩浆-古地热事件的热通量恢复[J]. 矿物学报, 37(5): 661-675. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201705018.htm 方维萱, 贾润幸, 王磊, 2017b. 塔西陆内红层盆地中盆地流体类型、砂砾岩型铜铅锌-铀矿床的大规模褪色化围岩蚀变与金属成矿[J]. 地球科学与环境学报, 39(5): 585-619. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201705002.htm 冯建伟, 戴俊生, 刘美利, 2011. 低渗透砂岩裂缝孔隙度、渗透率与应力场理论模型研究[J]. 地质力学学报, 17(4): 303-311. doi: 10.3969/j.issn.1006-6616.2011.04.001 顾家裕, 范土芝, 方辉, 等, 2001. 塔里木盆地流体与油气藏[J]. 地质论评, 47(2): 201-206. doi: 10.3321/j.issn:0371-5736.2001.02.014 韩凤彬, 陈正乐, 刘增仁, 等, 2013. 西南天山乌拉根铅锌矿床有机地球化学特征及其地质意义[J]. 矿床地质, 32(3): 591-602. doi: 10.3969/j.issn.0258-7106.2013.03.010 贾润幸, 方维萱, 王磊, 等, 2016. 新疆萨热克铜多金属矿成矿预测方法[J]. 矿产勘查, 7(6): 965-970. doi: 10.3969/j.issn.1674-7801.2016.06.011 贾润幸, 方维萱, 王磊, 等, 2017. 新疆萨热克砂砾岩型铜矿床富烃类还原性盆地流体特征[J]. 大地构造与成矿学, 41(4): 721-733. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201704009.htm 贾润幸, 方维萱, 李建旭, 等, 2018. 新疆萨热克铜矿床铼-锇同位素年龄及其地质意义[J]. 矿床地质, 37(1): 151-162. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201801011.htm 李向东, 王克卓, 2000. 塔里木盆地西南及邻区特提斯格局和构造意义[J]. 新疆地质, 18(2): 113-120. doi: 10.3969/j.issn.1000-8845.2000.02.003 李志丹, 薛春纪, 辛江, 等, 2011. 新疆乌恰县萨热克铜矿床地质特征及硫、铅同位素地球化学[J]. 现代地质, 25(4): 720-729. doi: 10.3969/j.issn.1000-8527.2011.04.013 刘建军, 刘先贵, 2001. 有效压力对低渗透多孔介质孔隙度、渗透率的影响[J]. 地质力学学报, 7(1): 41-44. doi: 10.3969/j.issn.1006-6616.2001.01.005 刘建明, 叶杰, 刘家军, 等, 2000. 论盆地流体成矿/成烃作用的耦合关系[J]. 矿物岩石地球化学通报, 19(3): 164-171. doi: 10.3969/j.issn.1007-2802.2000.03.004 刘增仁, 田培仁, 祝新友, 等, 2011. 新疆乌拉根铅锌矿成矿地质特征及成矿模式[J]. 矿产勘查, 2(6): 669-680. doi: 10.3969/j.issn.1674-7801.2011.06.005 欧光习, 李林强, 孙玉梅, 2006. 沉积盆地流体包裹体研究的理论与实践[J]. 矿物岩石地球化学通报, 25(1): 1-11. doi: 10.3969/j.issn.1007-2802.2006.01.001 尚春江, 康永尚, 邓泽等, 2019. 充填天然裂缝对页岩受载过程中渗透率变化规律影响机理分析[J]. 地质力学学报, 25(3): 382-391. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190308&journal_id=dzlxxb 王勃, 莫新华, 杨泽军, 2013. 新疆乌恰县乌鲁干塔什铅锌矿勘探报告[R]. 喀什: 紫金矿业集团股份有限公司. 王国芝, 胡瑞忠, 苏文超等, 2002. 滇-黔-桂地区右江盆地流体流动与成矿作用[J]. 中国科学(D辑), 32(S1): 78-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2002S1008.htm 王环玲, 徐卫亚, 左婧, 等, 2015. 低渗透岩石渗透率与孔隙率演化规律的气渗试验研究[J]. 水利学报, 46(2): 208-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201502010.htm 王震亮, 2000. 改造型盆地流体动力学的发育特点[J]. 石油与天然气地质, 21(1): 24-27, 37. doi: 10.3321/j.issn:0253-9985.2000.01.007 吴根耀, 梁江平, 杨建国等, 2012. "盆""山"耦合在异常高压盆地流体研究中的应用[J]. 石油实验地质, 34(3): 223-233. doi: 10.3969/j.issn.1001-6112.2012.03.001 武威, 顾宝和, 王铠等, 2009. 岩土工程勘察规范/(GB 50021-2001)[S]. 北京: 中国建筑工业出版社. 薛春纪, CHI Guoxiang, 陈毓川等, 2007. 西南三江兰坪盆地大规模成矿的流体动力学过程: 流体包裹体和盆地流体模拟证据[J]. 地学前缘, 14(5): 147-157. doi: 10.3321/j.issn:1005-2321.2007.05.015 薛春纪, 薛伟, 康明, 等, 2008. 鄂尔多斯盆地流体动力学过程及其砂岩型铀矿化[J]. 现代地质, 22(1): 1-8. doi: 10.3969/j.issn.1000-8527.2008.01.001 解习农, 成建梅, 孟元林, 2009. 沉积盆地流体活动及其成岩响应[J]. 沉积学报, 27(5): 863-871. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200905011.htm 杨庆杰, 刘立, 迟元林, 等, 2000. 盆地流体的基本类型及其驱动机制[J]. 世界地质, 19(1): 15-19. doi: 10.3969/j.issn.1004-5589.2000.01.003 杨瑞琰, 马东升, 潘家永, 2005. 地层渗透率对成矿流体热场和流场的影响: 以锡矿山锑矿床成矿流体为例[J]. 地质科技情报, 24(3): 80-84. doi: 10.3969/j.issn.1000-7849.2005.03.016 俞雨溪, 王宗秀, 张凯逊等, 2020. 流体注入法定量表征页岩孔隙结构测试方法研究进展[J]. 地质力学学报, 26(2): 201-210. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200205&journal_id=dzlxxb 曾治平, 王千军, 李静, 等, 2019. 多场耦合作用下致密储层渗流特性研究[J]. 地质力学学报, 25(6): 1068-1074. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190607&journal_id=dzlxxb 赵重远, 靳久强, 2009. 含油气盆地流体流域系统及其油气聚集原理[J]. 石油学报, 30(5): 635-641. doi: 10.3321/j.issn:0253-2697.2009.05.001 周利敏, 张德会, 席斌斌, 2008. 岩石中的渗透率、流体流动及热液成矿作用[J]. 地学前缘, 15(3): 299-310. doi: 10.3321/j.issn:1005-2321.2008.03.027 邹华耀, 郝芳, 张柏桥, 等, 2005. 准噶尔盆地流体输导格架及其对油气成藏与分布的控制[J]. 地球科学-中国地质大学学报, 30(5): 609-616. doi: 10.3321/j.issn:1000-2383.2005.05.014