Geochemical characteristics of the Tertiary and Quaternary eolian deposits in eastern Gansu province: Implications for provenance and weathering intensity
-
摘要: 甘肃省平凉市灵台县邵寨镇剖面风尘堆积底界年龄大约为5.23 Ma B.P.,通过对该剖面新近纪红粘土与第四纪黄土-古土壤序列的常量元素、微量元素、Nd同位素的测试,分析其在物源和风化方面的指示意义,发现新近纪红粘土与第四纪黄土具有相似的常量、微量元素UCC标准化曲线和稀土元素球粒陨石标准化曲线,指示二者皆来自广阔的物源区,经过了相似的搬运过程,并在搬运中得到充分混合。新近纪红粘土的MgO、Li、Cs、Bi含量较高,Na2O、稀土元素La-Lu、Y含量较低。风化参数Na2O/Al2O3、化学风化参数CIA以及Al2O3-CaO+Na2O-K2O (A-CN-K)图,均显示新近纪红粘土比第四纪黄土经历了更为强烈的风化过程。新近纪红粘土的稳定元素比值(TiO2/Al2O3,SiO2/Al2O3,SiO2/TiO2,Zr/Hf,Nb/Ta,Lu/Hf,Y/Ho,Th/Nb和Hf/Nb)、稀土元素总量、轻稀土与重稀土的分异程度、轻稀土内部分异程度、重稀土内部分异程度、Ce和Eu的异常程度、同位素εNd(0) 值等,皆与第四纪黄土无太大差异,指示二者物质来源一致。粒度以及风化强度的差异,可能是导致新近纪红粘土与第四纪黄土常量和微量元素含量差异的主要原因。Abstract: An eolian deposit section named Shaozhai, which has been developed since the Tertiary in eastern Gansu province, was analyzed for major-trace elements and Sm-Nd isotopic compositions to explore the relationship for the provenance and weathering intensity between the Tertiary red clay and Quaternary loess. The magnetostratigraphy data indicates that the basal age of the typical eolian deposits is about 5.23 Ma B.P.. We observed both similarities and obvious differences in the Tertiary red clay and Quaternary loess. Specifically, the Tertiary red clay has similar UCC-normalized major-trace element abundances and chondrite-normalized rare earth element abundances as the Quaternary loess, demonstrating that dust materials making up these sediments likely have experienced similar and numerous recycling processes prior to deposition. The Tertiary red clay has relatively high abundances of MgO, Li, Cs, Bi and low abundances of Na2O, La-Lu, Y. In comparison with the Quaternary loess, chemical weathering parameters such as Na2O/Al2O3, CIA, combined with the A-CN-K diagram suggest that the Tertiary Red clay has experienced a stronger weathering intensity. There is not much difference in the TiO2/Al2O3, SiO2/Al2O3, SiO2/TiO2, Zr/Hf, Nb/Ta, Lu/Hf, Y/Ho, Th/Nb, Hf/Nb, total rare earth elements, differentiation degree between the light and heavy rare earth element, internal differentiation degree of the light rare earth element, abnormal degree of Ce and Eu, εNd(0) of the Tertiary red clay and Quaternary loess, demonstrating a similar provenance for them. The finer grain size and stronger weathering of the Tertiary red clay may be responsible for the difference in major and trace element content for the Tertiary red clay and Quaternary loess.
-
Key words:
- eolian deposits /
- red clay /
- geochemistry /
- provenance /
- Chinese Loess Plateau
-
图 7 邵寨剖面样品微量元素的UCC标准化值
a—邵寨剖面所有样品的UCC标准化值;b—新近纪红粘土与第四纪黄土UCC标准化均值及标准差值
Figure 7. UCC-normalized abundances of trace elements for the samples from the Shaozhai section. (a) Standard data for all studied samples. (b) Standard average and standard deviation for the Tertiary red clay and Quaternary loess.
表 1 邵寨剖面样品常量元素数据表(单位%)
Table 1. Major element concentrations (%) of the samples from the Shaozhai section
深度/m 层位 样品号 SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O TiO2 MnO P2O5 Total LOI 第四纪黄土-古土壤 5.0 L2 08SZ50 70.46 15.60 4.03 1.31 2.35 3.14 1.99 0.81 0.13 0.18 100 4.16 25.0 S4 08SZ250 69.97 15.87 5.26 0.72 2.17 3.24 1.69 0.83 0.14 0.13 100 4.20 33.4 S5 08SZ830 68.57 16.69 6.11 0.60 2.08 3.40 1.41 0.89 0.14 0.12 100 4.70 51.2 L8 08SZ450 70.17 15.30 5.22 1.21 2.10 3.14 1.76 0.79 0.12 0.19 100 3.77 67.3 S10 08SZ650 68.96 15.94 5.74 1.03 2.25 3.34 1.63 0.82 0.14 0.16 100 4.10 70.4 S11 08SZ1200 69.65 16.15 5.67 0.64 1.97 3.56 1.31 0.82 0.14 0.09 100 4.06 95.4 S18 08SZ1450 69.42 16.03 5.83 0.79 2.23 3.27 1.38 0.83 0.14 0.09 100 3.95 119.4 S24 08SZ1690 69.29 15.83 5.84 0.99 2.24 3.42 1.31 0.82 0.13 0.14 100 3.94 133.4 L27 08SZ1830 69.27 15.78 5.54 1.21 2.39 3.13 1.54 0.82 0.13 0.20 100 4.26 141.4 S29 08SZ1910 69.00 16.16 5.92 0.92 2.30 3.36 1.26 0.82 0.14 0.13 100 4.08 150.4 S32 08SZ2000 71.43 14.65 4.86 1.04 2.41 3.02 1.56 0.76 0.10 0.17 100 3.42 平均 69.65 15.82 5.46 0.95 2.23 3.27 1.53 0.82 0.13 0.14 4.06 标准偏差 0.81 0.52 0.60 0.24 0.14 0.16 0.23 0.03 0.01 0.04 0.32 变异系数 1.17 3.30 10.93 25.26 6.15 4.85 14.73 3.65 8.38 25.44 7.79 新近纪红粘土 165.2 07SZ472 69.51 15.98 5.48 0.97 2.44 3.14 1.42 0.82 0.13 0.14 100 4.22 173.4 07SZ800 68.26 16.53 5.86 1.05 2.79 3.20 1.19 0.85 0.13 0.14 100 4.51 178.2 07SZ1660 68.32 16.74 6.22 0.97 2.43 3.21 1.04 0.84 0.14 0.09 100 4.55 187.5 07SZ2032 68.73 16.27 6.04 1.14 2.43 3.26 1.06 0.81 0.13 0.13 100 4.53 199.4 07SZ2506 68.46 16.50 6.06 1.01 2.54 3.29 1.08 0.82 0.14 0.10 100 4.35 205.3 SZB160 68.74 16.17 5.72 1.03 2.62 3.24 1.39 0.84 0.14 0.13 100 4.41 207.1 07SZ2815 67.71 16.91 6.14 0.87 2.63 3.57 1.14 0.81 0.15 0.08 100 4.34 216.8 07SZ3204 69.62 15.85 5.75 1.25 2.44 3.08 0.87 0.83 0.12 0.20 100 4.69 225.1 SZC48 67.97 15.83 5.85 0.89 4.13 3.41 0.90 0.83 0.13 0.05 100 4.48 226.7 红粘土 07SZ3600 69.57 16.14 5.87 1.01 2.35 3.08 0.93 0.83 0.14 0.08 100 4.32 228.9 SZC200 69.05 16.09 5.77 1.04 2.77 3.21 0.99 0.83 0.14 0.11 100 4.45 229.4 07SZ3709 69.12 16.12 5.84 1.03 2.69 3.06 1.08 0.82 0.13 0.12 100 4.35 232.4 07SZ4015 68.93 16.26 5.71 1.16 2.73 3.23 0.86 0.84 0.13 0.16 100 4.49 233.9 SZC400 69.32 15.60 5.55 1.15 3.37 3.01 0.90 0.84 0.12 0.15 100 4.64 236.4 07SZ4306 68.77 16.33 5.94 0.84 2.59 3.36 1.15 0.82 0.14 0.07 100 4.16 238.9 SZC600 68.59 16.23 6.03 1.01 2.85 3.28 0.97 0.82 0.13 0.09 100 4.43 240.2 07SZ4530 67.81 16.61 5.70 0.98 3.11 3.45 1.23 0.83 0.13 0.14 100 4.52 247.9 07SZ4840 69.15 16.21 5.98 0.93 2.66 3.13 0.90 0.82 0.13 0.09 100 4.55 250.7 SZD240 66.79 16.29 5.66 1.20 4.24 3.44 1.26 0.81 0.15 0.17 100 4.48 平均 68.65 16.24 5.85 1.03 2.83 3.25 1.07 0.83 0.13 0.12 4.44 标准偏差 0.73 0.32 0.20 0.11 0.54 0.15 0.17 0.01 0.01 0.04 0.13 变异系数 1.06 1.97 3.37 10.88 18.96 4.61 15.84 1.34 6.73 30.65 3.00 UCC(Taylor and Mclennan, 1985;McLennan,2001) 66.00 15.20 5.00 4.20 2.20 3.40 3.90 0.68 0.07 表 2 邵寨剖面样品微量元素数据表(单位μg/g)
Table 2. Trace element concentrations (μg/g) of the samples from the Shaozhai section
样品号 Li Be Sc V Co Ni Ga Rb Sr Y Zr Nb Cs Ba Hf Ta Tl Pb Bi Th U 第四纪黄土-古土壤 08SZ50 44.80 2.14 13.60 115.00 16.40 42.30 20.60 102.00 108.00 29.50 222.00 17.10 8.72 449.00 5.10 1.66 0.65 22.80 0.36 15.60 2.45 08SZ250 43.70 2.06 14.90 114.00 16.90 50.20 20.30 119.00 117.00 31.20 213.00 16.10 10.60 505.00 5.93 1.82 0.71 26.60 0.41 16.70 2.39 08SZ830 40.80 1.92 13.30 110.00 15.10 39.40 18.50 111.00 122.00 31.20 252.00 16.60 7.77 510.00 5.87 1.64 0.59 22.00 0.32 15.80 2.57 08SZ450 43.60 2.06 14.60 114.00 16.50 42.80 20.70 118.00 107.00 28.20 226.00 16.60 9.55 505.00 5.69 1.63 0.70 25.30 0.37 16.80 2.48 08SZ650 42.60 2.11 15.20 115.00 16.80 44.70 19.90 120.00 109.00 32.00 216.00 15.90 10.50 537.00 6.16 1.83 0.70 27.00 0.41 17.70 2.43 08SZ1200 48.10 2.17 14.00 121.00 16.70 44.00 20.50 105.00 114.00 32.70 233.00 17.60 9.74 469.00 5.65 1.78 0.65 23.40 0.36 16.50 2.64 08SZ1450 46.50 2.06 13.90 112.00 16.50 42.30 20.10 103.00 106.00 30.30 226.00 16.60 9.58 455.00 5.85 1.66 0.68 24.50 0.38 16.80 2.54 08SZ1690 50.10 2.21 13.00 125.00 17.80 55.90 20.50 84.00 98.40 30.30 228.00 17.20 10.80 436.00 6.07 2.02 0.67 26.20 0.41 15.20 2.54 08SZ1830 43.40 2.12 14.70 113.00 15.90 41.00 20.00 116.00 122.00 35.50 225.00 16.30 9.07 478.00 6.06 1.76 0.68 25.10 0.37 16.20 2.64 08SZ1910 44.70 2.20 13.90 118.00 17.10 45.50 20.50 110.00 102.00 35.00 226.00 16.80 10.90 494.00 6.04 1.97 0.69 25.80 0.42 17.90 2.43 08SZ2000 37.30 1.84 12.80 95.80 13.40 35.30 17.50 110.00 128.00 31.60 257.00 15.20 7.12 471.00 6.97 1.70 0.60 22.10 0.29 14.30 2.48 平均 44.15 2.08 13.99 113.89 16.28 43.95 19.92 108.91 112.13 31.59 229.00 16.55 9.49 482.64 5.94 1.77 0.67 24.62 0.37 16.32 2.51 标准偏差 3.45 0.11 0.79 7.35 1.17 5.44 1.01 10.41 9.25 2.19 13.58 0.66 1.24 30.41 0.45 0.13 0.04 1.79 0.04 1.06 0.08 变异系数 7.81 5.48 5.63 6.45 7.20 12.38 5.05 9.56 8.25 6.92 5.92 4.01 13.07 6.30 7.55 7.46 5.99 7.29 10.87 6.48 3.38 新近纪红粘土 07SZ472 49.70 2.24 15.40 127.00 17.00 46.30 20.20 127.00 109.00 28.40 236.00 16.60 11.10 531.00 5.99 1.88 0.71 28.10 0.43 19.00 2.52 07SZ800 51.40 2.13 15.00 120.00 17.60 45.30 21.00 129.00 103.00 26.10 191.00 16.50 10.90 485.00 4.75 1.65 0.74 27.40 0.43 16.80 2.37 07SZ1660 45.00 2.10 15.30 112.00 16.40 43.90 20.00 119.00 114.00 31.50 234.00 15.90 9.61 516.00 6.41 1.83 0.69 26.40 0.38 17.40 2.51 07SZ2032 51.00 2.27 15.20 131.00 17.70 46.80 21.70 125.00 101.00 30.10 225.00 16.90 10.80 507.00 5.83 1.74 0.71 27.30 0.39 17.60 2.57 07SZ2506 54.20 2.24 16.30 130.00 17.90 58.10 21.80 133.00 105.00 31.40 245.00 17.50 11.20 519.00 5.93 1.75 0.70 26.20 0.40 19.00 2.61 SZB160 48.60 2.17 14.80 121.00 18.30 47.10 21.40 117.00 108.00 30.30 238.00 17.70 9.92 493.00 5.50 1.70 0.67 24.60 0.38 16.70 2.50 07SZ2815 44.30 2.18 15.70 120.00 17.30 48.20 20.70 126.00 107.00 32.00 233.00 17.20 11.30 505.00 5.89 1.87 0.69 27.40 0.41 18.80 2.51 07SZ3204 45.50 2.24 11.50 119.00 16.50 45.30 20.10 78.20 77.40 22.20 209.00 16.00 9.91 387.00 5.71 1.70 0.64 24.90 0.42 13.30 2.26 SZC48 50.10 2.04 15.30 117.00 16.00 44.30 20.20 118.00 107.00 32.40 281.00 17.10 9.86 448.00 6.45 1.78 0.65 23.30 0.39 17.20 2.57 07SZ3600 46.50 2.28 15.60 121.00 17.60 47.40 21.40 125.00 104.00 30.50 193.00 15.90 11.30 510.00 5.31 1.80 0.76 27.90 0.41 17.60 2.34 SZC200 46.40 2.09 15.50 108.00 16.80 46.00 20.10 127.00 113.00 33.20 224.00 15.60 11.30 494.00 6.11 1.75 0.73 26.80 0.41 18.00 2.52 07SZ3709 43.00 1.97 15.00 112.00 16.50 44.90 19.20 110.00 105.00 31.60 240.00 15.90 10.10 480.00 6.11 1.75 0.62 24.50 0.38 18.10 2.56 07SZ4015 41.90 2.16 14.80 116.00 16.40 45.80 19.40 117.00 103.00 30.20 238.00 15.60 10.50 491.00 6.46 1.82 0.68 27.20 0.42 17.00 2.43 SZC400 46.10 2.07 14.40 110.00 16.40 45.40 19.90 111.00 99.60 29.10 227.00 15.40 11.00 448.00 6.30 1.75 0.69 28.00 0.41 16.00 2.43 07SZ4306 44.00 1.87 13.80 105.00 15.10 41.00 18.80 101.00 94.70 29.80 217.00 15.30 8.92 431.00 4.92 1.52 0.62 21.70 0.34 16.50 2.25 SZC600 47.90 2.06 13.80 122.00 17.00 44.30 20.60 111.00 101.00 26.10 232.00 16.20 9.97 444.00 5.86 1.67 0.69 25.50 0.39 15.20 2.46 07SZ4530 49.50 2.16 15.20 118.00 16.70 46.40 19.70 120.00 105.00 31.80 229.00 15.80 11.20 503.00 5.94 1.78 0.68 27.00 0.41 19.20 2.77 07SZ4840 48.10 2.16 14.50 121.00 17.10 44.30 20.60 110.00 102.00 25.00 208.00 15.90 11.00 434.00 5.65 1.76 0.74 28.10 0.45 14.20 2.24 SZD240 48.30 2.08 13.30 120.00 16.60 46.30 19.80 85.80 104.00 28.10 287.00 16.70 9.23 430.00 6.75 1.70 0.64 24.80 0.42 16.30 2.43 平均 47.45 2.13 14.76 118.42 16.89 46.16 20.35 115.26 103.30 29.46 230.89 16.30 10.48 476.63 5.89 1.75 0.69 26.16 0.40 17.05 2.47 标准偏差 3.15 0.11 1.08 6.90 0.75 3.30 0.84 14.28 7.71 2.87 24.05 0.72 0.76 39.09 0.51 0.08 0.04 1.79 0.02 1.60 0.13 变异系数 6.64 4.94 7.29 5.83 4.43 7.14 4.12 12.39 7.47 9.74 10.41 4.41 7.27 8.20 8.73 4.75 5.87 6.84 6.08 9.36 5.44 UCC(Taylor and Mclennan, 1985;McLennan,2001) 20.00 3.00 13.60 107.00 17.00 44.00 17.00 112.00 350.00 22.00 190.00 12.00 4.60 550.00 5.80 1.00 0.75 17.00 0.13 10.70 2.80 表 3 邵寨剖面样品稀土元素数据表(单位μg/g)
Table 3. Rare earth element concentrations (μg/g) of the samples from the Shaozhai section
样品号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ∑REE LREE/HREE LaN/SmN GdN/YbN Eu/Eu* Ce/Ce* 第四纪黄土-古土壤 08SZ50 38.80 81.10 8.73 31.30 6.22 1.09 5.25 0.82 5.10 0.99 3.02 0.45 3.01 0.41 29.50 215.79 3.44 3.94 1.59 0.58 1.06 08SZ250 46.10 92.70 11.60 43.00 8.09 1.47 6.33 1.00 6.36 1.15 3.26 0.47 3.03 0.46 31.20 256.22 3.81 3.60 1.71 0.63 0.97 08SZ830 37.60 84.90 8.60 32.00 6.46 1.17 5.41 0.85 5.20 1.05 3.16 0.49 3.00 0.42 31.20 221.51 3.36 3.68 1.60 0.61 1.14 08SZ450 41.60 90.30 9.35 32.50 6.18 1.18 4.81 0.86 5.11 0.98 2.96 0.45 3.04 0.44 28.20 227.96 3.87 4.25 1.36 0.66 1.10 08SZ650 44.00 99.00 10.60 39.00 7.28 1.26 5.76 0.95 5.97 1.15 3.29 0.48 3.17 0.48 32.00 254.39 3.78 3.82 1.49 0.60 1.10 08SZ1200 44.80 95.60 10.10 37.40 7.63 1.41 6.21 0.94 5.53 1.08 3.30 0.51 3.17 0.43 32.70 250.81 3.66 3.71 1.79 0.63 1.08 08SZ1450 41.80 94.80 9.92 33.70 6.47 1.19 5.14 0.91 5.68 1.08 3.28 0.50 3.23 0.48 30.30 238.48 3.71 4.08 1.33 0.63 1.12 08SZ1690 43.00 81.50 10.10 37.80 7.41 1.36 5.74 0.90 5.41 1.10 3.17 0.44 2.86 0.41 30.30 231.50 3.60 3.66 1.74 0.64 0.94 08SZ1830 45.20 99.30 11.10 40.50 7.64 1.45 6.49 1.04 6.47 1.20 3.55 0.54 3.52 0.52 35.50 264.02 3.49 3.74 1.55 0.63 1.07 08SZ1910 45.30 87.30 11.10 41.20 8.22 1.48 6.48 1.04 6.45 1.27 3.69 0.52 3.27 0.49 35.00 252.81 3.34 3.48 1.64 0.62 0.94 08SZ2000 38.40 84.70 9.71 34.60 6.66 1.26 5.51 0.93 5.83 1.11 3.21 0.48 3.12 0.46 31.60 227.58 3.36 3.64 1.49 0.64 1.06 平均 42.42 90.11 10.08 36.64 7.11 1.30 5.74 0.93 5.74 1.11 3.26 0.48 3.13 0.45 31.59 标准偏差 3.03 6.65 0.97 4.05 0.75 0.14 0.58 0.07 0.52 0.09 0.21 0.03 0.18 0.04 2.19 变异系数 7.14 7.38 9.60 11.04 10.48 10.59 10.02 7.92 9.12 7.75 6.43 6.48 5.60 7.89 6.92 新近纪红粘土 07SZ472 45.00 97.80 9.93 36.30 6.79 1.20 5.03 0.82 5.03 1.00 3.06 0.46 2.95 0.41 28.40 244.18 4.18 4.18 1.52 0.63 1.11 07SZ800 36.80 79.40 8.61 29.70 5.62 1.01 4.56 0.77 4.70 0.89 2.72 0.41 2.79 0.39 26.10 204.47 3.72 4.13 1.45 0.61 1.07 07SZ1660 42.50 95.00 10.50 37.40 7.07 1.27 5.66 0.94 5.93 1.13 3.33 0.50 3.34 0.48 31.50 246.55 3.67 3.80 1.46 0.61 1.08 07SZ2032 43.80 99.30 10.50 37.50 7.13 1.26 5.49 0.93 5.70 1.09 3.24 0.48 3.18 0.47 30.10 250.17 3.94 3.88 1.45 0.62 1.12 07SZ2506 41.50 100.00 9.26 33.90 6.53 1.24 5.33 0.85 5.40 1.08 3.31 0.50 3.19 0.44 31.40 243.93 3.74 4.01 1.50 0.64 1.23 SZB160 40.70 88.40 9.07 31.30 6.18 1.09 5.29 0.85 5.07 1.03 3.10 0.47 3.07 0.42 30.30 226.34 3.56 4.16 1.56 0.58 1.11 07SZ2815 40.60 88.00 9.33 33.90 6.60 1.23 5.32 0.86 5.56 1.13 3.40 0.51 3.16 0.44 32.00 232.04 3.43 3.88 1.50 0.63 1.09 07SZ3204 33.30 76.50 8.23 29.70 5.48 1.01 4.32 0.69 4.36 0.80 2.39 0.35 2.39 0.34 22.20 192.06 4.08 3.84 1.58 0.63 1.11 SZC48 41.90 83.30 9.41 33.70 6.53 1.22 5.36 0.85 5.20 1.04 3.20 0.49 3.08 0.44 32.40 228.12 3.38 4.05 1.51 0.63 1.01 07SZ3600 43.50 96.50 10.30 36.50 6.74 1.21 5.22 0.91 5.76 1.09 3.19 0.47 2.94 0.44 30.50 245.27 3.85 4.08 1.47 0.62 1.10 SZC200 43.30 97.30 10.80 39.70 7.54 1.40 6.19 1.05 6.30 1.19 3.48 0.50 3.33 0.48 33.20 255.76 3.59 3.63 1.60 0.63 1.08 07SZ3709 42.50 86.10 9.76 36.40 7.15 1.27 5.62 0.89 5.59 1.10 3.31 0.48 3.04 0.43 31.60 235.24 3.52 3.75 1.62 0.61 1.02 07SZ4015 38.90 90.30 9.33 33.70 6.43 1.16 5.01 0.84 5.39 1.06 3.17 0.48 3.09 0.45 30.20 229.51 3.62 3.82 1.38 0.63 1.14 SZC400 37.90 87.30 9.40 33.80 6.32 1.11 5.14 0.84 5.49 1.02 3.02 0.46 3.05 0.44 29.10 224.39 3.62 3.79 1.45 0.60 1.11 07SZ4306 39.60 83.30 8.86 31.80 6.03 1.15 5.08 0.84 5.03 0.99 3.03 0.46 2.93 0.41 29.80 219.31 3.52 4.15 1.54 0.64 1.07 SZC600 34.60 80.00 8.02 28.00 5.36 1.00 4.41 0.74 4.53 0.87 2.76 0.42 2.83 0.41 26.10 200.05 3.64 4.08 1.34 0.63 1.16 07SZ4530 42.50 90.90 9.98 37.10 7.42 1.26 5.60 0.91 5.59 1.15 3.26 0.48 3.07 0.44 31.80 241.46 3.62 3.62 1.58 0.60 1.06 07SZ4840 33.60 72.60 8.31 29.90 5.48 0.99 4.29 0.72 4.55 0.85 2.52 0.37 2.53 0.38 25.00 192.09 3.66 3.87 1.40 0.62 1.05 SZD240 37.80 76.60 8.23 30.50 6.06 1.10 4.52 0.75 4.58 0.93 2.84 0.43 2.65 0.38 28.10 205.47 3.55 3.94 1.48 0.64 1.05 平均 40.02 87.82 9.36 33.73 6.45 1.17 5.13 0.84 5.25 1.02 3.07 0.46 2.98 0.43 29.46 标准偏差 3.53 8.41 0.84 3.30 0.66 0.11 0.51 0.09 0.53 0.11 0.30 0.04 0.25 0.04 2.87 变异系数 8.81 9.58 9.01 9.79 10.26 9.69 10.03 10.25 10.18 10.75 9.73 9.63 8.44 8.44 9.74 UCC(Taylor and Mclennan, 1985;McLennan,2001) 30.00 64.00 7.10 26.00 4.50 0.88 3.80 0.64 3.50 0.80 2.30 0.33 2.20 0.32 球粒陨石(Taylor and Mclennan, 1985;McLennan,2001) 0.310 0.808 0.122 0.600 0.165 0.074 0.259 0.047 0.322 0.072 0.210 0.032 0.209 0.034 表 4 邵寨剖面样品Sm-Nd同位素数据表
Table 4. Sm-Nd data of the samples from the Shaozhai section
样品号 Sm (μg/g) Nd (μg/g) 147Sm/144Nd 143Nd/144Nd (±2σ*10-6) εNd(0) 第四纪黄土-古土壤 08SZ250 3.592 20.218 0.1075 0.512065±8 -11.1775 08SZ830 3.650 20.270 0.1089 0.512083±7 -10.8264 08SZ450 4.425 24.828 0.1078 0.512077±9 -10.9434 08SZ650 3.511 19.263 0.1103 0.512077±12 -10.9434 08SZ1200 3.509 19.245 0.1103 0.512079±7 -10.9044 08SZ1450 3.599 19.808 0.1099 0.512078±6 -10.9239 08SZ1690 3.956 21.959 0.1090 0.512084±6 -10.8068 新近纪红粘土 07SZ472 3.436 19.594 0.1061 0.51207±7 -11.0799 07SZ1660 3.287 18.670 0.1065 0.512074±7 -11.0019 07SZ2032 3.307 19.056 0.1050 0.512068±11 -11.1190 07SZ2506 3.355 19.112 0.1062 0.512071±7 -11.0604 SZB160 3.445 20.040 0.1040 0.512065±5 -11.1775 07SZ2815 3.346 19.157 0.1057 0.512062±5 -11.2360 07SZ3204 3.378 19.545 0.1046 0.512063±7 -11.2165 SZC48 3.406 19.442 0.1060 0.512076±6 -10.9629 07SZ3600 3.900 21.848 0.1080 0.512069±6 -11.0995 SZC200 3.472 20.016 0.1049 0.512079±8 -10.9044 07SZ3709 3.799 21.567 0.1066 0.512092±8 -10.6508 07SZ4015 3.439 19.560 0.1064 0.512078±5 -10.9239 07SZ4306 3.485 19.602 0.1075 0.512085±5 -10.7873 SZC600 3.057 17.490 0.1057 0.512079±6 -10.9044 -
AN Z S, SUN D H, CHEN M Y, et al., 2000. Red clay sequences in Chinese Loess Plateau and recorded paleoclimate events of the late Tertiary[J]. Quaternary Sciences, 20(5): 435-446. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200005003.htm AN Z S, KUTZBACH J E, PRELL W L, et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 411(6833): 62-66. doi: 10.1038/35075035 BAU M, 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J]. Contributions to Mineralogy and Petrology, 123(3): 323-333. doi: 10.1007/s004100050159 BOUVIER A, VERVOORT J D, PATCHETT P J, 2008. The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets[J]. Earth and Planetary Science Letters, 273(1-2): 48-57. doi: 10.1016/j.epsl.2008.06.010 BROECKER W S, PENG T H, 1982. Tracers in the sea[M]. New York: Eldigio Press: 26-31. CHEN J, WANG H T, LU H Y, 1996. Behaviours of REE and other trace elements during pedological weathering-evidence from chemical leaching of loess and paleosol from the Luochuan section in Centra China[J]. Acta Geologica Sinica, 70(1): 61-72. (in Chinese with English abstract) http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DZXW199603005 CONDIE K C, 2005. High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes?[J]. Lithos, 79(3-4): 491-504. doi: 10.1016/j.lithos.2004.09.014 DIAO G Y, WEN Q Z, 2000. Rare earth elements in the Weinan Loess section[J]. Marine Geology & Quaternary Geology, 20(4): 57-61. (in Chinese with English abstract) DING Z L, SUN J M, YANG S L, et al., 1998. Preliminary magnetostratigraphy of a thick eolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau[J]. Geophysical Research Letters, 25(8): 1225-1228. doi: 10.1029/98GL00836 DING Z L, SUN J M, ZHU R X, et al., 1997. Eolian origin of the red clay deposits in the loess plateau and implications for Pliocene climatic changes[J]. Quaternary Sciences, 17(2): 147-157. (in Chinese with English abstract) DING Z L, SUN J M, YANG S L, et al., 1998. Magnetostratigraphy and grain size record of a thick red clay-loess sequence at Lingtai, the Chinese Loess Plateau[J]. Quaternary Sciences, 18(1): 86-94. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ199801011.htm DING Z L, YANG S L, HOU S S, et al., 2001a. Magnetostratigraphy and sedimentology of the Jingchuan red clay section and correlation of the Tertiary eolian red clay sediments of the Chinese Loess Plateau[J]. Journal of Geophysical Research, 106(B4): 6399-6407. doi: 10.1029/2000JB900445 DING Z L, SUN J M, YANG S L, et al., 2001b. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change[J]. Geochimica et Cosmochimica Acta, 65(6): 901-913. doi: 10.1016/S0016-7037(00)00571-8 FEDO C M, NESBITT H W, YOUNG G M, 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 23(10): 921-924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2 FERRAT M, WEISS D J, STREKOPYTOV S, et al., 2011. Improved provenance tracing of Asian dust sources using rare earth elements and selected trace elements for palaeomonsoon studies on the easternTibetan Plateau[J]. Geochimica et Cosmochimica Acta, 75(21): 6374-6399. doi: 10.1016/j.gca.2011.08.025 GALLET S, JAHN B M, VAN VLIET LANOE B, et al., 1998. Loess geochemistry and its implications for particle origin and composition of the upper continental crust[J]. Earth and Planetary Science Letters, 156(3-4): 157-172. doi: 10.1016/S0012-821X(97)00218-5 GARRELS R M, MACKENZIE F T, 1971. Evolution of sedimentary rocks[M]. New York: Norton. GOLDSTEIN S L, O'NIONS R K, HAMILTON P J, 1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems[J]. Earth and Planetary Science Letters, 70(2): 221-236. doi: 10.1016/0012-821X(84)90007-4 GROUSSET F E, BISCAYE P E, 2005. Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes[J]. Chemical Geology, 222(3-4): 149-167. doi: 10.1016/j.chemgeo.2005.05.006 GU Z Y, DING Z L, XIONG S F, et al., 1999. A seven million geochemical record from Chinese red-clay and loess-paleosol sequence: weathering and erosion in northwestern China[J]. Quaternary Sciences, 19(4): 357-365. (in Chinese with English abstract) http://ci.nii.ac.jp/naid/10029017134 GU Z Y, LAL D, GUO Z T, et al., 2000. Geochemistry of cosmogenic 10Be in loess-paleosol sequences and red clay in the Loess Plateau[J]. Quaternary Sciences, 20(5): 409-422. (in Chinese with English abstract) http://www.oalib.com/paper/1572465 GU Z Y, GUO Z T, LAL D, et al., 2006. 10Be concentration relation to chemical compositions of Chinese loess and red clay as a potential dating method[J]. Quaternary Sciences, 26(2): 244-249. (in Chinese with English abstract) GUO Z T, RUDDIMAN W F, HAO Q Z, et al., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 416(6877): 159-163. doi: 10.1038/416159a HAO Q Z, GUO Z T, PENG S Z, 2000. A preliminary study on the magnetic properties of the Tertiary red earth in the Longxi area[J]. Quaternary Sciences, 20(5): 447-456. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200005004.htm LI F C, XIE C R, PAN G X, 2002. Paleoclimatic implication of distribution of Rb, Rb/Sr and magnetic susceptibility in loess and paleosols from Laohushan profile, Nanjing[J]. Marine Geology & Quaternary Geology, 22(4): 47-52. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ200204007.htm LI S L, 2001. Geochemistry of rare earth element in sediments at HY126EA1 hole in the continental shelf of the East China Sea[J]. Acta Oceanologica Sinica, 23(3): 127-132. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC200103015.htm LI X S, HAN Z Y, YANG D Y, et al., 2006. REE geochemistry of Xiashu loess in Zhenjiang, Jiangsu province[J]. Acta Pedologica Sinica, 43(1): 1-7. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRXB200601000.htm LI Y H, 1982. A brief discussion on the mean oceanic residence time of elements[J]. Geochimica et Cosmochimica Acta, 46(12): 2671-2675. doi: 10.1016/0016-7037(82)90386-6 LI Y, SONG Y G, NIE J S, et al., 2014. Tracing the provenance of loess and red clay on the Chinese Loess Plateau using the U-Pb dating and single-size zircon size[J]. Geological Review, 60(2): 380-388. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201402014.htm LIANG M Y, GUO Z T, GU Z Y, 2006. Geochemical characteristics of the Miocene eolian deposits and comparison with the Pliocene and Quaternary eolian deposits[J]. Quaternary Sciences, 36(4): 657-664. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200604022.htm LIANG M Y, GUO Z T, KAHMANN A J, et al., 2009. Geochemical characteristics of the Miocene eolian deposits in China: their provenance and climate implications[J]. Geochemistry, Geophysics, Geosystems, 10(4): Q04004, doi: 10.1029/2008GC002331. LIU C Q, MASUDA A, OKADA A, et al., 1993. A geochemical study of loess and desert sand in northern China: implications for continental crust weathering and composition[J]. Chemical Geology, 106(3-4): 359-374. doi: 10.1016/0009-2541(93)90037-J LIU L W, WANG H T, CHEN Y, et al., 2002. Chemical leaching of loess deposits in China and its implications for carbonate composition[J]. Acta Petrologica et Mineralogica, 21(1): 69-75. (in Chinese with English abstract) http://www.researchgate.net/publication/285464872_Chemical_leaching_of_loess_deposits_in_China_and_its_implications_for_carbonate_composition LU H Y, AN Z S, 1999. Comparison of grain-size distribution of red clay and loess-paleosol deposits in Chinese loess Plateau[J]. Acta Sedimentologica Sinica, 17(2): 226-232. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB902.010.htm LU S, YIN G M, SONG W J, et al., 2019. Geochemical characteristics and paleoclimate implications of Hefei Xiashu loess[J]. Journal of Geomechanics, 25(3): 428-439. (in Chinese with English abstract) MARQUES J J, SCHULZE D G, CURI N, et al., 2004. Trace element geochemistry in Brazilian Cerrado soils[J]. Geoderma, 121(1-2): 31-43. doi: 10.1016/j.geoderma.2003.10.003 MCLENNAN S M, 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 21(1): 169-200. http://ci.nii.ac.jp/naid/10008805387 MCLENNAN S M, 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2(4): 2000GC000109, doi: 10.1029/2000GC000109. MUHS D R, BUDAHN J R, JOHNSON D L, et al., 2008. Geochemical evidence for airborne dust additions to soils in Channel Islands National Park, California[J]. GSA Bulletin, 120(1-2): 106-126. doi: 10.1130/B26218.1 NAKAI S I, HALLIDAY A N, REA D K, 1993. Provenance of dust in the Pacific Ocean[J]. Earth and Planetary Science Letters, 119(1-2): 143-157. doi: 10.1016/0012-821X(93)90012-X NESBITT H W, MARKOVICS G, PRICE R C, 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering[J]. Geochimica et Cosmochimica Acta, 44(11): 1659-1666. doi: 10.1016/0016-7037(80)90218-5 NESBITT H W, YOUNG G M, 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 299(5885): 715-717. doi: 10.1038/299715a0 NESBITT H W, YOUNG G M, MCLENNAN S M, et al., 1996. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies[J]. The Journal of Geology, 104(5): 525-542. doi: 10.1086/629850 OZKAN A M, AYAZ-BOZDAG A, 2011. Geochemistry and provenance of Maastrichtian clastic rocks in the Dikmendede Formation of Orhaniye in Kazan-Ankara-Turkey region[J]. Acta Geologica Sinica (English Edition), 85(5): 1067-1083. doi: 10.1111/j.1755-6724.2011.00541.x PENG S Z, GUO Z T, 2000. A preliminary study on ree of the late tertiary laterite in Xifeng area[J]. Marine Geology & Quaternary Geology, 20(2): 39-43. (in Chinese with English abstract) http://www.cqvip.com/Main/Detail.aspx?id=4259152 PENG S Z, GUO Z T, 2007. Clay mineral composition of the Tertiary Red Clay and the Quaternary loess-paleosols as well as its environmental implication[J]. Quaternary Sciences, 27(2): 277-285. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200702013.htm QI L, QIAO Y S, 2014. Geochemical characteristics of eolian deposits on the eastern margin of the Tibetan Plateau and implications for provenance[J]. Acta Geologica Sinica (English Edition), 88(3): 963-973. doi: 10.1111/1755-6724.12249 QIAO Y S, HAO Q Z, PENG S S, et al., 2011. Geochemical characteristics of the eolian deposits in southern China, and their implications for provenance and weathering intensity[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(3-4): 513-523. doi: 10.1016/j.palaeo.2011.06.003 REVEL M, SINKO J A, GROUSSET F E, et al., 1996. Sr and Nd isotopes as tracers of North Atlantic lithic particles: paleoclimatic implications[J]. Paleoceanography, 11(1): 95-113. doi: 10.1029/95PA03199 ROLLINSON H R, 1993. Using geochemical data: evaluation, presentation, interpretation[M]. New York: Longman Scientific and Technical. SHELDON N D, TABOR N J, 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols[J]. Earth-Science Reviews, 95(1-2): 1-52. http://www.cabdirect.org/abstracts/20093230326.html SUGITANI K, HORIUCHI Y, ADACHI M, et al., 1996. Anomalously low Al2O3/TiO2 values for Archean cherts from the Pilbara Block, Western Australia-possible evidence for extensive chemical weathering on the early earth[J]. Precambrian Research, 80(1-2): 49-76. doi: 10.1016/S0301-9268(96)00005-8 SUN D H, LIU D S, CHEN M Y, et al., 1997. Magnetostratigraphy and palaeoclimate of Red Clay sequences from Chinese Loess Plateau[J]. Science in China Series D: Earth Sciences, 40(4): 337-343. http://www.cnki.com.cn/Article/CJFDTotal-JDXG199704000.htm SUN D H, SHAW J, AN Z S, et al., 1998. Magnetostratigraphy and paleoclimatic interpretation of a continuous 7.2 Ma Late Cenozoic eolian sediments from the Chinese Loess Plateau[J]. Geophysical Research Letters, 25(1): 85-88. doi: 10.1029/97GL03353 SUN J M, 2005. Nd and Sr isotopic variations in Chinese eolian deposits during the past 8 Ma: implications for provenance change[J]. Earth and Planetary Science Letters, 240(2): 454-466. doi: 10.1016/j.epsl.2005.09.019 SUN J M, ZHU X K, 2010. Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8 Ma: Implications for provenance change[J]. Earth and Planetary Science Letters, 290(3-4): 438-447. doi: 10.1016/j.epsl.2010.01.001 TAYLOR S R, MCLENNAN S M, MCCULLOCH M T, 1983. Geochemistry of loess, continental crustal composition and crustal model ages[J]. Geochimica et Cosmochimica Acta, 47(11): 1897-1905. doi: 10.1016/0016-7037(83)90206-5 TAYLOR S R, MCLENNAN S M, 1985. The continental crust: its composition and evolution[M]. London: Blackwell Scientific Publications: 57-72. WANG Y X, YANG J D, CHEN J, et al., 2007. The Sr and Nd isotopic variations of the Chinese Loess Plateau during the past 7 Ma: implications for the East Asian winter monsoon and source areas of loess[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 249(3-4): 351-361. doi: 10.1016/j.palaeo.2007.02.010 WEN Q Z, 1989. Loess geochemistry in China[M]. Beijing: Science Press: 71-133. (in Chinese) WU M Q, WEN Q Z, PAN J Y, et al., 1991. Rare earth elements in the Malan Loess from the middle reaches of the Huanghe River[J]. Chinese Science Bulletin, 36(16): 1380-1385. YANG J D, CHEN J, ZHANG Z F, et al., 2005. Variations in 143Nd/144Nd and 87Sr/86Sr of Lingtai profile over the past 7 Ma[J]. Geochimica, 34(1): 1-6. (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200501000.htm YANG S B, QIAO Y S, PENG S S, et al., 2017. Geochemical characteristics of eolian deposits in the northeastern margin of the Tibetan Plateau and implications for provenance and weathering intensity[J]. Quaternary Sciences, 37(1): 1-13. (in Chinese with English abstract) YANG S L, DING Z L, 2000. Seven million-year iron geochemistry record from a thick eolian red clay-loess sequence in Chinese Loess Plateau and the implications for paleomonsoon evolution[J]. Chinese Science Bulletin, 46(4): 337-341. YANG S Y, JUNG H S, LIM D I, et al., 2003. A review on the provenance discrimination of sediments in the Yellow Sea[J]. Earth-Science Reviews, 63(1-2): 93-120. doi: 10.1016/S0012-8252(03)00033-3 YANG X P, ZHU B Q, WHITE P D, 2007. Provenance of aeolian sediment in the Taklamakan Desert of western China, inferred from REE and major-elemental data[J]. Quaternary International, 175(1): 71-85. doi: 10.1016/j.quaint.2007.03.005 YOUNG G M, NESBITT H W, 1998. Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks[J]. Journal of Sedimentary Research, 68(3): 448-455. doi: 10.2110/jsr.68.448 ZHU R X, PAN Y X, DING Z L, et al., 1996. Magnetic property of red clay[J]. Quaternary Sciences, 16(3): 232-238. (in Chinese with English abstract) 安芷生, 孙东怀, 陈明扬, 等, 2000. 黄土高原红粘土序列与晚第三纪的气候事件[J]. 第四纪研究, 20(5): 435-446. doi: 10.3321/j.issn:1001-7410.2000.05.004 陈骏, 王洪涛, 鹿化煜, 1996. 陕西洛川黄土沉积物中稀土元素及其它微量元素的化学淋滤研究[J]. 地质学报, 70(1): 61-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199601005.htm 刁桂仪, 文启忠, 2000. 渭南黄土剖面中的稀土元素[J]. 海洋地质与第四纪地质, 20(4): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200004012.htm 丁仲礼, 孙继敏, 朱日祥, 等, 1997. 黄土高原红粘土成因及上新世北方干旱化问题[J]. 第四纪研究, 17(2): 147-157. doi: 10.3321/j.issn:1001-7410.1997.02.007 丁仲礼, 孙继敏, 杨石岭, 等, 1998. 灵台黄土-红粘土序列的磁性地层及粒度记录[J]. 第四纪研究, 18(1): 86-94. doi: 10.3321/j.issn:1001-7410.1998.01.011 顾兆炎, 丁仲礼, 熊尚发, 等, 1999. 灵台红粘土和黄土-古土壤序列的地球化学演化[J]. 第四纪研究, 19(4): 357-365. doi: 10.3321/j.issn:1001-7410.1999.04.008 顾兆炎, LAL D, 郭正堂, 等, 2000. 黄土高原黄土和红粘土10Be地球化学特征[J]. 第四纪研究, 20(5): 409-422. doi: 10.3321/j.issn:1001-7410.2000.05.002 顾兆炎, 郭正堂, LAL D, 等, 2006. 黄土和红粘土中宇宙成因核素定年的潜力: 10Be浓度与化学成分的关系[J]. 第四纪研究, 26(2): 244-249. doi: 10.3321/j.issn:1001-7410.2006.02.012 郝青振, 郭正堂, 彭淑贞, 2000. 陇西第三纪红土磁学性质初步研究[J]. 第四纪研究, 20(5): 447-456. doi: 10.3321/j.issn:1001-7410.2000.05.005 李福春, 谢昌仁, 潘根兴, 2002. 南京老虎山黄土剖面的磁化率及Rb和Rb/Sr对古气候的指示意义[J]. 海洋地质与第四纪地质, 22(4): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200204007.htm 李双林, 2001. 东海陆架HY126EA1孔沉积物稀土元素地球化学[J]. 海洋学报, 23(3): 127-132. doi: 10.3321/j.issn:0253-4193.2001.03.016 李徐生, 韩志勇, 杨达源, 等, 2006. 镇江下蜀黄土的稀土元素地球化学特征研究[J]. 土壤学报, 43(1): 1-7. doi: 10.3321/j.issn:0564-3929.2006.01.001 李云, 宋友桂, 聂军胜, 等, 2014. 基于U-Pb定年和单颗粒锆石粒径分析示踪中国黄土高原黄土和红粘土物源[J]. 地质论评, 60(2): 380-388. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201402014.htm 梁美艳, 郭正堂, 顾兆炎, 2006. 中新世风尘堆积的地球化学特征及其与上新世和第四纪风尘堆积的比较[J]. 第四纪研究, 36(4): 657-664. doi: 10.3321/j.issn:1001-7410.2006.04.023 刘连文, 王洪涛, 陈旸, 等, 2002. 黄土醋酸淋溶实验及其碳酸盐组分的地球化学特征[J]. 岩石矿物学杂志, 21(1): 69-75. doi: 10.3969/j.issn.1000-6524.2002.01.009 鹿化煜, 安芷生, 1999. 黄土高原红粘土与黄土古土壤粒度特征对比: 红粘土风成成因的新证据[J]. 沉积学报, 17(2): 226-232. doi: 10.3969/j.issn.1000-0550.1999.02.011 路硕, 尹功明, 宋为娟, 等, 2019. 合肥下蜀土地球化学特征及其古气候意义[J]. 地质力学学报, 25(3): 428-439. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201903010.htm 彭淑贞, 郭正堂, 2000. 西峰地区晚第三纪红土稀土元素的初步研究[J]. 海洋地质与第四纪地质, 20(2): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200002007.htm 彭淑贞, 郭正堂, 2007. 风成三趾马红土与第四纪黄土的粘土矿物组成异同及其环境意义[J]. 第四纪研究, 27(2): 277-285. doi: 10.3321/j.issn:1001-7410.2007.02.013 孙东怀, 刘东生, 陈明扬, 等, 1997. 中国黄土高原红粘土序列的磁性地层与气候变化[J]. 中国科学(D辑), 27(3): 265-270. doi: 10.3321/j.issn:1006-9267.1997.03.007 文启忠, 1989. 中国黄土地球化学[M]. 北京: 科学出版社: 71-133. 吴明清, 文启忠, 潘景瑜, 等, 1991. 黄河中游地区马兰黄土的稀土元素[J]. 科学通报, 36(5): 366-369. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199105012.htm 杨杰东, 陈骏, 张兆峰, 等, 2005. 距今7Ma以来甘肃灵台剖面Nd和Sr同位素特征[J]. 地球化学, 34(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200501000.htm 杨帅斌, 乔彦松, 彭莎莎, 等, 2017. 青藏高原东北缘黄土的地球化学特征及其对物源和风化强度的指示意义[J]. 第四纪研究, 37(1): 1-13. 杨石岭, 丁仲礼, 2000. 7.0 Ma以来中国北方风尘沉积的游离铁/全铁值变化及其古季风指示意义[J]. 科学通报, 45(22): 2453-2456. doi: 10.3321/j.issn:0023-074X.2000.22.018 朱日祥, 潘永信, 丁仲礼, 1996. 红粘土的磁学性质研究[J]. 第四纪研究, 16(3): 232-238. doi: 10.3321/j.issn:1001-7410.1996.03.005