留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高光谱技术的黑土地微量金属元素探测方法及地学意义

王建华 左玲 李志忠 穆华一 周萍 杨佳佳 赵英俊 秦凯

王建华, 左玲, 李志忠, 等, 2021. 基于高光谱技术的黑土地微量金属元素探测方法及地学意义. 地质力学学报, 27 (3): 418-429. DOI: 10.12090/j.issn.1006-6616.2021.27.03.038
引用本文: 王建华, 左玲, 李志忠, 等, 2021. 基于高光谱技术的黑土地微量金属元素探测方法及地学意义. 地质力学学报, 27 (3): 418-429. DOI: 10.12090/j.issn.1006-6616.2021.27.03.038
WANG Jianhua, ZUO Ling, LI Zhizhong, et al., 2021. A detection method of trace metal elements in black soil based on hyperspectral technology: Geological implications. Journal of Geomechanics, 27 (3): 418-429. DOI: 10.12090/j.issn.1006-6616.2021.27.03.038
Citation: WANG Jianhua, ZUO Ling, LI Zhizhong, et al., 2021. A detection method of trace metal elements in black soil based on hyperspectral technology: Geological implications. Journal of Geomechanics, 27 (3): 418-429. DOI: 10.12090/j.issn.1006-6616.2021.27.03.038

基于高光谱技术的黑土地微量金属元素探测方法及地学意义

doi: 10.12090/j.issn.1006-6616.2021.27.03.038
基金项目: 

中国地质调查局地质调查项目 DD20190316

国际地学计划项目 IGCP-665

详细信息
    作者简介:

    王建华(1979-), 男, 助理研究员, 研究方向为遥感在土壤信息提取、评价中的应用。E-mail: wangjh@aircas.ac.cn

    通讯作者:

    穆华一(1974-), 女, 讲师, 长期从事地质科技管理和地质杂志英文编辑。E-mail: 1517993978@qq.com

  • 中图分类号: P237;X87

A detection method of trace metal elements in black soil based on hyperspectral technology: Geological implications

Funds: 

the Geological Survey Projects of China Geological Survey DD20190316

the International Geoscience Program IGCP-665

  • 摘要: 在土壤中重金属含量较低的情况下,重金属的高光谱特征响应非常微弱,不易构建精确的高光谱直接反演模型。为了解决上述问题,依据土壤化学变量间的理化性质,将重金属富集特征转移到与之相关的化学主量元素上,使重金属微弱的信息得以间接定量反演。文中以海伦市黑土土壤为研究对象,通过主成分分析、聚类分析确定了主量元素氧化铁(Fe2O3)与微量重金属As、Zn、Cd之间存在明显吸附赋存关系。选用偏最小二乘法构建了研究区氧化铁含量的最佳反演模型(决定系数为0.704,均方根误差为0.148,F检验为12.732),并利用氧化铁与As、Zn、Cd之间的赋存关系,通过神经网络构建了氧化铁预测值与重金属真实值间的非线性拟合模型,得出As含量的拟合程度最高,Zn的拟合程度较好,Cd的拟合效果较理想,总体相关性分别为0.796、0.732、0.530。研究结果表明,基于氧化铁含量的间接预测模型能对微量重金属As、Zn、Cd进行较好的定量预测,为微量重金属含量的定量分析提供了新的方法参考,为高光谱遥感技术预测土壤重金属含量提供了依据,增强了土壤微量重金属反演可行性,对细化自然资源质量监测、深化开展地学系统综合分析与评价有重要意义。

     

  • 图  1  研究方法流程图

    Figure  1.  Flow chart of the research method

    图  2  土壤化学变量聚类分析树状图

    Figure  2.  Cluster analysis tree diagram of the selected chemical variables in soil

    图  3  土壤原始反射波谱与粘土矿物波谱特征对比图

    Figure  3.  Comparison of original reflection spectrum of soil and spectrum of clay minerals

    图  4  基于PLSR模型的氧化铁预测值与实测值散点图

    Figure  4.  Scatter plot of predicted and measured values of iron oxide based on PLSR model

    图  5  重金属As、Zn、Cd含量拟合曲线模型及预测结果精度评价

    Figure  5.  Fitting curve model for heavy metal contents of As, Zn and Cd and accuracy evaluation of the predicted results

    表  1  土壤重金属含量的统计特征

    Table  1.   Statistical characteristics of heavy metal contents in soil

    重金属
    Heavy Metal
    最小值
    Min/(mg/kg)
    最大值
    Max/(mg/kg)
    均值
    Mean/(mg/kg)
    标准差
    Standard Deviation(SD)/(mg/kg)
    变异系数
    Coefficient of Variation(CV)/%
    单项污染指数
    Average of Pollution index (Pi)
    背景值
    (张慧等,2018)
    Background Values (BV)/(mg/kg)
    GB 15618-2018
    风险筛选值/(mg/kg)
    Cd镉 0.065 0.123 0.089 0.007 0.079 0.297 0.078 0.3
    As砷 5.136 10.703 8.164 0.764 0.094 0.204 9.282 40
    Hg汞 0.020 0.089 0.029 0.010 0.345 0.016 0.016 1.8
    Cr铬 52.549 124.378 72.930 13.025 0.179 0.486 50.583 150
    Cu铜 13.006 71.859 17.794 6.083 0.342 0.356 18.683 50
    Pb铅 16.100 68.741 20.225 8.513 0.421 0.225 22.652 90
    Ni镍 20.171 89.038 29.238 9.781 0.335 0.418 24.037 70
    Zn锌 46.469 80.848 58.668 6.579 0.112 0.293 57.112 200
    注:1.样本数目Number=111;2.CV=SD/Mean;3.平均污染指数Pi=Mean/评价标准值,“评价标准值”(GB15618-1995);4.风险筛选值选取(pH:5.5<pH≤7.5)为评价标准值
    下载: 导出CSV

    表  2  土壤化学变量的Pearson相关系数矩阵

    Table  2.   Pearson correlation coefficient matrix for the selected chemical variables in soil

    土壤化学变量
    (Soilchemicalvariable)
    Cd As Hg Cr Cu Pb Ni Zn pH SOM Fe2O3
    Cd 1
    As 0.398** 1
    Hg 0.046 0.043 1
    Cr 0.210* 0.302** 0.427** 1
    Cu 0.029 0.203* 0.153 0.336** 1
    Pb -0.014 -0.006 0.201* 0.355** 0.450** 1
    Ni 0.085 0.134 0.583** 0.737** 0.253* 0.178 1
    Zn 0.263** 0.473** 0.128 0.351** 0.337** 0.064 0.245** 1
    pH 0.183 -0.012 -0.060 -0.061 -0.068 -0.037 -0.087 0.083 1
    SOM 0.071 0.019 0.070 -0.015 0.103 0.014 0.087 0.298** 0.296** 1
    Fe2O3 0.417** 0.762** 0.158 0.376** 0.345** 0.112 0.195* 0.647** 0.004 0.157 1
    注:**—在0.01水平上显著相关;*—在0.05水平上显著相关
    下载: 导出CSV

    表  3  土壤化学变量的主成分分析结果

    Table  3.   Principal component analysis of the selected chemical variables in soil

    土壤化学变量
    Soil chemical variable
    旋转前矩阵Component matrix 旋转后矩阵Rotated component matrix
    PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4
    Cd 0.386 0.480 0.068 -0.276 0.079 0.628 -0.199 0.141
    As 0.589 0.555 -0.297 -0.208 0.060 0.875 0.029 -0.126
    Hg 0.743 -0.555 0.217 -0.251 0.979 0.067 0.080 0.011
    Cr 0.814 -0.335 0.007 -0.092 0.792 0.285 0.269 -0.057
    Cu 0.537 -0.059 -0.234 0.614 0.151 0.223 0.807 0.015
    Pb 0.343 -0.277 -0.206 0.680 0.136 -0.076 0.822 -0.017
    Ni 0.743 -0.555 0.217 -0.251 0.979 0.067 0.080 0.011
    Zn 0.661 0.420 0.062 0.095 0.184 0.684 0.236 0.261
    Fe2O3 0.712 0.548 -0.214 -0.019 0.108 0.891 0.215 0.017
    pH -0.018 0.326 0.702 0.165 -0.085 0.039 -0.123 0.777
    SOM 0.205 0.244 0.685 0.328 0.061 0.090 0.118 0.807
    特征值 3.655 1.988 1.296 1.238 2.652 2.579 1.583 1.363
    方差贡献率/% 33.226 18.072 11.783 11.254 24.109 23.442 14.391 12.392
    累计方法贡献率/% 33.226 51.298 63.081 74.334 24.109 47.551 61.942 74.334
    下载: 导出CSV

    表  4  土壤化学变量相关性分类表

    Table  4.   Correlation table of chemical variables in soil

    组别
    Group
    土壤化学变量
    Soil chemical variable
    个数
    Number
    第一类 Cd、As、Zn、氧化铁 4
    第二类 Hg、Cr、Ni 4
    第三类 Cu、Pb 2
    第四类 pH、SOM 2
    下载: 导出CSV

    表  5  土壤氧化铁含量高光谱反演模型对比分析

    Table  5.   Comparative analysis of hyperspectral inversion models for iron oxide content in soil

    模型
    Model
    波谱变换
    Spectral index
    决定系数
    R2
    均方根误差
    RMSE
    MLSR CR 0.443 3.311
    FDR 0.569 1.980
    BP CR 0.314 1.769
    FDR 0.632 2.750
    PLSR CR 0.704 0.148
    FDR 0.223 0.240
    下载: 导出CSV

    表  6  基于偏最小二乘法(PLSR)的土壤化学变量高光谱反演模型精度评价表

    Table  6.   Accuracy evaluation table of the hyperspectral inversion model of chemical variables in soil based on PLSR

    土壤化学变量
    Soil chemical variable
    光谱变换
    Spectral index
    自变量所在波段
    Independent variable band
    预测样本集Training:89 验证样本集Validation:22
    RMSE R2 F RMSE R2 RPD
    Cd CR 2246、1678、356、1680 0.008 0.184 5.680 0.007 0.012 0.939
    FDR 2204、1438、2490、1767、366、356、1376、2495 0.006 0.421 6.390 0.009 0.001 1.317
    As CR 2484、371、1679 0.709 0.237 8.811 0.543 0.110 1.152
    FDR 407、1642、382、393 0.672 0.316 9.695 0.629 0.031 1.216
    Zn CR 2331、2356 6.622 0.112 5.394 5.245 0.140 1.070
    FDR 377、363、366 7.075 0.073 4.702 5.285 0.140 0.999
    Fe2O3 CR 371、2475、2331、2362、2398、2438、2447、2417、2414、2382、2452、2207、2192、2418 0.148 0.704 12.723 0.110 0.657 1.700
    FDR 377、1642、1087、447 0.240 0.223 6.014 0.343 0.016 1.141
    下载: 导出CSV
  • ALLOWAY B J, 2013. Sources of heavy metals and metalloids in soils[M]//Heavy metals in soils. Dordrecht: Springer: 11-50.
    BAI D K, ZHU X P, WANG Y Y, et al., 2010. Study on adsorption behaviors of As(Ⅲ) by manganese oxide, iron oxide and aluminium oxide[J]. Rock and Mineral Analysis, 29(1): 55-60. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS201001019.htm
    CHEN J Q, GAO Y, QIN J M, et al., 2017. Clay mineral and major element geochemical features and their paleoclimate significance in Nenjiang formation 1st and 2nd members, eastern margin of Songliao Basin[J]. Coal Geology of China, 29(8): 17-24. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGMT201708004.htm
    CHEN K H, ZHANG N X, ZHANG Q C, et al., 1991. Mineralogy of potassium bearing clay in Qianshan County, Jiangxi Province[J]. Nonmetallic Geology, (4): 9-13, 50. (in Chinese)
    COVELO E F, VEGA F A, ANDRADE M L, 2007. Simultaneous sorption and desorption of Cd, Cr, Cu, Ni, Pb, and Zn in acid soils: I. Selectivity sequences[J]. Journal of Hazardous Materials, 147(3): 852-861. doi: 10.1016/j.jhazmat.2007.01.123
    FACCHINELLI A, SACCHI E, MALLEN L, 2001. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils[J]. Environmental Pollution, 114(3): 313-324. doi: 10.1016/S0269-7491(00)00243-8
    GANNOUNI S, REBAI N, ABDELJAOUED S, 2012. A spectroscopic approach to assess heavy metals contents of the mine waste of Jalta and Bougrine in the North of Tunisia[J]. Journal of Geographic Information System, 4(3): 19597. http://www.cqvip.com/QK/72911X/20123/HS729112012003006.html
    GONG S Q, WANG X, SHEN R P, et al., 2010. Study on heavy metal element content in the coastal saline soil by hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 25(2): 169-177. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGJS201002000.htm
    GUO Y, BI R T, ZHENG C, et al., 2018. Review of hyperspectral remote sensing retrieval of soil heavy metals[J]. Environmental Science and Technology, 31(1): 67-72. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSHJ201801016.htm
    HE J L, ZHANG S Y, ZHA Y, et al., 2015. Review of retrieving soil heavy metal content by hyperspectral remote sensing[J]. Remote Sensing Technology and Application, 30(3): 407-412. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGJS201503002.htm
    Helen County Soil Survey Office, 1985. Helen soil records[M]. Heilongjiang: Helen County Soil Office. (in Chinese)
    HUANG B, 2016. Studies on the adsorption, accumulation, transportation and immobilization of heavy metals in paddy soil[D]. Changsha: Hunan University. (in Chinese with English abstract)
    LAN Z Y, LIU Y, 2015. Research on indirect hyperspectral estimating model and the spatial distribution characteristics of heavy metal contents in basin soil of lean river[J]. Geography and Geo-Information Science, 31(3): 26-31. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DLGT201503006.htm
    LI Z Y, MA Z W, VAN DER KUIJP T J, et al., 2014. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment[J]. Science of the Total Environment, 468-469: 843-853. doi: 10.1016/j.scitotenv.2013.08.090
    LIU W, ZHAO Z, YUAN H F, et al., 2014. An optimal selection method of samples of calibration set and validation set for spectral multivariate analysis[J]. Spectroscopy and Spectral Analysis, (4): 947-951. (in Chinese with English abstract) http://europepmc.org/abstract/med/25007606
    LU Q, WANG S J, BAI X Y, et al., 2019. Rapid inversion of heavy metal concentration in karst grain producing areas based on hyperspectral bands associated with soil components[J]. Microchemical Journal, 148: 404-411. doi: 10.1016/j.microc.2019.05.031
    MA W B, TAN K, LI H D, et al., 2016. Hyperspectral inversion of heavy metals in soil of a mining area using extreme learning machine[J]. Journal of Ecology and Rural Environment, 32(2): 213-218. (in Chinese with English abstract) http://www.cqvip.com/QK/92129A/20162/668246571.html
    MOROS J, DE VALLEJUELO S F O, GREDILLA A, et al., 2009. Use of reflectance infrared spectroscopy for monitoring the metal content of the estuarine sediments of the Nerbioi-Ibaizabal River (Metropolitan Bilbao, Bay of Biscay, Basque Country)[J]. Environmental Science and Technology, 43(24): 9314-9320. doi: 10.1021/es9005898
    NI S Q, JU Y W, HOU Q L, et al., 2009. Comparison of the role of iron oxides in the migration and weathering of heavy metals and the enrichment of heavy metals in carbonate rocks[J]. Progress in Natural Science, 19(1): 61-68. (in Chinese with English abstract)
    PAN C C, 2017. Study on the hyperspectral remote sensing inversion of soil heavy metal concentrations based on random forest model[D]. Xuzhou: China University of Mining and Technology. (in Chinese with English abstract)
    QIAO D H, ZHAO Y Y, WANG A, et al., 2017. Geochronology, fluid inclusions, geochemical characteristics of Dibao Cu(Au) deposit, Duolong ore concentration area, Xizang(Tibet), and its genetic type[J]. Acta Geologica Sinica, 91(7): 1542-1564. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201707010.htm
    QIN Y L, ZHANG F G, PENG M, et al., 2020. Geochemical distribution characteristics and sources of heavy metals in soils of WudingCounty, Yunnan Province[J]. Geology and Exploration, 56(3): 540-550. (in Chinese with English abstract)
    SHEN Q, XIA K, ZHANG S W, et al., 2019. Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of iron ore area[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 222: 117191. doi: 10.1016/j.saa.2019.117191
    SHEN Q, ZHANG S W, GE C, et al., 2019. Hyperspectral inversion of heavy metal content in soils reconstituted by mining wasteland[J]. Spectroscopy and Spectral Analysis, 39(4): 1214-1221. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-GUAN201904039.htm
    SONG H F, WU K N, LI T, et al., 2018. The spatial distribution and influencing factors of farmland heavy metals in the cold black soil region: A case of Hailun county[J]. Chinese Journal of Soil Science, 49(6): 1480-1486. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-TRTB201806030.htm
    TIAN H, 2020. Research on water resources simulation and reasonable allocation of Hailun city based on SWAT and Visual Modflow[D]. Changchun: Jilin University. (in Chinese with English abstract)
    WANG D M, QIN K, LI Z Z, et al., 2018. Retrieval of organic matter content in black soil based on Airborne Hyperspectral Remote Sensing Data: Taking Jiansanjiang district in Heilongjiang Province as an example[J]. Earth Sciences, 43(6): 2184-2194. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201806030.htm
    WANG Z W, WANG L, HUANG G W, et al., 2020. Research on multi-source heterogeneous data fusion algorithm of landslide monitoring based on BP neural network[J]. Journal of Geomechanics, 26(4): 575-582. (in Chinese with English abstract)
    WEI Z L, LI H, RUI Y K, 2008. Determination of major elements in soil from cancer village by X-ray fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 28(11): 2706-2707. (in Chinese with English abstract) http://europepmc.org/abstract/MED/19271523
    WHITE W M, 2013. Geochemistry[M]. Chichester: Wiley-Blackwell: 269-271.
    XIANG Y, 2015. Studies on Cu and Pb content of paddy soil in Chengdu plain based on the hyper-spectrum estimation model[D]. Ya'an: Sichuan Agricultural University. (in Chinese with English abstract)
    XIONG S Q, 2020. Innovation and application of airborne geophysical exploration technology[J]. Journal of Geomechanics, 26(5): 791-818. (in Chinese with English abstract)
    YU R, WANG Y, WANG C X, et al., 2017. Survey of heavy metal pollution and source identification of black soil in Zea mays L. cultivated region of Yushu city, China[J]. Ecology and Environmental Sciences, 26(10): 1788-1794. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-TRYJ201710020.htm
    ZHANG D H, ZHAO Y J, QIN K, et al., 2018. Influence of spectral transformation methods on nutrient content inversion accuracy by hyperspectral remote sensing in black soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 34(20): 141-147. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-NYGU201820018.htm
    ZHANG H, MA X P, SUI H J, et al., 2018. Background value and accumulation of heavy metals in soil of Northern Songnen Plain[J]. Chinese Journal of Soil Science, 49(1): 176-183. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-TRTB201801024.htm
    ZHANG M Y, ZHANG Q L, WANG L, et al., 2019. Research on chromium retrieval of black soil with hyperspectral imagery in Northeast of China[J]. Remote Sensing Technology and Application, 34(2): 313-322. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YGJS201902011.htm
    ZHAO N B, ZHAO Y J, QIN K, et al., 2018. Retrieval of selenium content in black soil based on airborne hyperspectral data[J]. Spectroscopy and Spectral Analysis, 38(S1): 329-330. http://en.cnki.com.cn/Article_en/CJFDTotal-GUAN2018S1165.htm
    ZHAO X F, YANG L R, SHI Q, et al., 2008. Nitrate pollution in groundwater for drinking and its affecting factors in Hailun, northeast China[J]. Environmental Science, 29(11): 2993-2998. (in Chinese with English abstract) http://www.ncbi.nlm.nih.gov/pubmed/19186792
    ZHAO Y M, 2008, China environmental protection standards Book 2007-2008 Volume Ⅱ[M]. China Environmental Science Press, 1612. (in Chinese)
    ZHUO L, 2010. The research of estimating heavy metal spatial distribution of soil using hyperspectral data[D]. Wuhan: Wuhan University. (in Chinese with English abstract)
    ZUO L, 2020. Research on hyperspectral remote sensing monitoring method of heavy metals in black soil region[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)
    白德奎, 朱霞萍, 王艳艳, 等, 2010. 氧化锰、氧化铁、氧化铝对砷(Ⅲ)的吸附行为研究[J]. 岩矿测试, 29(1): 55-60. doi: 10.3969/j.issn.0254-5357.2010.01.013
    陈积权, 高远, 秦健铭, 等, 2017. 松辽盆地东缘嫩江组一二段黏土矿物和主量元素地球化学特征及其古气候意义[J]. 中国煤炭地质, 29(8): 17-24. doi: 10.3969/j.issn.1674-1803.2017.08.04
    陈开惠, 张乃娴, 张铨昌, 等, 1991. 江西铅山县含钾粘土矿物学研究[J]. 建材地质, (4): 9-13, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK199104002.htm
    龚绍琦, 王鑫, 沈润平, 等, 2010. 滨海盐土重金属含量高光谱遥感研究[J]. 遥感技术与应用, 25(2): 169-177. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201002000.htm
    郭颖, 毕如田, 郑超, 等, 2018. 土壤重金属高光谱反演研究综述[J]. 环境科技, 31(1): 67-72. doi: 10.3969/j.issn.1674-4829.2018.01.015
    海伦县土壤普查办公室, 1985. 海伦土壤志[M]. 黑龙江: 海伦县土壤办公室.
    贺军亮, 张淑媛, 查勇, 等, 2015. 高光谱遥感反演土壤重金属含量研究进展[J]. 遥感技术与应用, 30(3): 407-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201503002.htm
    黄斌, 2016. 重金属在稻田土壤中的吸附、富集、迁移特征及稳定化研究[D]. 长沙: 湖南大学.
    兰泽英, 刘洋, 2015. 乐安河流域土壤重金属含量高光谱间接反演模型及其空间分布特征研究[J]. 地理与地理信息科学, 31(3): 26-31. doi: 10.3969/j.issn.1672-0504.2015.03.006
    刘伟, 赵众, 袁洪福, 等, 2014. 光谱多元分析校正集和验证集样本分布优选方法研究[J]. 光谱学与光谱分析, (4): 947-951. doi: 10.3964/j.issn.1000-0593(2014)04-0947-05
    马伟波, 谭琨, 李海东, 等, 2016. 基于超限学习机的矿区土壤重金属高光谱反演[J]. 生态与农村环境学报, 32(2): 213-218. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201602008.htm
    倪善芹, 琚宜文, 侯泉林, 等, 2009. 铁氧化物在重金属元素迁移风化过程中的作用对比及碳酸盐岩中重金属元素的富集[J]. 自然科学进展, 19(1): 61-68. doi: 10.3321/j.issn:1002-008X.2009.01.008
    潘岑岑, 2017. 基于随机森林的土壤重金属高光谱遥感反演研究[D]. 徐州: 中国矿业大学.
    乔东海, 赵元艺, 汪傲, 等, 2017. 西藏多龙矿集区地堡铜(金)矿床年代学、流体包裹体、地球化学特征及其成因类型研究[J]. 地质学报, 91(7): 1542-1564. doi: 10.3969/j.issn.0001-5717.2017.07.009
    秦元礼, 张富贵, 彭敏, 等, 2020. 云南省武定县土壤重金属地球化学分布特征及其来源浅析[J]. 地质与勘探, 56(3): 540-550. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202003007.htm
    沈强, 张世文, 葛畅, 等, 2019. 矿业废弃地重构土壤重金属含量高光谱反演[J]. 光谱学与光谱分析, 39(4): 1214-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201904039.htm
    宋恒飞, 吴克宁, 李婷, 等, 2018. 寒地黑土典型县域土壤重金属空间分布及影响因素分析: 以海伦市为例[J]. 土壤通报, 49(6): 1480-1486. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201806030.htm
    田辉, 2020. 基于SWAT与Visual Modflow的海伦市水资源模拟与合理配置研究[D]. 长春: 吉林大学.
    汪大明, 秦凯, 李志忠, 等, 2018. 基于航空高光谱遥感数据的黑土地有机质含量反演: 以黑龙江省建三江地区为例[J]. 地球科学, 43(6): 2184-2194. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201806030.htm
    王智伟, 王利, 黄观文, 等, 2020. 基于BP神经网络的滑坡监测多源异构数据融合算法研究[J]. 地质力学学报, 26(4): 575-582. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202004014.htm
    魏振林, 李禾, 芮玉奎, 2008. X射线荧光光谱法分析癌症村土壤主量元素[J]. 光谱学与光谱分析, 28(11): 2706-2707. doi: 10.3964/j.issn.1000-0593(2008)11-2706-02
    向颖, 2015. 成都平原水稻土重金属铜和铅含量的高光谱反演研究[D]. 雅安: 四川农业大学.
    熊盛青, 2020. 航空地球物理勘查科技创新与应用[J]. 地质力学学报, 26(5): 791-818. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202005012.htm
    于锐, 王洋, 王晨旭, 等, 2017. 榆树市玉米种植区黑土重金属污染状况及来源浅析[J]. 生态环境学报, 26(10): 1788-1794. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201710020.htm
    张东辉, 赵英俊, 秦凯, 等, 2018. 光谱变换方法对黑土养分含量高光谱遥感反演精度的影响[J]. 农业工程学报, 34(20): 141-147. doi: 10.11975/j.issn.1002-6819.2018.20.018
    张慧, 马鑫鹏, 隋虹均, 等, 2018. 松嫩平原北部土壤重金属背景值及累积特征研究[J]. 土壤通报, 49(1): 176-183. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201801024.htm
    张明月, 张奇栎, 王璐, 等, 2019. 东北黑土区土壤铬含量高光谱反演研究[J]. 遥感技术与应用, 34(2): 313-322. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201902011.htm
    赵宁博, 赵英俊, 秦凯, 等, 2018. 基于航空高光谱的黑土地硒含量反演研究[J]. 光谱学与光谱分析, 38(S1): 329-330. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN2018S1165.htm
    赵新峰, 杨丽蓉, 施茜, 等, 2008. 东北海伦地区农村地下饮用水硝态氮污染特征及其影响因素分析[J]. 环境科学, 29(11): 2993-2998. doi: 10.3321/j.issn:0250-3301.2008.11.001
    赵英民, 2008. 中国环境保护标准全书: 2007-2008年[M]. 北京: 中国环境科学出版社, 1612.
    卓荦, 2010. 基于高光谱遥感的土壤重金属空间分布研究[D]. 武汉: 武汉大学.
    左玲, 2020. 黑土区土壤重金属高光谱遥感监测方法探究[D]. 北京: 中国地质大学(北京).
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  575
  • HTML全文浏览量:  88
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-09
  • 修回日期:  2021-05-10
  • 刊出日期:  2021-06-28

目录

    /

    返回文章
    返回