A detection method of trace metal elements in black soil based on hyperspectral technology: Geological implications
-
摘要: 在土壤中重金属含量较低的情况下,重金属的高光谱特征响应非常微弱,不易构建精确的高光谱直接反演模型。为了解决上述问题,依据土壤化学变量间的理化性质,将重金属富集特征转移到与之相关的化学主量元素上,使重金属微弱的信息得以间接定量反演。文中以海伦市黑土土壤为研究对象,通过主成分分析、聚类分析确定了主量元素氧化铁(Fe2O3)与微量重金属As、Zn、Cd之间存在明显吸附赋存关系。选用偏最小二乘法构建了研究区氧化铁含量的最佳反演模型(决定系数为0.704,均方根误差为0.148,F检验为12.732),并利用氧化铁与As、Zn、Cd之间的赋存关系,通过神经网络构建了氧化铁预测值与重金属真实值间的非线性拟合模型,得出As含量的拟合程度最高,Zn的拟合程度较好,Cd的拟合效果较理想,总体相关性分别为0.796、0.732、0.530。研究结果表明,基于氧化铁含量的间接预测模型能对微量重金属As、Zn、Cd进行较好的定量预测,为微量重金属含量的定量分析提供了新的方法参考,为高光谱遥感技术预测土壤重金属含量提供了依据,增强了土壤微量重金属反演可行性,对细化自然资源质量监测、深化开展地学系统综合分析与评价有重要意义。Abstract: In the case of low content of heavy metals in soil, the hyperspectral characteristic response of heavy metals is very weak, so it is difficult to construct an accurate direct hyperspectral inversion model. In order to solve the above problems, according to the physical and chemical properties of soil chemical variables, the enrichment characteristics of heavy metals are transferred to the related major chemical elements, so that the weak information of heavy metals can be indirectly quantitatively inverted. In this paper, the black soil in Hailun was taken as the research object. Through principal component analysis and cluster analysis, it was confirmed that there was an obvious adsorption occurrence relationship between the major element iron oxide (Fe2O3) and trace heavy metals As, Zn, Cd. The best inversion model of iron oxide content in the study area was established by partial least square method (the determination coefficient is 0.704, the root mean square difference is 0.148, and the F-test is 12.732). Based on the occurrence relationship between iron oxide and As, Zn, CD, a nonlinear fitting model between the predicted value of iron oxide and the real value of heavy metals was constructed by neural network. The fitting results show that the fitting degree of As, Zn and Cd is As>Zn>Cd. The overall correlations are 0.796, 0.732, 0.530 respectively. The study results show that the indirect prediction model based on iron oxide content can better quantitatively predict As, Zn and Cd, which provides a new method for the quantitative analysis of trace heavy metal content. This model provides a basis for hyperspectral remote sensing technology to predict soil heavy metal content, enhances the feasibility of soil trace heavy metal inversion, and is helpful to refine the quality monitoring of natural resource. It is of great significance to deepen the comprehensive analysis and evaluation of geoscience system.
-
Key words:
- heavy metal /
- soil /
- occurrence relationship /
- hyperspectral /
- geochemistry /
- nonlinear fitting model /
- indirect prediction /
- neural networks
-
表 1 土壤重金属含量的统计特征
Table 1. Statistical characteristics of heavy metal contents in soil
重金属
Heavy Metal最小值
Min/(mg/kg)最大值
Max/(mg/kg)均值
Mean/(mg/kg)标准差
Standard Deviation(SD)/(mg/kg)变异系数
Coefficient of Variation(CV)/%单项污染指数
Average of Pollution index (Pi)背景值
(张慧等,2018)
Background Values (BV)/(mg/kg)GB 15618-2018
风险筛选值/(mg/kg)Cd镉 0.065 0.123 0.089 0.007 0.079 0.297 0.078 0.3 As砷 5.136 10.703 8.164 0.764 0.094 0.204 9.282 40 Hg汞 0.020 0.089 0.029 0.010 0.345 0.016 0.016 1.8 Cr铬 52.549 124.378 72.930 13.025 0.179 0.486 50.583 150 Cu铜 13.006 71.859 17.794 6.083 0.342 0.356 18.683 50 Pb铅 16.100 68.741 20.225 8.513 0.421 0.225 22.652 90 Ni镍 20.171 89.038 29.238 9.781 0.335 0.418 24.037 70 Zn锌 46.469 80.848 58.668 6.579 0.112 0.293 57.112 200 注:1.样本数目Number=111;2.CV=SD/Mean;3.平均污染指数Pi=Mean/评价标准值,“评价标准值”(GB15618-1995);4.风险筛选值选取(pH:5.5<pH≤7.5)为评价标准值 表 2 土壤化学变量的Pearson相关系数矩阵
Table 2. Pearson correlation coefficient matrix for the selected chemical variables in soil
土壤化学变量
(Soilchemicalvariable)Cd As Hg Cr Cu Pb Ni Zn pH SOM Fe2O3 Cd 1 As 0.398** 1 Hg 0.046 0.043 1 Cr 0.210* 0.302** 0.427** 1 Cu 0.029 0.203* 0.153 0.336** 1 Pb -0.014 -0.006 0.201* 0.355** 0.450** 1 Ni 0.085 0.134 0.583** 0.737** 0.253* 0.178 1 Zn 0.263** 0.473** 0.128 0.351** 0.337** 0.064 0.245** 1 pH 0.183 -0.012 -0.060 -0.061 -0.068 -0.037 -0.087 0.083 1 SOM 0.071 0.019 0.070 -0.015 0.103 0.014 0.087 0.298** 0.296** 1 Fe2O3 0.417** 0.762** 0.158 0.376** 0.345** 0.112 0.195* 0.647** 0.004 0.157 1 注:**—在0.01水平上显著相关;*—在0.05水平上显著相关 表 3 土壤化学变量的主成分分析结果
Table 3. Principal component analysis of the selected chemical variables in soil
土壤化学变量
Soil chemical variable旋转前矩阵Component matrix 旋转后矩阵Rotated component matrix PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4 Cd 0.386 0.480 0.068 -0.276 0.079 0.628 -0.199 0.141 As 0.589 0.555 -0.297 -0.208 0.060 0.875 0.029 -0.126 Hg 0.743 -0.555 0.217 -0.251 0.979 0.067 0.080 0.011 Cr 0.814 -0.335 0.007 -0.092 0.792 0.285 0.269 -0.057 Cu 0.537 -0.059 -0.234 0.614 0.151 0.223 0.807 0.015 Pb 0.343 -0.277 -0.206 0.680 0.136 -0.076 0.822 -0.017 Ni 0.743 -0.555 0.217 -0.251 0.979 0.067 0.080 0.011 Zn 0.661 0.420 0.062 0.095 0.184 0.684 0.236 0.261 Fe2O3 0.712 0.548 -0.214 -0.019 0.108 0.891 0.215 0.017 pH -0.018 0.326 0.702 0.165 -0.085 0.039 -0.123 0.777 SOM 0.205 0.244 0.685 0.328 0.061 0.090 0.118 0.807 特征值 3.655 1.988 1.296 1.238 2.652 2.579 1.583 1.363 方差贡献率/% 33.226 18.072 11.783 11.254 24.109 23.442 14.391 12.392 累计方法贡献率/% 33.226 51.298 63.081 74.334 24.109 47.551 61.942 74.334 表 4 土壤化学变量相关性分类表
Table 4. Correlation table of chemical variables in soil
组别
Group土壤化学变量
Soil chemical variable个数
Number第一类 Cd、As、Zn、氧化铁 4 第二类 Hg、Cr、Ni 4 第三类 Cu、Pb 2 第四类 pH、SOM 2 表 5 土壤氧化铁含量高光谱反演模型对比分析
Table 5. Comparative analysis of hyperspectral inversion models for iron oxide content in soil
模型
Model波谱变换
Spectral index决定系数
R2均方根误差
RMSEMLSR CR 0.443 3.311 FDR 0.569 1.980 BP CR 0.314 1.769 FDR 0.632 2.750 PLSR CR 0.704 0.148 FDR 0.223 0.240 表 6 基于偏最小二乘法(PLSR)的土壤化学变量高光谱反演模型精度评价表
Table 6. Accuracy evaluation table of the hyperspectral inversion model of chemical variables in soil based on PLSR
土壤化学变量
Soil chemical variable光谱变换
Spectral index自变量所在波段
Independent variable band预测样本集Training:89 验证样本集Validation:22 RMSE R2 F RMSE R2 RPD Cd CR 2246、1678、356、1680 0.008 0.184 5.680 0.007 0.012 0.939 FDR 2204、1438、2490、1767、366、356、1376、2495 0.006 0.421 6.390 0.009 0.001 1.317 As CR 2484、371、1679 0.709 0.237 8.811 0.543 0.110 1.152 FDR 407、1642、382、393 0.672 0.316 9.695 0.629 0.031 1.216 Zn CR 2331、2356 6.622 0.112 5.394 5.245 0.140 1.070 FDR 377、363、366 7.075 0.073 4.702 5.285 0.140 0.999 Fe2O3 CR 371、2475、2331、2362、2398、2438、2447、2417、2414、2382、2452、2207、2192、2418 0.148 0.704 12.723 0.110 0.657 1.700 FDR 377、1642、1087、447 0.240 0.223 6.014 0.343 0.016 1.141 -
ALLOWAY B J, 2013. Sources of heavy metals and metalloids in soils[M]//Heavy metals in soils. Dordrecht: Springer: 11-50. BAI D K, ZHU X P, WANG Y Y, et al., 2010. Study on adsorption behaviors of As(Ⅲ) by manganese oxide, iron oxide and aluminium oxide[J]. Rock and Mineral Analysis, 29(1): 55-60. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS201001019.htm CHEN J Q, GAO Y, QIN J M, et al., 2017. Clay mineral and major element geochemical features and their paleoclimate significance in Nenjiang formation 1st and 2nd members, eastern margin of Songliao Basin[J]. Coal Geology of China, 29(8): 17-24. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGMT201708004.htm CHEN K H, ZHANG N X, ZHANG Q C, et al., 1991. Mineralogy of potassium bearing clay in Qianshan County, Jiangxi Province[J]. Nonmetallic Geology, (4): 9-13, 50. (in Chinese) COVELO E F, VEGA F A, ANDRADE M L, 2007. Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils: I. Selectivity sequences[J]. Journal of Hazardous Materials, 147(3): 852-861. doi: 10.1016/j.jhazmat.2007.01.123 FACCHINELLI A, SACCHI E, MALLEN L, 2001. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils[J]. Environmental Pollution, 114(3): 313-324. doi: 10.1016/S0269-7491(00)00243-8 GANNOUNI S, REBAI N, ABDELJAOUED S, 2012. A spectroscopic approach to assess heavy metals contents of the mine waste of Jalta and Bougrine in the North of Tunisia[J]. Journal of Geographic Information System, 4(3): 19597. http://www.cqvip.com/QK/72911X/20123/HS729112012003006.html GONG S Q, WANG X, SHEN R P, et al., 2010. Study on heavy metal element content in the coastal saline soil by hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 25(2): 169-177. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGJS201002000.htm GUO Y, BI R T, ZHENG C, et al., 2018. Review of hyperspectral remote sensing retrieval of soil heavy metals[J]. Environmental Science and Technology, 31(1): 67-72. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSHJ201801016.htm HE J L, ZHANG S Y, ZHA Y, et al., 2015. Review of retrieving soil heavy metal content by hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 30(3): 407-412. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGJS201503002.htm Helen County Soil Survey Office, 1985. Helen soil records[M]. Heilongjiang: Helen County Soil Office. (in Chinese) HUANG B, 2016. Studies on the adsorption, accumulation, transportation and immobilization of heavy metals in paddy soil[D]. Changsha: Hunan University. (in Chinese with English abstract) LAN Z Y, LIU Y, 2015. Research on indirect hyperspectral estimating model and the spatial distribution characteristics of heavy metal contents in basin soil of lean river[J]. Geography and Geo-Information Science, 31(3): 26-31. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DLGT201503006.htm LI Z Y, MA Z W, VAN DER KUIJP T J, et al., 2014. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment[J]. Science of the Total Environment, 468-469: 843-853. doi: 10.1016/j.scitotenv.2013.08.090 LIU W, ZHAO Z, YUAN H F, et al., 2014. An optimal selection method of samples of calibration set and validation set for spectral multivariate analysis[J]. Spectroscopy and Spectral Analysis, (4): 947-951. (in Chinese with English abstract) http://europepmc.org/abstract/med/25007606 LU Q, WANG S J, BAI X Y, et al., 2019. Rapid inversion of heavy metal concentration in karst grain producing areas based on hyperspectral bands associated with soil components[J]. Microchemical Journal, 148: 404-411. doi: 10.1016/j.microc.2019.05.031 MA W B, TAN K, LI H D, et al., 2016. Hyperspectral inversion of heavy metals in soil of a mining area using extreme learning machine[J]. Journal of Ecology and Rural Environment, 32(2): 213-218. (in Chinese with English abstract) http://www.cqvip.com/QK/92129A/20162/668246571.html MOROS J, DE VALLEJUELO S F O, GREDILLA A, et al., 2009. Use of reflectance infrared spectroscopy for monitoring the metal content of the estuarine sediments of the Nerbioi-Ibaizabal River (Metropolitan Bilbao, Bay of Biscay, Basque Country)[J]. Environmental Science and Technology, 43(24): 9314-9320. doi: 10.1021/es9005898 NI S Q, JU Y W, HOU Q L, et al., 2009. Comparison of the role of iron oxides in the migration and weathering of heavy metals and the enrichment of heavy metals in carbonate rocks[J]. Progress in Natural Science, 19(1): 61-68. (in Chinese with English abstract) PAN C C, 2017. Study on the hyperspectral remote sensing inversion of soil heavy metal concentrations based on random forest model[D]. Xuzhou: China University of Mining and Technology. (in Chinese with English abstract) QIAO D H, ZHAO Y Y, WANG A, et al., 2017. Geochronology, fluid inclusions, geochemical characteristics of Dibao Cu(Au) deposit, Duolong ore concentration area, Xizang(Tibet), and its genetic type[J]. Acta Geologica Sinica, 91(7): 1542-1564. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201707010.htm QIN Y L, ZHANG F G, PENG M, et al., 2020. Geochemical distribution characteristics and sources of heavy metals in soils of WudingCounty, Yunnan Province[J]. Geology and Exploration, 56(3): 540-550. (in Chinese with English abstract) SHEN Q, XIA K, ZHANG S W, et al., 2019. Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of iron ore area[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 222: 117191. doi: 10.1016/j.saa.2019.117191 SHEN Q, ZHANG S W, GE C, et al., 2019. Hyperspectral inversion of heavy metal content in soils reconstituted by mining wasteland[J]. Spectroscopy and Spectral Analysis, 39(4): 1214-1221. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-GUAN201904039.htm SONG H F, WU K N, LI T, et al., 2018. The spatial distribution and influencing factors of farmland heavy metals in the cold black soil region: A case of Hailun county[J]. Chinese Journal of Soil Science, 49(6): 1480-1486. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-TRTB201806030.htm TIAN H, 2020. Research on water resources simulation and reasonable allocation of Hailun city based on SWAT and Visual Modflow[D]. Changchun: Jilin University. (in Chinese with English abstract) WANG D M, QIN K, LI Z Z, et al., 2018. Retrieval of organic matter content in black soil based on Airborne Hyperspectral Remote Sensing Data: Taking Jiansanjiang district in Heilongjiang Province as an example[J]. Earth Sciences, 43(6): 2184-2194. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201806030.htm WANG Z W, WANG L, HUANG G W, et al., 2020. Research on multi-source heterogeneous data fusion algorithm of landslide monitoring based on BP neural network[J]. Journal of Geomechanics, 26(4): 575-582. (in Chinese with English abstract) WEI Z L, LI H, RUI Y K, 2008. Determination of major elements in soil from cancer village by X-ray fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 28(11): 2706-2707. (in Chinese with English abstract) http://europepmc.org/abstract/MED/19271523 WHITE W M, 2013. Geochemistry[M]. Chichester: Wiley-Blackwell: 269-271. XIANG Y, 2015. Studies on Cu and Pb content of paddy soil in Chengdu plain based on the hyper-spectrum estimation model[D]. Ya'an: Sichuan Agricultural University. (in Chinese with English abstract) XIONG S Q, 2020. Innovation and application of airborne geophysical exploration technology[J]. Journal of Geomechanics, 26(5): 791-818. (in Chinese with English abstract) YU R, WANG Y, WANG C X, et al., 2017. Survey of heavy metal pollution and source identification of black soil in Zea mays L. cultivated region of Yushu city, China[J]. Ecology and Environmental Sciences, 26(10): 1788-1794. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-TRYJ201710020.htm ZHANG D H, ZHAO Y J, QIN K, et al., 2018. Influence of spectral transformation methods on nutrient content inversion accuracy by hyperspectral remote sensing in black soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 34(20): 141-147. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-NYGU201820018.htm ZHANG H, MA X P, SUI H J, et al., 2018. Background value and accumulation of heavy metals in soil of Northern Songnen Plain[J]. Chinese Journal of Soil Science, 49(1): 176-183. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-TRTB201801024.htm ZHANG M Y, ZHANG Q L, WANG L, et al., 2019. Research on chromium retrieval of black soil with hyperspectral imagery in Northeast of China[J]. Remote Sensing Technology and Application, 34(2): 313-322. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YGJS201902011.htm ZHAO N B, ZHAO Y J, QIN K, et al., 2018. Retrieval of selenium content in black soil based on airborne hyperspectral data[J]. Spectroscopy and Spectral Analysis, 38(S1): 329-330. http://en.cnki.com.cn/Article_en/CJFDTotal-GUAN2018S1165.htm ZHAO X F, YANG L R, SHI Q, et al., 2008. Nitrate pollution in groundwater for drinking and its affecting factors in Hailun, northeast China[J]. Environmental Science, 29(11): 2993-2998. (in Chinese with English abstract) http://www.ncbi.nlm.nih.gov/pubmed/19186792 ZHAO Y M, 2008, China environmental protection standards Book 2007-2008 Volume Ⅱ[M]. China Environmental Science Press, 1612. (in Chinese) ZHUO L, 2010. The research of estimating heavy metal spatial distribution of soil using hyperspectral data[D]. Wuhan: Wuhan University. (in Chinese with English abstract) ZUO L, 2020. Research on hyperspectral remote sensing monitoring method of heavy metals in black soil region[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract) 白德奎, 朱霞萍, 王艳艳, 等, 2010. 氧化锰、氧化铁、氧化铝对砷(Ⅲ)的吸附行为研究[J]. 岩矿测试, 29(1): 55-60. doi: 10.3969/j.issn.0254-5357.2010.01.013 陈积权, 高远, 秦健铭, 等, 2017. 松辽盆地东缘嫩江组一二段黏土矿物和主量元素地球化学特征及其古气候意义[J]. 中国煤炭地质, 29(8): 17-24. doi: 10.3969/j.issn.1674-1803.2017.08.04 陈开惠, 张乃娴, 张铨昌, 等, 1991. 江西铅山县含钾粘土矿物学研究[J]. 建材地质, (4): 9-13, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK199104002.htm 龚绍琦, 王鑫, 沈润平, 等, 2010. 滨海盐土重金属含量高光谱遥感研究[J]. 遥感技术与应用, 25(2): 169-177. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201002000.htm 郭颖, 毕如田, 郑超, 等, 2018. 土壤重金属高光谱反演研究综述[J]. 环境科技, 31(1): 67-72. doi: 10.3969/j.issn.1674-4829.2018.01.015 海伦县土壤普查办公室, 1985. 海伦土壤志[M]. 黑龙江: 海伦县土壤办公室. 贺军亮, 张淑媛, 查勇, 等, 2015. 高光谱遥感反演土壤重金属含量研究进展[J]. 遥感技术与应用, 30(3): 407-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201503002.htm 黄斌, 2016. 重金属在稻田土壤中的吸附、富集、迁移特征及稳定化研究[D]. 长沙: 湖南大学. 兰泽英, 刘洋, 2015. 乐安河流域土壤重金属含量高光谱间接反演模型及其空间分布特征研究[J]. 地理与地理信息科学, 31(3): 26-31. doi: 10.3969/j.issn.1672-0504.2015.03.006 刘伟, 赵众, 袁洪福, 等, 2014. 光谱多元分析校正集和验证集样本分布优选方法研究[J]. 光谱学与光谱分析, (4): 947-951. doi: 10.3964/j.issn.1000-0593(2014)04-0947-05 马伟波, 谭琨, 李海东, 等, 2016. 基于超限学习机的矿区土壤重金属高光谱反演[J]. 生态与农村环境学报, 32(2): 213-218. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201602008.htm 倪善芹, 琚宜文, 侯泉林, 等, 2009. 铁氧化物在重金属元素迁移风化过程中的作用对比及碳酸盐岩中重金属元素的富集[J]. 自然科学进展, 19(1): 61-68. doi: 10.3321/j.issn:1002-008X.2009.01.008 潘岑岑, 2017. 基于随机森林的土壤重金属高光谱遥感反演研究[D]. 徐州: 中国矿业大学. 乔东海, 赵元艺, 汪傲, 等, 2017. 西藏多龙矿集区地堡铜(金)矿床年代学、流体包裹体、地球化学特征及其成因类型研究[J]. 地质学报, 91(7): 1542-1564. doi: 10.3969/j.issn.0001-5717.2017.07.009 秦元礼, 张富贵, 彭敏, 等, 2020. 云南省武定县土壤重金属地球化学分布特征及其来源浅析[J]. 地质与勘探, 56(3): 540-550. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202003007.htm 沈强, 张世文, 葛畅, 等, 2019. 矿业废弃地重构土壤重金属含量高光谱反演[J]. 光谱学与光谱分析, 39(4): 1214-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201904039.htm 宋恒飞, 吴克宁, 李婷, 等, 2018. 寒地黑土典型县域土壤重金属空间分布及影响因素分析: 以海伦市为例[J]. 土壤通报, 49(6): 1480-1486. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201806030.htm 田辉, 2020. 基于SWAT与Visual Modflow的海伦市水资源模拟与合理配置研究[D]. 长春: 吉林大学. 汪大明, 秦凯, 李志忠, 等, 2018. 基于航空高光谱遥感数据的黑土地有机质含量反演: 以黑龙江省建三江地区为例[J]. 地球科学, 43(6): 2184-2194. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201806030.htm 王智伟, 王利, 黄观文, 等, 2020. 基于BP神经网络的滑坡监测多源异构数据融合算法研究[J]. 地质力学学报, 26(4): 575-582. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202004014.htm 魏振林, 李禾, 芮玉奎, 2008. X射线荧光光谱法分析癌症村土壤主量元素[J]. 光谱学与光谱分析, 28(11): 2706-2707. doi: 10.3964/j.issn.1000-0593(2008)11-2706-02 向颖, 2015. 成都平原水稻土重金属铜和铅含量的高光谱反演研究[D]. 雅安: 四川农业大学. 熊盛青, 2020. 航空地球物理勘查科技创新与应用[J]. 地质力学学报, 26(5): 791-818. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202005012.htm 于锐, 王洋, 王晨旭, 等, 2017. 榆树市玉米种植区黑土重金属污染状况及来源浅析[J]. 生态环境学报, 26(10): 1788-1794. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201710020.htm 张东辉, 赵英俊, 秦凯, 等, 2018. 光谱变换方法对黑土养分含量高光谱遥感反演精度的影响[J]. 农业工程学报, 34(20): 141-147. doi: 10.11975/j.issn.1002-6819.2018.20.018 张慧, 马鑫鹏, 隋虹均, 等, 2018. 松嫩平原北部土壤重金属背景值及累积特征研究[J]. 土壤通报, 49(1): 176-183. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201801024.htm 张明月, 张奇栎, 王璐, 等, 2019. 东北黑土区土壤铬含量高光谱反演研究[J]. 遥感技术与应用, 34(2): 313-322. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201902011.htm 赵宁博, 赵英俊, 秦凯, 等, 2018. 基于航空高光谱的黑土地硒含量反演研究[J]. 光谱学与光谱分析, 38(S1): 329-330. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN2018S1165.htm 赵新峰, 杨丽蓉, 施茜, 等, 2008. 东北海伦地区农村地下饮用水硝态氮污染特征及其影响因素分析[J]. 环境科学, 29(11): 2993-2998. doi: 10.3321/j.issn:0250-3301.2008.11.001 赵英民, 2008. 中国环境保护标准全书: 2007-2008年[M]. 北京: 中国环境科学出版社, 1612. 卓荦, 2010. 基于高光谱遥感的土壤重金属空间分布研究[D]. 武汉: 武汉大学. 左玲, 2020. 黑土区土壤重金属高光谱遥感监测方法探究[D]. 北京: 中国地质大学(北京).