Estimation of displacements along strike-slip fault on a million-year timescale: A case study of the AltynTagh fault system
-
摘要: 断裂滑动速率不仅是新生代构造定量研究的重要参数之一,也是地球动力学研究的重要组成部分。但现有研究普遍缺乏介于长时间尺度(>Ma)地质体累积位移和短时间尺度(晚第四纪以来)地貌单元位错以及年—十年尺度的大地测量观测之间的断裂位移量,从而造成了理解百万年时间尺度下断裂演化历史的空区。由于走滑断裂破坏了山前洪积扇与其汇水盆地组成的系统,残留的断错洪积扇会沿断裂走向在空间上不均匀地展布。据此提出3种利用断错洪积扇确定走滑断裂大规模累积位移量的方法。第一,洪积扇面积与汇水盆地面积一般符合Af=γAc(Af为洪积扇面积,Ac为汇水盆地面积,γ为常数0.5±0.35)对应关系,利用二者之比是否异常,获得断裂位错流域盆地走滑位移量;第二,利用断裂两盘的河流上下游分布相同岩性矿物组分,识别两盘对应地貌单元获得走滑位移量;第三,利用地貌单元残留标志与上游物源河道进行对比,估算走滑位移。同时,将上述3种方法应用于研究阿尔金断裂系百万年时间尺度以来的走滑位移量实例中,在现有速率分布前提下,可估算出地貌体的形成年龄,进一步验证了文中提出的走滑位移量估计方法能为精确厘定走滑断裂百万年尺度的演化历史提供新的解决途径和技术方法。Abstract: Fault slip rate matters not only as one of the important parameters for quantitative study of Cenozoic tectonics but also a key element in geodynamic research. However, most studies have focused on the long-term (>Ma) cumulative displacement of geological mass, short-time (since the late Quaternary) dislocation of geomorphic units as well as annual-decadal geodetic observations, and few people studied the fault displacement on a timescale in between, leaving a gap in understanding the evolutionary history of fault on a million-year timescale. Since the strike-slip fault breaks the system of alluvial fans and their catchment basins, causing the spatially uneven distribution of residual offset alluvial fans along the fault direction, we proposed three methods to determine the large-scale cumulative displacement of strike-slip fault based on the offset alluvial fans. The first method commonly presents a correspondence between the alluvial-fan area and catchment basin area as Af=γAc(Af is the alluvial-fan area, Ac is the catchment basin area, γ is a constant 0.5±0.35), which leads us to determine the strike-slip displacement of the offset basin by identifying whether the correspondence is unusual. The second method helps us to get the strike-slip displacement by distinguishing geomorphic units with the same lithological mineral components distributed at both sides of the fault. The third is to measure the strike-slip displacement by comparing the residual geomorphic unit with the corresponding stream outlet. In this study, we applied the above three methods to study the strike-slip displacement of the AltynTagh fault system on a million-year timescale, and to estimate the formation age of these geomorphic units based on the exiting fault slip-rate. It is further verified that the estimation methods proposed in this paper can provide a new angle and technical solution to accurately determine the evolution history of the strike-slip fault on a million-year scale.
-
Key words:
- fault-slip rate /
- cumulative displacement /
- alluvial fan /
- strike-slip fault /
- AltynTagh fault system
-
图 2 断裂两盘分布相同岩性矿物组分恢复位移模式
a—断裂未发生水平运动形成洪积扇;b—断裂发生水平运动断错洪积扇
Figure 2. Displacements restored by the same lithological mineral composition at both sides of the fault. (a) Alluvial fans formed without the horizontal movement of the fault. (b) Offset alluvial fans with the horizontal movement of the fault
-
ADAMS K D, WESNOUSKY S G, BILLS B G, 1999. Isostatic rebound, active faulting, and potential geomorphic effects in the Lake Lahontan basin, Nevada andCalifornia[J]. GSA Bulletin, 111(12): 1739-1756. doi: 10.1130/0016-7606(1999)111<1739:IRAFAP>2.3.CO;2 AVOUAC JP, TAPPONNIER P, 1993. Kinematic model of active deformation in central Asia[J]. Geophysical Research Letters, 20(10): 895-898. doi: 10.1029/93GL00128 BAI Y J, NI H Y, GE H, 2019. Advances in research on the geohazard effect of active faults on the southeastern margin of the Tibetan plateau[J]. Journal of Geomechanics, 25(6): 1116-1128. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201603004.htm BURBANK D W, ANDERSON R S, 2012. Tectonic geomorphology[M]. 2nd ed. Hoboken, NJ: Blackwell Publishing Ltd: 17-44. CASKEY S J, RAMELLI A R, 2004. Tectonic displacement and far-field isostatic flexure of pluvial lake shorelines, Dixie Valley, Nevada[J]. Journal of Geodynamics, 38(2): 131-145. doi: 10.1016/j.jog.2004.06.001 CHEN W B, XU X W, 2006. Sinistral strike-slip faults along the southern Alashan margin and eastwards extending of the Altun fault[J]. Seismology and Geology, 28(2): 319-324. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ200602014.htm CHEN Y W, LI S H, LI B, 2012. Slip rate of the Aksay segment of Altyn Tagh Fault revealed by OSL dating of river terraces[J]. Quaternary Geochronology, 10: 291-299. doi: 10.1016/j.quageo.2012.04.012 CHEN Y W, LI S H, SUN J M, et al., 2013. OSL dating of offset streams across the Altyn Tagh Fault: Channel deflection, loess deposition and implication for the slip rate[J]. Tectonophysics, 594: 182-194. doi: 10.1016/j.tecto.2013.04.002 CHENG Y, LI X Q, ZHAO Z Y, et al., 2018. Detrital zircon U-Pb ages and its provenance significance in the TZK3 core from the yangtze river delta[J]. Journal of Geomechanics, 24(5): 635-644. (in Chinese with English abstract) http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZLX201805066.htm CHEVALIER M L, RYERSON F J, TAPPONNIER P, et al., 2005. Slip-rate measurements on the Karakorum Fault may imply secular variations in fault motion[J]. Science, 307(5708): 411-414. doi: 10.1126/science.1105466 CUI J W, TANG Z M, DENG J F, et al., 1999. Altun fault system[M]. Beijing: Geological Publishing House. (in Chinese) CUI J W, ZHANG X W, LI P W, 2002. The Altun fault: its geometry, nature and mode of growth[J]. Acta Geoscientia Sinica, 23(2): 509-516. (in Chinese with English abstract) DADE W B, VERDEYEN M E, 2007. Tectonic and climatic controls of alluvial-fan size and source-catchment relief[J]. Journal of the Geological Society, 164(2): 353-358. doi: 10.1144/0016-76492006-039 ENGLAND P, HOUSEMAN G, 1986. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia Collision Zone[J]. Journal of Geophysical Research: Solid Earth, 91(B3): 3664-3676. doi: 10.1029/JB091iB03p03664 ENGLAND P, MOLNAR P, 1997. Active deformation of Asia: from kinematics to dynamics[J]. Science, 278(5338): 647-650. doi: 10.1126/science.278.5338.647 FLETCHER K E K, ROCKWELL T K, SHARP W D, 2011. Late Quaternary slip rate of the southern Elsinore fault, Southern California: Dating offset alluvial fans via 230Th/U on pedogenic carbonate[J]. Journal of Geophysical Research: Earth Surface, 116(F2): F02006. https://ui.adsabs.harvard.edu/abs/2011JGRF..116.2006F/abstract FRANKEL K L, BRANTLEY K S, DOLAN J F, et al., 2007. Cosmogenic10Be and36Cl geochronology of offset alluvial fans along the northern Death Valley fault zone: Implications for transient strain in the eastern California shear zone[J]. Journal of Geophysical Research: Solid Earth, 112(B6): B06407. http://www.zhangqiaokeyan.com/academic-degree-foreign_mphd_thesis/02061134142.html FU B H, CHOU X W, 1994. Study of thermal infrared spectra features of typical sedimentary rocks from Kalpin uplift in Tarim basin[J]. Acta Sedimentologica Sinica, 12(4): 95-100. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB404.010.htm FU B H, ZHANG S L, XIE X P, et al., 2006. Late Quaternary tectono-geomorphic features along the Kangxiwar fault, altyn Tagh fault system, Northern Tibet[J]. Quaternary Sciences, 26(2): 228-235. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200602009.htm GILLESPIE A R, KAHLE A B, PALLUCONI F D, 1984. Mapping alluvial fans in Death Valley, California, using multichannel thermal infrared images[J]. Geophysical Research Letters, 11(11): 1153-1156. doi: 10.1029/GL011i011p01153 GINAT H, ENZEL Y, AVNI Y, 1998. Translocated Plio-Pleistocene drainage systems along the Arava fault of the Dead Sea transform[J]. Tectonophysics, 284(1-2): 151-160. doi: 10.1016/S0040-1951(97)00165-0 GOODE J K, BURBANK D W, 2011. The temporal evolution of minor channels on growing folds and its bearing on fold kinematics[J]. Journal of Geophysical Research: Solid Earth, 116(B4): B04407. http://adsabs.harvard.edu/abs/2009AGUFMEP31B0594G HOUSEMAN G, ENGLAND P, 1993. Crustal thickening versus lateral expulsion in the Indian-Asian continental collision[J]. Journal of Geophysical Research: Solid Earth, 98(B7): 12233-12249. doi: 10.1029/93JB00443 HUANG F P, REN J J, LV Y W, et al., 2018. Late Quaternary slip rate of the Xiugou segment, Eastern Kunlun fault zone[J]. Advances in Earth Science, 33(3): 321-332. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201803012.htm KHAN S D, GLENN N F, 2006. New strike-slip faults and litho-units mapped in Chitral (N. Pakistan) using field and ASTER data yield regionally significant results[J]. International Journal of Remote Sensing, 27(20): 4495-4512. doi: 10.1080/01431160600721830 LAMBECK K, CHAPPELL J, 2001. Sea level change through the last glacial cycle[J]. Science, 292(5517): 679-686. doi: 10.1126/science.1059549 LAVÉ J, AVOUAC J P, 2000. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal[J]. Journal of Geophysical Research: Solid Earth, 105(B3): 5735-5770. doi: 10.1029/1999JB900292 LEE J, SPENCER J Q G, OWEN L A, 2001. Holocene slip rates along the Owens Valley fault, California: Implications for the recent evolution of the Eastern California Shear Zone[J]. Geology, 29(9): 819-822. doi: 10.1130/0091-7613(2001)029<0819:HSRATO>2.0.CO;2 LI H B, YANG J S, XU Z Q, et al., 2001. The geological and geochronogical evidence of ATF sttriking-slipping during Indosinian[J]. Chinese Science Bulletin, 46(16): 1333-1338. (in Chinese) doi: 10.1360/csb2001-46-16-1333 MÉRIAUX A S, TAPPONNIER P, RYERSON F J, et al., 2005. The Aksay segment of the northern Altyn Tagh fault: Tectonic geomorphology, landscape evolution, and Holocene slip rate[J]. Journal of Geophysical Research: Solid Earth, 110(B4): B04404. doi: 10.1029/2004JB003210/abstract MCSAVENEY M J, GRAHAM I J, BEGG J, et al., 2006. Late Holocene uplift of beach ridges at Turakirae Head, south Wellington coast, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 49(3): 337-358. doi: 10.1080/00288306.2006.9515172 MOLNAR P, TAPPONNIER P, 1975. Cenozoic tectonics of Asia: effects of a Continental collision: features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 189(4201): 419-426. doi: 10.1126/science.189.4201.419 MOLNAR P, DAYEM K E, 2010. Major intracontinental strike-slip faults and contrasts in lithospheric strength[J]. Geosphere, 6(4): 444-467. doi: 10.1130/GES00519.1 OSKIN M, BURBANK D W, 2005. Alpine landscape evolution dominated by cirque retreat[J]. Geology, 33(12): 933-936. doi: 10.1130/G21957.1 OWEN L A, CAFFEE M W, FINKEL R C, et al., 2008. Quaternary glaciation of the Himalayan-Tibetan orogen[J]. Journal of Quaternary Science, 23(6-7): 513-531. doi: 10.1002/jqs.1203 PAN B T, BURBANK D W, WANG Y X, et al., 2003. A 900 k. y. record of strath terrace formation during glacial-interglacial transitions in northwest China[J]. Geology, 31(11): 957-960. doi: 10.1130/G19685.1 PELTZER G, TAPPONNIER P, 1988. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia Collision: An experimental approach[J]. Journal of Geophysical Research: Solid Earth, 93(B12): 15085-15117. doi: 10.1029/JB093iB12p15085 PELTZER G, TAPPONNIER P, ARMIJO R, 1989. Magnitude of late quaternary left-lateral displacements along the north edge of Tibet[J]. Science, 246(4935): 1285-1289. doi: 10.1126/science.246.4935.1285 POUSSE-BELTRAN L, VASSALLO R, AUDEMARD F, et al., 2017. Pleistocene slip rates on the Boconó fault along the North Andean Block plate boundary, Venezuela[J]. Tectonics, 36(7): 1207-1231. doi: 10.1002/2016TC004305 Research Group of the Altyn Tagh Active Fault Zone, State Seismological Bureau, 1992. The Altyn Tagh active fault zone[M]. Beijing: Seismological Press. (in Chinese) ROCKWELL T, 1988. Neotectonics of the San Cayetano fault, transverse ranges, California[J]. GSA Bulletin, 100(4): 500-513. doi: 10.1130/0016-7606(1988)100<0500:NOTSCF>2.3.CO;2 SHI X H, KIRBY E, LU H J, et al., 2014. Holocene slip rate along the Gyaring Co Fault, central Tibet[J]. Geophysical Research Letters, 41(16): 5829-5837. doi: 10.1002/2014GL060782 SULTAN M, ARVIDSON R E, STURCHIO N C, et al., 1987. Lithologic mapping in arid regions with Landsat thematic mapper data: Meatiq dome, Egypt[J]. GSA Bulletin, 99(6): 748-762. doi: 10.1130/0016-7606(1987)99<748:LMIARW>2.0.CO;2 TAPPONNIER P, PELTZER G, LE DAIN A Y, et al., 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 TAPPONNIER P, XU Z Q, ROGER F, et al., 2001. Oblique stepwise rise and growth of the Tibet plateau[J]. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978 THOMPSON S C, WELDON R J, RUBIN C M, et al., 2002. Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia[J]. Journal of Geophysical Research: Solid Earth, 107(B9): ETG 7-1-ETG 7-32. doi: 10.1029/2001JB000596 THORSON R M, 1989. Glacio-isostatic response of the Puget Sound area, Washington[J]. GSA Bulletin, 101(9): 1163-1174. doi: 10.1130/0016-7606(1989)101<1163:GIROTP>2.3.CO;2 VAN DER WOERD J, KLINGER Y, SIEHK, et al., 2006. Long-term slip rate of the southern San Andreas Fault from 10Be-26Al surface exposure dating of an offset alluvial fan[J]. Journal of Geophysical Research: Solid Earth, 111(B4): B04407. doi: 10.1029/2004JB003559 WELDON Ⅱ R J, SIEH K E, 1985. Holocene rate of slip and tentative recurrence interval for large earthquakes on the San Andreas fault, Cajon Pass, southern California[J]. GSA Bulletin, 96(6): 793-812. doi: 10.1130/0016-7606(1985)96<793:HROSAT>2.0.CO;2 WHIPPLE K X, DUNNE T, 1992. The influence of debris-flow rheology on fan morphology, Owens Valley, California[J]. GSA Bulletin, 104(7): 887-900. doi: 10.1130/0016-7606(1992)104<0887:TIODFR>2.3.CO;2 XIAO Kunze, TONG Hengmao, 2020. Progress on strike-slip fault research and its significance[J]. Journal of Geomechanics, 26(2): 151-166. XU X W, TAPPONNIER P, VAN DER WOERDJ, et al., 2003. Late Quaternary sinistral slip rate along the Altyn Tagh Fault and its structural transformation model[J]. Sience in China(Series D), 33(10): 967-974. (in Chinese) doi: 10.1360/02yd0436 XU X W, WANG F, ZHENG R Z, et al., 2005. Late Quaternary sinistral slip rate along the Altyn Tagh fault and its structural transformation model[J]. Science in China Series D: Earth Sciences, 48(3): 384-397. doi: 10.1360/02yd0436 XU X W, YU G H, CHEN G H, et al., 2007. Near-surface character of permanent geologic deformation across the mega-strike-slip faults in the northern Tibetan plateau[J]. Seismology and Geology, 29(2): 201-217. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ200702001.htm YAN S X, ZHANG B, ZHAO Y C, et al., 2003. Summarizing the VIS-NIR spectra of minerals and rocks[J]. Remote Sensing Technology and Application, 18(4): 191-201. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGJS200304002.htm YUE Y J, LIOU J G, 1999. Two-stage evolution model for the Altyn Tagh fault, China[J]. Geology, 27(3): 227-230. doi: 10.1130/0091-7613(1999)027<0227:TSEMFT>2.3.CO;2 YUE Y J, GRAHAM S A, RITTS B D, et al., 2005. Detrital zircon provenance evidence for large-scale extrusion along the Altyn Tagh fault[J]. Tectonophysics, 406(3-4): 165-178. doi: 10.1016/j.tecto.2005.05.023 YUN L, YANG X P, SONG F M, et al., 2016. Late Quaternary sinistral strike-slip activities of Sanwei shan fault in the north of Tibetan plateau[J]. Seismology and Geology, 38(2): 434-446. (in Chinese with English abstract) http://www.researchgate.net/publication/306322500_Late_quaternary_sinistral_strike-slip_activities_of_Sanwei_Shan_fault_in_the_north_of_Tibetan_plateau ZHANG P Z, WANG Q, MA Z J, 2002. GPS velocity field and active crustal blocks of contemporary tectonic deformation in continental China[J]. Earth Science Frontiers, 9(2): 430-441. (in Chinese with English abstract) http://search.cnki.net/down/default.aspx?filename=DXQY200202034&dbcode=CJFD&year=2002&dflag=pdfdown ZHANG P Z, SHEN Z K, WANG M, et al., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812. doi: 10.1130/G20554.1 ZHANG P Z, SHEN Z K, WANG M, et al., 2004. Kinematics of present-day tectonic deformation of the Tibetan plateau and its vicinities[J]. Seismology and Geology, 26(3): 367-377. (in Chinese with English abstract) http://d.wanfangdata.com.cn/periodical/dzdz200403002 ZHANG P Z, MOLNAR P, XU X W, 2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau[J]. Tectonics, 26(5): TC5010. doi: 10.1029/2006TC002014/full ZHANG P Z, DENG Q D, ZHANG Z Q, et al., 2013. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Scientia SinicaTerrae, 43(10): 1607-1620. (in Chinese with English abstract) http://www.researchgate.net/publication/306204410_Active_faults_earthquake_hazards_and_associated_geodynamic_processes_in_continental_China ZIELKE O, ARROWSMITH J R, LUDWIG L G, et al., 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault[J]. Science, 327(5969): 1119-1122. doi: 10.1126/science.1182781 白永健, 倪化勇, 葛华, 2019. 青藏高原东南缘活动断裂地质灾害效应研究现状[J]. 地质力学学报, 25(6): 1116-1128. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190613&journal_id=dzlxxb 陈文彬, 徐锡伟, 2006. 阿拉善地块南缘的左旋走滑断裂与阿尔金断裂带的东延[J]. 地震地质, 28(2): 319-324. doi: 10.3969/j.issn.0253-4967.2006.02.015 崔军文, 唐哲民, 邓晋福, 等, 1999. 阿尔金断裂系[M]. 北京: 地质出版社. 崔军文, 张晓卫, 李朋武, 2002. 阿尔金断裂: 几何学、性质和生长方式[J]. 地质学报, 23(2): 509-516. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200102024.htm 程瑜, 李向前, 赵增玉, 等, 2018. 长江三角洲地区TZK3孔碎屑锆石U-Pb年龄及其物源意义[J]. 地质力学学报, 24(5): 635-644. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180506&journal_id=dzlxxb 傅碧宏, 丑晓伟, 1994. 塔里木盆地柯坪隆起典型沉积岩类的热红外光谱特征研究[J]. 沉积学报, 12(4): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB404.010.htm 付碧宏, 张松林, 谢小平, 等, 2006. 阿尔金断裂系西段: 康西瓦断裂的晚第四纪构造地貌特征研究[J]. 第四纪研究, 26(2): 228-235. doi: 10.3321/j.issn:1001-7410.2006.02.010 国家地震局《阿尔金活动断裂带》课题组, 1992. 阿尔金活动断裂带[M]. 北京: 地震出版社. 黄飞鹏, 任俊杰, 吕延武, 等, 2018. 东昆仑断裂带秀沟段晚第四纪滑动速率研究[J]. 地球科学进展, 33(3): 321-332. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201803012.htm 李海兵, 杨经绥, 许志琴, 等, 2001. 阿尔金断裂带印支期走滑活动的地质及年代学证据[J]. 科学通报, 46(16): 1333-1338. doi: 10.3321/j.issn:0023-074X.2001.16.003 徐锡伟, 于贵华, 陈桂华, 等, 2007. 青藏高原北部大型走滑断裂带近地表地质变形带特征分析[J]. 地震地质, 29(2): 201-217. doi: 10.3969/j.issn.0253-4967.2007.02.002 徐锡伟, TAPPONNIER P, VAN DER WOERDJ, 等, 2003. 阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论[J]. 中国科学(D辑), 33(10): 967-974. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200310006.htm 肖坤泽, 童亨茂, 2020. 走滑断层研究进展及启示[J]. 地质力学学报, 26(2): 151-166. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200201&journal_id=dzlxxb 燕守勋, 张兵, 赵永超, 等, 2003. 矿物与岩石的可见: 近红外光谱特性综述[J]. 遥感技术与应用, 18(4): 191-201. doi: 10.3969/j.issn.1004-0323.2003.04.002 云龙, 杨晓平, 宋方敏, 等, 2016. 青藏高原北缘三危山断裂晚第四纪以来的左旋走滑活动[J]. 地震地质, 38(2): 434-446. doi: 10.3969/j.issn.0253-4967.2016.02.016 张培震, 王琪, 马宗晋, 2002. 中国大陆现今构造运动的GPS速度场与活动地块[J]. 地学前缘, 9(2): 430-441. doi: 10.3321/j.issn:1005-2321.2002.02.022 张培震, 沈正康, 王敏, 等, 2004. 青藏高原及周边现今构造变形的运动学[J]. 地震地质, 26(3): 367-377. doi: 10.3969/j.issn.0253-4967.2004.03.002 张培震, 邓起东, 张竹琪, 等, 2013. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学: 地球科学, 43(10): 1607-1620. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310005.htm