Spatiotemporal distribution and geodynamic mechanism of the nearly NS-trending rifts in the Tibetan Plateau
-
摘要: 青藏高原南部发育的一系列近南北向裂谷是印度-欧亚大陆持续挤压作用下的大型伸展构造,也是揭示高原后碰撞构造演化过程的重要对象。目前,关于南北向裂谷的形成机制存在多种假说模型,并对裂谷时空分布特征做出了不同的预测,这成为约束裂谷成因机制的关键条件。综合关于裂谷启动时间的已有研究成果,进一步梳理了南北向裂谷的时空分布特征,结果表明近南北向裂谷的启动时间似乎具有自西向东逐步减小的趋势,这与拉萨地体广泛出露的后碰撞岩浆作用演化过程一致。在此基础上,结合地球物理观测,推断近南北向裂谷的动力学机制与印度板片向东拆离假说最为契合。印度板片自西向东的拆离建立了向东传播的重力势能梯度,从而驱动岩石圈向东流动,最终导致南北向裂谷依次向东发育。Abstract: A set of nearly NS-trending rifts developed in the Himalayan orogen and southern Tibet, which are the large-scale extensional structures formed under the continuous compression of the Indo-Eurasia continent, playing a significant role in revealing the post-collisional evolution of the Tibetan Plateau. Different predictions have been made on the spatiotemporal distribution of these rifts through the existing hypothesis models, constituting the key factors constraining the formation system of the rifts. In this study we synthesized previous studies on the initiation time of rifting, and further clarified the spatiotemporal trend. The analysis results showed that the rifting initiated progressively earlier westward, which is consistent with the evolution of post-collisional magmatism in the Lhasa Terrain. Moreover, combined with the geophysical observations, it is inferred that the geodynamic mechanism of the nearly NS-trending rifts accords closely with the hypothesis model concerning the eastward-propagating lateral detachment of the subducted Indian slab. The Indian slab detachment resulted in asynchronous gravitational potential energy gradients, which drove the lithosphere flow eastward and eventually caused the eastward development of the rifting.
-
图 1 青藏高原伸展构造及其与后碰撞岩浆岩关系示意图(据Chung et al., 2005; Tayor and Yin, 2009; Guo et al., 2015修改)
a—喜马拉雅-青藏高原系统及其周边地区示意图;b—喜马拉雅造山带及藏南地区主要构造图(图中数字为裂谷启动年龄,揭示了自西向东变年轻的趋势,具体描述见正文以及表 1)
IYS—印度河-雅鲁藏布江缝合带;BNS—班公湖-怒江缝合带;JS—金沙江缝合带;AMS—阿尼玛卿-昆仑-木孜塔格缝合带Figure 1. Sketch map showing the extensional structures and their relationships with the post-collision magmatism in the Himalayan-Tibetan orogen (modified after Chung et al., 2005; Tayor and Yin, 2009; Guo et al., 2015). (a) Sketch of the Himalayan-Tibetan system and surrounding areas. (b) Tectonic map of the Himalayan orogen and southern Tibet with major structures. The numbers represent the initiation time of the rifts, revealing the rifting initiated gradually earlier westward. Detailed descriptions can be found in the text and Table 1.IYS—Indus-Yarlung Suture; BNS—Bangonghu-Nujiang Suture; JS—Jinshajiang Suture; AMS—Anyimagen-Kunlun-Moztagh Suture
图 2 东西向伸展成因模式(据Molnar and Tapponnier, 1978;England and Houseman, 1988;Yin,2010;Styron et al., 2011;Yin and Taylor, 2011;Chen et al., 2015;Webb et al., 2017修改)
a—重力垮塌模型;b—岩石圈地幔对流移除模型;c—亚洲东缘边界条件改变模型;d—放射状扩展模型;e—马蹄形弯曲模型;f—印度大陆倾斜汇聚模型;g—印度板片双向的横向拆离模型;h—横向挤出模型;i—岩石圈向东流动模型;j—板片撕裂模型
Figure 2. Theoretical models for the mechanism of the E-W extension (modified after Molnar and Tapponnier, 1978; England and Houseman, 1988; Yin, 2010; Styron et al., 2011; Yin and Taylor, 2011; Chen et al., 2015; Webb et al., 2017). (a) Gravitational collapse; (b) Convective thinning; (c) Change in the boundary condition; (d) Radial spreading; (e) Oroclinal bending; (f) Oblique convergence; (g) Lateral slab detachment; (h) Lateral extrusion; (i) Eastward lithospheric flow; (j) Slab tearing
表 1 青藏高原南北向裂谷启动时间
Table 1. Initiation time of the NS-trending rifts in the Tibetan Plateau
在图 1b中的编号 裂谷名称 启动时间/Ma 方法 流变学特征 参考文献 (A) 双湖 >13.5 Rb-Sr和40Ar/39Ar 脆性 Blisniuk et al., 2001 < 4 伸展速率和伸展量估算 脆性 Yin et al., 1999 (B) 北隆格尔 ~15 锆石U-Pb 韧性 Kapp et al., 2008 15~10 磷灰石、锆石(U-Th)/He 脆性-韧性 Sundell et al., 2013 10~8 磷灰石、锆石(U-Th)/He 脆性 Woodruff et al., 2013 (C) 南隆格尔 16~12 锆石(U-Th)/He 韧性 Styron et al., 2013 (D) Lopukangri 15~14 云母40Ar/39Ar - Sanchez et al., 2010 17~15 锆石U-Pb 韧性 Laskowski et al., 2017 (E) 当惹雍错 13 磷灰石、锆石(U-Th)/He 脆性 Dewane et al., 2006 14.5 锆石(U-Th)/He 脆性 Wolff et al., 2018 (F) 申扎 14 锆石U-Pb;磷灰石、锆石(U-Th)/He 脆性 Hager et al., 2009 (G) 谷露 7~5 磷灰石(U-Th)/He 脆性 Stockli et al., 2002 (H) 念青唐古拉 8 云母、钾长石40Ar/39Ar 韧性 Harrison et al., 1995 8 钾长石40Ar/39Ar 脆性 Kapp et al., 2005 8~6.8 磷灰石裂变径迹 脆性 吴珍汉等,2002 (I) Leo Pargil 23 独居石U-Pb 韧性 Langille et al., 2012 16~14 白云母40Ar/39Ar 韧性 Thiede et al., 2006 16 白云母40Ar/39Ar 韧性 Hintersberger et al., 2010 (J) Gurla Mandhata ~15 独居石Th-Pb 韧性 Murphy and Copeland, 2005 14~11 锆石(U-Th)/He 韧性 McCallister et al., 2014 9 云母40Ar/39Ar 韧性 Murphy et al., 2002 ~9 磁性地层 - Saylor et al., 2009, 2010 (K) Thakkhola >14 白云母40Ar/39Ar 伸展岩脉 Coleman and Hodges, 1995 11~10 磁性地层 - Garzione et al., 2000, 2003 ~17 白云母40Ar/39Ar 韧性 Larson et al., 2020 (L) 孔错 13-12 磷灰石、锆石(U-Th)/He 脆性 Lee et al., 2011 < 4 磷灰石(U-Th)/He 脆性 Mahéo et al., 2007 (M) 定结 13~10 云母40Ar/39Ar 韧性 Zhang and Guo, 2007 12~10 黑云母40Ar/39Ar 韧性 Kali et al., 2010 (N) 亚东 < 10 独居石Th-Pb 韧性 Edwards and Harrison, 1997 < 11.5 独居石U-Pb 韧性 Ratschbacher et al., 2011 13~11 云母40Ar/39Ar 韧性 Xu et al., 2013 7 磷灰石裂变径迹、磷灰石、锆石(U-Th)/He 脆性 Dong et al., 2020 (O) 错那 ~3 黑云母、钾长石40Ar/39Ar和锆石、磷灰石(U-Th)/He 脆性 Bian et al., 2020 ~5 电子自旋共振 脆性 吴中海等,2008 -
AGIUS M R, LEBEDEV S, 2017. Complex, multilayered azimuthal anisotropy beneath Tibet: evidence for co-existing channel flow and pure-shear crustal thickening[J]. Geophysical Journal International, 210(3): 1823-1844. doi: 10.1093/gji/ggx266 ALSDORF D, NELSON D, 1999. Tibetan satellite magnetic low: evidence for widespread melt in the Tibetan crust[J]. Geology, 27(10): 943-946. doi: 10.1130/0091-7613(1999)027<0943:TSMLEF>2.3.CO;2 ARMIJO R, TAPPONNIER P, MERCIER J L, et al., 1986. Quaternary extension in southern Tibet: field observations and tectonic implications[J]. Journal of Geophysical Research, 91(B14): 13803-13872. doi: 10.1029/JB091iB14p13803 ARMIJO R, TAPPONNIER P, HAN T L, 1989. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 94(B3): 2787-2838. doi: 10.1029/JB094iB03p02787 BAI D H, UNSWORTH M J, MEJU M A, et al., 2010. Crustal deformation of the eastern Tibetan Plateau revealed by Magnetotelluric imaging[J]. Nature Geoscience, 3(5): 358-362. doi: 10.1038/ngeo830 BARANOWSKI J, ARMBRUSTER J, SEEBER L, et al., 1984. Focal depths and fault plane solutions of earthquakes and active tectonics of the Himalaya[J]. Journal of Geophysical Research: Solid Earth, 89(B8): 6918-6928. doi: 10.1029/JB089iB08p06918 BENDICK R, BILHAM R, 2002. How perfect is the Himalayan arc[J]. Geology, 29(9): 791-794. https://pubs.geoscienceworld.org/gsa/geology/article/29/9/791/191800/How-perfect-is-the-Himalayan-arc BHATTACHARYYA K, MITRA G, KWON S, 2015. Geometry and kinematics of the Darjeeling-Sikkim Himalaya, India: Implications for the evolution of the Himalayan fold-thrust belt[J]. Journal of Asian Earth Sciences, 113: 778-796. doi: 10.1016/j.jseaes.2015.09.008 BIAN S, GONG J F, ZUZA A V, et al., 2020. Late Pliocene onset of the Cona rift, eastern Himalaya, confirms eastward propagation of extension in Himalayan-Tibetan orogen[J]. Earth and Planetary Science Letters, 544: 116383. doi: 10.1016/j.epsl.2020.116383 BIRD P, 1991. Lateral extrusion of lower crust from under high topography in the isostatic limit[J]. Journal of Geophysical Research Atmospheres: Solid Earth, 96(B6): 10275-10286. doi: 10.1029/91JB00370 BISCHOFF S, FLESCH L M, 2019. Impact of lithospheric strength distribution on India-Eurasia deformation from 3-D geodynamic models[J]. Journal of Geophysical Research, 124(1): 1084-1105. doi: 10.1029/2018JB015704 BISCHOFF S H, FLESCH L M, 2018. Normal faulting and viscous buckling in the Tibetan Plateau induced by a weak lower crust[J]. Nature Communications, 9: 4952. doi: 10.1038/s41467-018-07312-9 BLISNIUK P M, HACKER B R, GLODNY J, et al., 2001. Normal faulting in central Tibet since at least 13.5 Myr ago[J]. Nature, 412(6847): 628-632. doi: 10.1038/35088045 CAIBAYANGZENG, ZHAO J M, 2018. A summary of researches on southern Tibet rift system[J]. Journal of Seismological Research, 41(1): 14-21. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZYJ201801002.htm CAO S H, LI D W, YU Z Z, et al., 2009. Characteristics and mechanism of the Dangra Yun Co and Xuru Co NS-trending graben in the Gangdese, Tibet[J]. Earth Science: Journal of China University of Geosciences, 34(6): 914-920. (in Chinese with English abstract) doi: 10.3799/dqkx.2009.104 CHEN J L, YIN A, XU J F, et al., 2018. Late Cenozoic magmatic inflation, crustal thickening, and >2 km of surface uplift in central Tibet[J]. Geology, 46(1): 19-22. doi: 10.1130/G39699.1 CHEN W P, KAO H, 1996. Seismotectonics of Asia: some recent progress[M]//YIN A, HARRISON T M. The tectonic evolution of Asia. New York: Cambridge University Press. CHEN Y, LI W, YUAN X H, et al., 2015. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements[J]. Earth and Planetary Science Letters, 413: 13-24. doi: 10.1016/j.epsl.2014.12.041 CHEVALIER M L, TAPPONNIER P, VAN DER WOERD J, et al., 2020. Late Quaternary extension rates across the northern half of the Yadong-Gulu rift: implication for east-west extension in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 125(7): e2019JB019106. doi: 10.1029/2019JB019106 CHUNG S L, LIU D Y, JI J Q, et al., 2003. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet[J]. Geology, 31(11): 1021-1024. doi: 10.1130/G19796.1 CHUNG S L, CHU M F, ZHANG Y Q, et al., 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J]. Earth-Science Reviews, 68(3-4): 173-196. http://www.sciencedirect.com/science/article/pii/S001282520400042X CHUNG S L, CHU M F, JI J Q, et al., 2009. The nature and timing of crustal thickening in Southern Tibet: geochemical and zircon Hf isotopic constraints from postcollisional adakites[J]. Tectonophysics, 477(1-2): 36-48. doi: 10.1016/j.tecto.2009.08.008 COLEMAN M, HODGES K, 1995. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension[J]. Nature, 374(6517): 49-52. doi: 10.1038/374049a0 COPLEY A, MCKENZIE D, 2007. Models of crustal flow in the India-Asia collision zone[J]. Geophysical Journal International, 169(2): 683-698. doi: 10.1111/j.1365-246X.2007.03343.x COWGILL E, GOLD R D, CHEN X H, 2009. Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet[J]. Geology, 37(7): 647-650. doi: 10.1130/G25623A.1 DECELLES P G, ROBINSON D M, ZANDT G, 2002. Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan plateau[J]. Tectonics, 21(6): 1062. http://www.researchgate.net/publication/228765603_Implications_of_shortening_in_the_Himalayan_fold-thrust_belt_for_uplift_of_the_Tibetan_Plateau DECELLES P G, KAPP P, QUADE J, et al., 2011. Oligocene-Miocene Kailas basin, southwestern Tibet: Record of postcollisional upper-plate extension in the Indus-Yarlung suture zone[J]. GSA Bulletin, 123(7-8): 1337-1362. doi: 10.1130/B30258.1 DEWANE T J, STOCKLI D F, HAGER C, et al., 2006. Timing of Cenozoic E-W extension in the Tangra Yum Co-Kung Co rift, south-central Tibet[C]//American geophysical union fall meeting. San Francisco: AGU. DEWEY J F, BIRD J M, 1970. Mountain belts and the new global tectonics[J]. Journal of Geophysical Research, 75(14): 2625-2647. doi: 10.1029/JB075i014p02625 DEWEY J F, 1988. Extensional collapse of orogens[J]. Tectonics, 7(6): 1123-1139. doi: 10.1029/TC007i006p01123 DING L, ZHONG D L, BAN Y S, et al., 1995. Fission track dating evidence on fast uplifting since Pliocene of the eastern Himalayan syntaxis[J]. Chinese Science Bulletin, 40(16): 1479-1500. (in Chinese) DING L, KAPP P, ZHONG D L, et al., 2003. Cenozoic Volcanism in Tibet: evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 44(10): 1833-1865. doi: 10.1093/petrology/egg061 DING L, YUE Y H, CAI F L, et al., 2006. 40Ar/39Ar geochronology, geochemical and Sr-Nd-O isotopic characteristics of the High-Mg ultrapotassic rocks in lhasa block of Tibet: implications in the onset time and depth of NS-Striking rift system[J]. Acta Geologica Sinica, 80(9): 1252-1261. (in Chinese with English abstract) http://openurl.ebscohost.com/linksvc/linking.aspx?stitle=Acta%20Geologica%20Sinica&volume=80&issue=9&spage=1252 DONG H W, LARSON K P, KELLETT D A, et al., 2020. Timing of slip across the South Tibetan detachment system and Yadong-Gulu graben, Eastern Himalaya[J]. Journal of the Geological Society, 178(1): jgs2019-197. http://www.researchgate.net/publication/345190586_Timing_of_Slip_Across_the_South_Tibetan_Detachment_System_and_Yadong-Gulu_Graben_Eastern_Himalaya DUAN Y H, TIAN X B, LIANG X F, et al., 2017. Subduction of the Indian slab into the mantle transition zone revealed by receiver functions[J]. Tectonophysics, 702: 61-69. doi: 10.1016/j.tecto.2017.02.025 EDWARDS M A, HARRISON T M, 1997. When did the roof collapse? Late Miocene north-south extension in the high Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite[J]. Geology, 25(6): 543-546. doi: 10.1130/0091-7613(1997)025<0543:WDTRCL>2.3.CO;2 ENGLAND P, HOUSEMAN G, 1989. Extension during continental convergence, with application to the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579. doi: 10.1029/JB094iB12p17561 ENGLAND P C, HOUSEMAN G A, 1988. The mechanics of the Tibetan Plateau[J]. Philosophical Transactions of the Royal Society of London Series A Mathematical and Physical Sciences, 326(1589): 301-320. doi: 10.1098/rsta.1988.0089 GARZANTI E, RADEFF G, MALUSA M G, 2018. Slab breakoff: a critical appraisal of a geological theory as applied in space and time[J]. Earth-Science Reviews, 177: 303-319. doi: 10.1016/j.earscirev.2017.11.012 GARZIONE C N, DETTMAN D L, QUADE J, et al., 2000. High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal[J]. Geology, 28(4): 339-342. doi: 10.1130/0091-7613(2000)28<339:HTOTTP>2.0.CO;2 GARZIONE C N, DECELLES P G, HODKINSON D G, et al., 2003. East-west extension and Miocene environmental change in the southern Tibetan Plateau: Thakkhola Graben, central Nepal[J]. GSA Bulletin, 115(1): 3-20. doi: 10.1130/0016-7606(2003)115<0003:EWEAME>2.0.CO;2 GUO X Y, GAO R, ZHAO J M, et al., 2018. Deep-seated lithospheric geometry in revealing collapse of the Tibetan Plateau[J]. Earth-Science Reviews, 185: 751-762. doi: 10.1016/j.earscirev.2018.07.013 GUO Z F, WILSON M, ZHANG M L, et al., 2013. Post-collisional, K-rich mafic magmatism in south Tibet: constraints on Indian slab-to-wedge transport processes and plateau uplift[J]. Contributions to Mineralogy and Petrology, 165(6): 1311-1340. doi: 10.1007/s00410-013-0860-y GUO Z F, WILSON M, ZHANG M L, et al., 2015. Post-collisional ultrapotassic mafic magmatism in south Tibet: products of partial melting of pyroxenite in the mantle wedge induced by roll-back and delamination of the subducted Indian continental lithosphere slab[J]. Journal of Petrology, 56(7): 1365-1406. doi: 10.1093/petrology/egv040 GUO Z F, WILSON M, 2019. Late Oligocene-early Miocene transformation of postcollisional magmatism in Tibet[J]. Geology, 47(8): 776-780. doi: 10.1130/G46147.1 HA G H, WU Z H, HE L, 2018. Late cenozoic sedimentary strata of Qiongduojiang graben, south Tibet: preliminary constraint on the initial rifting age of the SN-trending rift[J]. Acta Geologica Sinica, 92(10): 2051-2067. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201810007.htm HA G H, WU Z H, LIU F, 2019. Late quaternary vertical slip rates along the southern Yadong-Gulu Rift, Southern Tibetan Plateau[J]. Tectonophysics, 755: 75-90. doi: 10.1016/j.tecto.2019.02.014 HACKER B R, GNOS E, RATSCHBACHER L, et al., 2000. Hot and dry deep crustal xenoliths from Tibet[J]. Science, 287(5462): 2463-2466. doi: 10.1126/science.287.5462.2463 HAGER C, STOCKLI D F, DEWANE T J, et al., 2009. Anatomy and crustal evolution of the central Lhasa terrane (S-Tibet) revealed by investigations in the Xainza rift[C]//EGU general assembly conference abstracts. Vienna, Austria: EGU. HAPROFF P J, ZUZA A V, YIN A, 2018. West-directed thrusting south of the eastern Himalayan syntaxis indicates clockwise crustal flow at the indenter corner during the India-Asia collision[J]. Tectonophysics, 722: 277-285. doi: 10.1016/j.tecto.2017.11.001 HARRISON T M, COPELAND P, KIDD W S F, et al., 1992. Raising Tibet[J]. Science, 255(5052): 1663-1670. doi: 10.1126/science.255.5052.1663 HARRISON T M, COPELAND P, KIDD W S F, et al., 1995. Activation of the nyainqentanghla shear zone: Implications for uplift of the southern Tibetan Plateau[J]. Tectonics, 14(3): 658-676. doi: 10.1029/95TC00608 HE R Z, GAO R, 2003. Some significances of studying north-southern rift in Tibet plateau[J]. Progress in Geophysics, 18(1): 35-43. (in Chinese with English abstract) http://www.researchgate.net/publication/281466358_Some_significances_of_studying_north-southern_rift_in_Tibet_plateau HINTERSBERGER E, THIEDE R C, STRECKER M R, et al., 2010. East-west extension in the NW Indian Himalaya[J]. GSA Bulletin, 122(9-10): 1499-1515. doi: 10.1130/B26589.1 HOU Z Q, LI Z Q, 2004. Possible location for underthrusting front of the indus continent: Constraints from helium isotope of the geothermal gas in southern Tibet and eastern Tibet[J]. Acta Geologica Sinica, 78(4): 482-493. (in Chinese with English abstract) http://www.researchgate.net/publication/284778172_Possible_location_for_underthrusting_front_of_the_Indus_continent_Constraints_from_helium_isotope_of_the_geothermal_gas_in_southern_Tibet_and_eastern_Tibet HOU Z Q, ZHAO Z D, GAO Y F, et al., 2006a. Tearing and dischronal subduction of the Indian continental slab: Evidence from Cenozoic Gangdese volcano-magmatic rocks in south Tibet[J]. Acta Petrologica Sinica, 22(4): 761-774. (in Chinese with English abstract) http://www.mendeley.com/research/tearing-dischronal-subduction-indian-continental-slab-evidence-cenozoic-gangdese-volcanomagmatic-roc/ HOU Z Q, QU X M, YANG Z S, et al., 2006b. Metallogenesis in Tibetan collisional orogenic belt: Ⅲ. Mineralization in post-collisional extension setting[J]. Mineral Deposits, 25(6): 629-651. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200606001 HUANG W C, NI J F, TILMANN F, et al., 2000. Seismic polarization anisotropy beneath the central Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 105(B12): 27979-27989. doi: 10.1029/2000JB900339 JADE S, BHATT B C, YANG Z, et al., 2004. GPS measurements from the Ladakh Himalaya, India: Preliminary tests of plate-like or continuous deformation in Tibet[J]. GSA Bulletin, 116(11-12): 1385-1391. doi: 10.1130/B25357.1 JIANG W, MO X X, ZHAO C H, et al., 1998. Mineral fission-track dates and research on uplifting velocity of Qinghai-Xizang plateau[J]. Journal of Geomechanics, 4(1): 13-18. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX801.001.htm KALI E, LELOUP P H, ARNAUD N, et al., 2010. Exhumation history of the deepest central Himalayan rocks, Ama Drime range: key pressure-temperature-deformation-time constraints on orogenic models[J]. Tectonics, 29(5): TC2014. doi: 10.1029/2009TC002551 KAPP J L D, HARRISON T M, KAPP P, et al., 2005. Nyainqentanglha Shan: a window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet[J]. Journal of Geophysical Research, 110(B8): B08413. doi: 10.1029/2004JB003330 KAPP P, GUYNN J H, 2004. Indian punch rifts Tibet[J]. Geology, 32(11): 993-996. doi: 10.1130/G20689.1 KAPP P, TAYLOR M, STOCKLI D, et al., 2008. Development of active low-angle normal fault systems during orogenic collapse: Insight from Tibet[J]. Geology, 36(1): 7-10. doi: 10.1130/G24054A.1 KELLY S, BEAUMONT C, BUTLER J P, 2020. Inherited terrane properties explain enigmatic post-collisional Himalayan-Tibetan evolution[J]. Geology, 48(1): 8-14. doi: 10.1130/G46701.1 KIND R, YUAN X, SAUL J, et al., 2002. Seismic images of crust and upper mantle beneath Tibet: Evidence for Eurasian plate subduction[J]. Science, 298(5596): 1219-1221. doi: 10.1126/science.1078115 KLOOTWIJK C T, CONAGHAN P J, POWELL C M, 1985. The Himalayan arc: large-scale continental subduction, oroclinal bending and back-arc spreading[J]. Earth and Planetary Science Letters, 75(2-3): 167-183. doi: 10.1016/0012-821X(85)90099-8 KOSAREV G, KIND R, SOBOLEV S V, et al., 1999. Seismic evidence for a detached Indian lithospheric mantle beneath Tibet[J]. Science, 283(5406): 1306-1309. doi: 10.1126/science.283.5406.1306 LANGILLE J M, JESSUP M J, COTTLE J M, et al., 2012. Timing of metamorphism, melting and exhumation of the Leo Pargil dome, northwest India[J]. Journal of Metamorphic Geology, 30(8): 769-791. doi: 10.1111/j.1525-1314.2012.00998.x LARSON K P, KELLETT D A, COTTLE J M, et al., 2020. Mid-Miocene initiation of E-W extension and recoupling of the Himalaya[J]. Terra Nova, 32(2): 151-158. doi: 10.1111/ter.12443 LASKOWSKI A K, KAPP P, DING L, et al., 2017. Tectonic evolution of the Yarlung suture zone, Lopu Range region, southern Tibet[J]. Tectonics, 36(1): 108-136. doi: 10.1002/2016TC004334 LEARY R, ORME D A, LASKOWSKI A K, et al., 2016. Along-strike diachroneity in deposition of the Kailas Formation in central southern Tibet: implications for Indian slab dynamics[J]. Geosphere, 12(4): 1198-1223. doi: 10.1130/GES01325.1 LEE J, HAGER C, WALLIS S R, et al., 2011. Middle to late Miocene extremely rapid exhumation and thermal reequilibration in the Kung Co rift, southern Tibet[J]. Tectonics, 30(2): TC2007. doi: 10.1029/2010TC002745 LI C, VAN DER HILST R D, Meltzer A S, et al., 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma[J]. Earth and Planetary Science Letters, 274(1-2): 157-168. doi: 10.1016/j.epsl.2008.07.016 LI D W, YIN A, 2008. Orogen-parallel, active left-slip faults in the Eastern Himalaya: implications for the growth mechanism of the Himalayan Arc[J]. Earth and Planetary Science Letters, 274(1-2): 258-267. doi: 10.1016/j.epsl.2008.07.043 LI J T, SONG X D, 2018. Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 115(33): 8296-8300. doi: 10.1073/pnas.1717258115 LI S Z, CAO X Z, WANG G Z, et al., 2019. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific plate[J]. Journal of Geomechanics, 25(5): 642-677. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX198202007.htm LIANG X F, CHEN Y, TIAN X B, et al., 2016. 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography[J]. Earth and Planetary Science Letters, 443: 162-175. doi: 10.1016/j.epsl.2016.03.029 LIN C, ZHANG J J, WANG X X, et al., 2021. Himalayan Miocene adakitic rocks, a case study of the Mayum pluton: Insights into geodynamic processes within the subducted Indian continental lithosphere and Himalayan mid-Miocene tectonic regime transition[J]. GSA Bulletin, 133(3-4): 591-611. doi: 10.1130/B35640.1 LIU M, SHEN Y Q, 1998. Crustal collapse, mantle upwelling, and Cenozoic extension in the North American Cordillera[J]. Tectonics, 17(2): 311-321. doi: 10.1029/98TC00313 LIU M, YANG Y Q, 2003. Extensional collapse of the Tibetan Plateau: results of three-dimensional finite element modeling[J]. Journal of Geophysical Research: Soild Earth, 108(B8): 2361. doi: 10.1029/2002JB002248 LIU M, CUI X J, LIU F T, 2004. Cenozoic rifting and volcanism in eastern China: a mantle dynamic link to the Indo-Asian collision[J]. Tectonophysics, 393(1-4): 29-42. doi: 10.1016/j.tecto.2004.07.029 LIU Z, TIAN X B, YUAN X H, et al., 2020. Complex structure of upper mantle beneath the Yadong-Gulu rift in Tibet revealed by S-to-P converted waves[J]. Earth and Planetary Science Letters, 531: 115954. doi: 10.1016/j.epsl.2019.115954 LONG S, MCQUARRIE N, TOBGAY T, et al., 2011. Geometry and crustal shortening of the Himalayan fold-thrust belt, eastern and central Bhutan[J]. GSA Bulletin, 123(7-8): 1427-1447. doi: 10.1130/B30203.1 LU T Y, HE Z Y, KLEMD R, 2020. Two phases of post-onset collision adakitic magmatism in the southern Lhasa subterrane, Tibet, and their tectonic implications[J]. GSA Bulletin, 132(7-8): 1587-1602. doi: 10.1130/B35326.1 MAHÉO G, LELOUP P H, VALLI F, et al., 2007. Post 4 Ma initiation of normal faulting in southern Tibet. Constraints from the Kung Co half graben[J]. Earth and Planetary Science Letters, 256(1-2): 233-243. doi: 10.1016/j.epsl.2007.01.029 MCCAFFREY R, NABELEK J, 1998. Role of oblique convergence in the active deformation of the Himalayas and southern Tibet plateau[J]. Geology, 26(8): 691-694. doi: 10.1130/0091-7613(1998)026<0691:ROOCIT>2.3.CO;2 MCCALLISTER A T, TAYLOR M H, MURPHY M A, et al., 2014. Thermochronologic constraints on the late Cenozoic exhumation history of the Gurla Mandhata metamorphic core complex, Southwestern Tibet[J]. Tectonics, 33(2): 27-52. doi: 10.1002/2013TC003302 MECHIE J, SOBOLEV S V, RATSCHBACHER L, et al., 2004. Precise temperature estimation in the Tibetan crust from seismic detection of the α-β quartz transition[J]. Geology, 32(7): 601-604. doi: 10.1130/G20367.1 MENG J, GILDER S A, LI Y L, et al., 2020. Expanse of greater india in the late cretaceous[J]. Earth and Planetary Science Letters, 542: 116330. doi: 10.1016/j.epsl.2020.116330 MÉRIAUX A S, RYERSON F J, TAPPONNIER P, et al., 2004. Rapid slip along the central Altyn Tagh Fault: Morphochronologic evidence from Cherchen He and Sulamu Tagh[J]. Journal of Geophysical Research: Solid Earth, 109(B6): B06401. doi: 10.1029/2003JB002558 MÉRIAUX A S, TAPPONNIER P, RYERSON F J, et al., 2005. The Aksay segment of the northern Altyn Tagh fault: tectonic geomorphology, landscape evolution, and Holocene slip rate[J]. Journal of Geophysical Research: Solid Earth, 110(B4): B04404. doi: 10.1029/2004JB003210 MOLNAR P, TAPPONNIER P, 1978. Active tectonics of Tibet[J]. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375. doi: 10.1029/JB083iB11p05361 MOLNAR P, LYON-CAENT H, 1989. Fault plane solutions of earthquakes and active tectonics of the Tibetan Plateau and its margins[J]. Geophysical Journal International, 99(1): 123-154. doi: 10.1111/j.1365-246X.1989.tb02020.x MOLNAR P, ENGLAND P, MARTINOD J, 1993. Mantle dynamics, uplift of the Tibetan plateau, and the Indian monsoon[J]. Reviews of Geophysics, 31(4): 357-396. doi: 10.1029/93RG02030 MURPHY M A, COPELAND P, 2005. Transtensional deformation in the central Himalaya and its role in accommodating growth of the Himalayan orogen[J]. Tectonics, 24(4): TC4012. doi: 10.1029/2004TC001659 MURPHY M A, SANCHEZ V, TAYLOR M H, 2010. Syncollisional extension along the India-Asia suture zone, south-central Tibet: implications for crustal deformation of Tibet[J]. Earth and Planetary Science Letters, 290(3-4): 233-243. doi: 10.1016/j.epsl.2009.11.046 MURPHY M A, YIN A, KAPP P, et al., 2002. Structural evolution of the Gurla Mandhata detachment system, southwest Tibet: implications for the eastward extent of the Karakoram fault system[J]. GSA Bulletin, 114(4): 428-447. doi: 10.1130/0016-7606(2002)114<0428:SEOTGM>2.0.CO;2 MURPHY M A, SAYLOR J E, DING L, 2009. Late Miocene topographic inversion in southwest Tibet based on integrated paleoelevation reconstructions and structural history[J]. Earth and Planetary Science Letters, 282(1-4): 1-9. doi: 10.1016/j.epsl.2009.01.006 NELSON K D, ZHAO W J, BROWN L D, et al., 1996. Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results[J]. Science, 274(5293): 1684-1688. doi: 10.1126/science.274.5293.1684 NI J, BARAZANGI M, 1984. Seismotectonics of the Himalayan collision zone: geometry of the underthrusting Indian plate beneath the Himalaya[J]. Journal of Geophysical Research: Solid Earth, 89(B2): 1147-1163. doi: 10.1029/JB089iB02p01147 NORTHRUP C J, ROYDEN L H, BURCHFIEL B C, 1995. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia[J]. Geology, 23(8): 719-722. doi: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2 OWENS T J, ZANDT G, 1997. Implications of crustal property variations for models of Tibetan plateau evolution[J]. Nature, 387(6628): 37-43. doi: 10.1038/387037a0 PEI S P, LIU H B, BAI L, et al., 2016. High-resolution seismic tomography of the 2015 Mw7.8 Gorkha earthquake, Nepal: evidence for the crustal tearing of the Himalayan rift[J]. Geophysical Research Letters, 43(17): 9045-9052. doi: 10.1002/2016GL069808 PELTZER G, TAPPONNIER P, 1988. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: an experimental approach[J]. Journal of Geophysical Research: Solid Earth, 93(B12): 15085-15117. doi: 10.1029/JB093iB12p15085 RATSCHBACHER L, FRISCH W, LIU G H, et al., 1994. Distributed deformation in southern and western Tibet during and after the india-Asia collision[J]. Journal of Geophysical Research: Solid Earth, 99(B10): 19917-19945. doi: 10.1029/94JB00932 RATSCHBACHER L, KRUMREI I, BLUMENWITZ M, et al., 2011. Rifting and strike-slip shear in central Tibet and the geometry, age and kinematics of upper crustal extension in Tibet[J]. Geological Society, London, Special Publications, 353(1): 127-163. doi: 10.1144/SP353.8 REPLUMAZ A, NEGREDO A M, VILLASEÑOR A, et al., 2010. Indian continental subduction and slab break-off during Tertiary collision[J]. Terra Nova, 22(4): 290-296. https://www.researchgate.net/publication/227520932_Indian_continental_subduction_and_slab_break-off_during_Tertiary_Collision REPLUMAZ A, CAPITANIO F A, GUILLOT S, et al., 2014. The coupling of Indian subduction and Asian continental tectonics[J]. Gondwana Research, 26(2): 608-626. doi: 10.1016/j.gr.2014.04.003 ROSENBAUM G, GASPARON M, LUCENTE F P, et al., 2008. Kinematics of slab tear faults during subduction segmentation and implications for Italian magmatism[J]. Tectonics, 27(2): TC2008. doi: 10.1029/2007TC002143 SANCHEZ V I, MURPHY M A, ROBINSON A C, et al., 2013. Tectonic evolution of the India-Asia suture zone since Middle Eocene time, Lopukangri area, south-central Tibet[J]. Journal of Asian Earth Sciences, 62: 205-220. doi: 10.1016/j.jseaes.2012.09.004 SAYLOR J E, QUADE J, DETTMAN D L, et al., 2009. The late Miocene through present paleoelevation history of southwestern Tibet[J]. American Journal of Science, 309(1): 1-42. doi: 10.2475/01.2009.01 SAYLOR J, DECELLES P, QUADE J, 2010. Climate-driven environmental change in the Zhada basin, southwestern Tibetan Plateau[J]. Geosphere, 6(2): 74-92. doi: 10.1130/GES00507.1 SCHILL E, APPEL E, ZEH O, et al., 2001. Coupling of late-orogenic tectonics and secondary pyrrhotite remanences: Towards a separation of different rotation processes and quantification of rotational underthrusting in the western Himalaya (northern India)[J]. Tectonophysics, 337(1-2): 1-21. doi: 10.1016/S0040-1951(01)00113-5 SEARLE M, 1995. The rise and fall of Tibet[J]. Nature, 374(6517): 17-18. doi: 10.1038/374017a0 SEEBER L, ARMBRUSTER J G, 1984. Some elements of continental subduction along the Himalayan front[J]. Tectonophysics, 105(1-4): 263-278. doi: 10.1016/0040-1951(84)90207-5 SEEBER L, PÊCHER A, 1998. Strain partitioning along the Himalayan arc and the Nanga Parbat antiform[J]. Geology, 26(9): 791-794. doi: 10.1130/0091-7613(1998)026<0791:SPATHA>2.3.CO;2 SHI D N, KLEMPERER S L, SHI J Y, et al., 2020. Localized foundering of Indian lower crust in the India-Tibet collision zone[J]. Proceedings of the National Academy of Sciences of the United States of America, 117(40): 24742-24747. doi: 10.1073/pnas.2000015117 SI S K, GAO R, TIAN X B, 2019. East-west differential underthrusting of the Indian lithospheric plate beneath central Tibet revealed by imaging VP/VS[J]. Journal of Geophysical Research: Solid Earth, 124(9): 9714-9730. doi: 10.1029/2018JB017259 STOCKLI D, TAYLOR M, YIN A, et al., 2002. Late Miocene-Pliocene inception of E-W extension in Tibet as evidenced by apatite (U-Th)/He data[C]//Geological Society of America, abstracts with programs, 34(6): 411. STYRON R H, TAYLOR M H, MURPHY M A, 2011. Oblique convergence, arc-parallel extension, and the role of strike-slip faulting in the High Himalaya[J]. Geosphere, 7(2): 582-596. doi: 10.1130/GES00606.1 STYRON R H, TAYLOR M H, SUNDELL K E, 2015. Accelerated extension of Tibet linked to the northward underthrusting of Indian crust[J]. Nature Geoscience, 2015, 8(2): 131-134. http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2336.html STYRON R H, TAYLOR M H, SUNDELL K E, et al., 2013. Miocene initiation and acceleration of extension in the South Lunggar rift, western Tibet: Evolution of an active detachment system from structural mapping and (U-Th)/He thermochronology[J]. Tectonics, 32(4): 880-907. doi: 10.1002/tect.20053 SUN C G, ZHAO Z D, MO X X, et al., 2007. Geochemistry and origin of the Miocene Sailipu ultrapotassic rocks in western Lhasa block, Tibetan Plateau[J]. Acta Petrologica Sinica, 23(11): 2715-2716. (in Chinese with English abstract) https://www.sciencedirect.com/science/article/pii/S0024493714003429 SUN C G, ZHAO Z D, MO X X, et al., 2008. Enriched mantle source and petrogenesis of Sailipu ultrapotassic rocks in southwestern Tibetan Plateau: Constraints from zircon U-Pb geochronology and Hf isotopic compositions[J]. Acta Petrologica Sinica, 24(2): 249-264. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200802008.htm SUNDELL K E, TAYLOR M H, STYRON R H, et al., 2013. Evidence for constriction and Pliocene acceleration of east-west extension in the North Lunggar rift region of west central Tibet[J]. Tectonics, 32(5): 1454-1479. doi: 10.1002/tect.20086 TAPPONNIER P, MOLNAR P, 1977. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 82(20): 2905-2930. doi: 10.1029/JB082i020p02905 TAPPONNIER P, PELTZER G, LE DAIN A Y, et al. 1982. Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine[J]. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2 TAPPONNIER P, XU Z Q, ROGER F, et al., 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978 TAYLOR M, YIN A, 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism[J]. Geosphere, 5(3): 199-214. doi: 10.1130/GES00217.1 TAYLOR M, YIN A, RYERSON F J, et al., 2003. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau[J]. Tectonics, 22(4): 1044. doi: 10.1029/2002TC001361 THIEDE R C, ARROWSMITH J R, BOOKHAGEN B et al., 2006. Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India[J]. GSA Bulletin, 118(5-6): 635-650. doi: 10.1130/B25872.1 TIAN Z, YANG Z Q, BENDICK R, 2019. Present-day distribution of deformation around the southern Tibetan Plateau revealed by geodetic and seismic observations[J]. Journal of Asian Earth Sciences, 171: 321-333. doi: 10.1016/j.jseaes.2018.12.018 TILMANN F, NI J, INDEPTH Ⅲ Seismic Team, 2003. Seismic imaging of the downwelling Indian lithosphere beneath central Tibet[J]. Science, 300(5624): 1424-1427. doi: 10.1126/science.1082777 TRELOAR P J, COWARD M P, 1991. Indian Plate motion and shape: constraints on the geometry of the Himalayan orogen[J]. Tectonophysics, 191(3-4): 189-198. doi: 10.1016/0040-1951(91)90055-W TURNER S, HAWKESWORTH C, LIU J P, et al., 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks[J]. Nature, 364(6432): 50-54. doi: 10.1038/364050a0 VAN BUER N J, JAGOUTZ O, UPADHYAY R, et al., 2015. Mid-crustal detachment beneath western Tibet exhumed where conjugate Karakoram and Longmu-Gozha Co faults intersect[J]. Earth and Planetary Science Letters, 413: 144-157. doi: 10.1016/j.epsl.2014.12.053 WANG G, WEI W B, YE G F, et al., 2017. 3-D electrical structure across the Yadong-Gulu rift revealed by magnetotelluric data: new insights on the extension of the upper crust and the geometry of the underthrusting Indian lithospheric slab in southern Tibet[J]. Earth and Planetary Science Letters, 474: 172-179. doi: 10.1016/j.epsl.2017.06.027 WANG S G, CHEVALIER M L, PAN J W, et al., 2020. Quantification of the late Quaternary throw rates along the Yadong rift, southern Tibet[J]. Tectonophysics, 790: 228545. doi: 10.1016/j.tecto.2020.228545 WANG W, ZENG L S, GAO L E, et al., 2018. Eocene-Oligocene potassic high Ba-Sr granitoids in the Southeastern Tibet: petrogenesis and tectonic implications[J]. Lithos, 322: 38-51. doi: 10.1016/j.lithos.2018.10.008 WANG Z W, ZHAO D P, GAO R, et al., 2019. Complex subduction beneath the Tibetan plateau: a slab warping model[J]. Physics of the Earth and Planetary Interiors, 292: 42-54. doi: 10.1016/j.pepi.2019.04.007 WEBB A A G, GUO H C, CLIFT P D, et al., 2017. The himalaya in 3D: slab dynamics controlled mountain building and monsoon intensification[J]. Lithosphere, 9(4): 637-651. https://pubs.geoscienceworld.org/gsa/lithosphere/article/9/4/637/207458/The-Himalaya-in-3D-Slab-dynamics-controlled WITTLINGER G, VERGNE J, TAPPONNIER P, et al., 2004. Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet[J]. Earth and Planetary Science Letters, 221(1-4): 117-130. doi: 10.1016/S0012-821X(03)00723-4 WOLFF R, HETZEL R, DUNKL I, et al., 2019. High-angle normal faulting at the Tangra Yumco Graben (Southern Tibet) since ~15 Ma[J]. The Journal of Geology, 127(1): 15-36. doi: 10.1086/700406 WOODRUFF W H, HORTON B K, KAPP P, et al., 2013. Late Cenozoic evolution of the Lunggar extensional basin, Tibet: implications for basin growth and exhumation in hinterland plateaus[J]. Geological Society of America Bulletin, 125(3-4): 343-358. doi: 10.1130/B30664.1 WORTEL M J R, SPAKMAN W, 2000. Subduction and slab detachment in the Mediterranean-Carpathian region[J]. Science, 290(5498): 1910-1917. doi: 10.1126/science.290.5498.1910 WU C L, TIAN X B, XU T, et al., 2019a. Deformation of crust and upper mantle in central Tibet caused by the northward subduction and slab tearing of the Indian lithosphere: new evidence based on shear wave splitting measurements[J]. Earth and Planetary Science Letters, 514: 75-83. doi: 10.1016/j.epsl.2019.02.037 WU C L, TIAN X B, XU T, et al., 2019b. Upper-crustal anisotropy of the conjugate strike-slip fault zone in central Tibet analyzed using local earthquakes and shear wave splitting[J]. Bulletin of the Seismological Society of America, 109(5): 1968-1984. doi: 10.1785/0120180333 WU Z H, JIANG W, WU Z H, et al., 2002. Dating of typical basin and range tectonics in central Tibetan Plateau[J]. Acta Geoscientia Sinica, 23(4): 289-294. (in Chinese with English Abstract) http://www.oalib.com/paper/1559503 WU Z H, ZHANG Y S, HU D G, et al., 2007. Late cenozoic normal faulting of the Qungdo'Gyang graben in the central segment of the Cona-Oiga rift, southeastern Tibet[J]. Journal of Geomechanics, 13(4): 297-306. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX200704003.htm WU Z H, ZHANG Y S, HU D G, et al., 2008. The Quaternary normal faulting of the Cona-Oiga Rift[J]. Seismology and Geology, 30(1): 144-160. (in Chinese with English Abstract) https://www.researchgate.net/publication/230132101_Quaternary_Geology_and_Faulting_in_the_Damxung-Yangbajain_Basin XIAO L, WANG C Z, PIRAJNO F, 2007. Is the underthrust Indian lithosphere split beneath the Tibetan Plateau[J]. International Geology Review, 49(1): 90-98. doi: 10.2747/0020-6814.49.1.90 XU B, GRIFFIN W L, XIONG Q, et al., 2017. Ultrapotassic rocks and xenoliths from south Tibet: contrasting styles of interaction between lithospheric mantle and asthenosphere during continental collision[J]. Geology, 45(1): 51-54. doi: 10.1130/G38466.1 XU Z Q, WANG Q, PÊCHER A, et al., 2013. Orogen-parallel ductile extension and extrusion of the greater Himalaya in the late Oligocene and Miocene[J]. Tectonics, 32(2): 191-215. doi: 10.1002/tect.20021 YAN H Y, LONG X P, LI J, et al., 2019. Miocene adakites in south Tibet: partial melting of the thickened Lhasa juvenile mafic lower crust with the involvement of ancient Indian continental crust compositions[J]. GSA Bulletin, 132(5-6): 1273-1290. http://www.researchgate.net/publication/336968866_Miocene_adakites_in_south_Tibet_Partial_melting_of_the_thickened_Lhasa_juvenile_mafic_lower_crust_with_the_involvement_of_ancient_Indian_continental_crust_compositions YANG Y J, RITZWOLLER M H, ZHENG Y, et al., 2012. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet[J]. Journal of Geophysical Research: Solid Earth, 117(B4): B04303. doi: 10.1029/2011JB008810/abstract YANG Y Q, LIU M, 2013. The Indo-Asian continental collision: a 3-D viscous model[J]. Tectonophysics, 606: 198-211. doi: 10.1016/j.tecto.2013.06.032 YIN A, KAPP P A, MURPHY M A, et al., 1999. Significant late Neogene east-west extension in northern Tibet[J]. Geology, 27(9): 787-790. doi: 10.1130/0091-7613(1999)027<0787:SLNEWE>2.3.CO;2 YIN A, 2000. Mode of Cenozoic east-west Extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision[J]. Journal of Geophysical Research: Solid Earth, 105(B9): 21745-21759. doi: 10.1029/2000JB900168 YIN A, 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation[J]. Earth Science Reviews, 76(1-2): 1-131. doi: 10.1016/j.earscirev.2005.05.004 YIN A, 2010. Cenozoic tectonic evolution of Asia: a preliminary synthesis[J]. Tectonophysics, 488(1-4): 293-325. doi: 10.1016/j.tecto.2009.06.002 YIN A, HARRISON T M, 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211 YIN A, TAYLOR M H, 2011. Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation[J]. GSA Bulletin, 123(9-10): 1798-1821. doi: 10.1130/B30159.1 ZANDT G, HUMPHREYS E, 2008. Toroidal mantle flow through the western U.S. slab window[J]. Geology, 36(4): 295-298. doi: 10.1130/G24611A.1 ZHANG J J, DING L, ZHONG D L, et al., 2000. Orogen-parallel extension in Himalaya: is it the indicator of collapse or the product in process of compressive uplift?[J]. Chinese Science Bulletin, 45(2): 114-120. doi: 10.1007/BF02884653 ZHANG J J, DING L, 2003. East-west extension in Tibetan plateau and its significance to tectonic evolution[J]. Chinese Journal of Geology, 38(2): 179-189. (in Chinese with English abstract) http://www.researchgate.net/publication/284632211_East-west_extension_in_Tibetan_Plateau_and_its_significance_to_tectonic_evolution ZHANG J J, GUO L, 2007. Structure and geochronology of the southern Xainza-Dinggye rift and its relationship to the south Tibetan detachment system[J]. Journal of Asian Earth Sciences, 29(5-6): 722-736. doi: 10.1016/j.jseaes.2006.05.003 ZHANG J W, LI H A, ZHANG H P, et al., 2020. Research progress in Cenozoic N-S striking rifts in Tibetan Plateau[J]. Advances in Earth Science, 35(8): 848-862. (in Chinese with English abstract) ZHANG L Y, DUCEA M N, DING L, et al., 2014. Southern Tibetan Oligocene-Miocene adakites: a record of Indian slab tearing[J]. Lithos, 210-211: 209-223. doi: 10.1016/j.lithos.2014.09.029 ZHANG Z J, CHEN Y, YUAN X H, et al., 2013. Normal faulting from simple shear rifting in South Tibet, using evidence from passive seismic profiling across the Yadong-Gulu Rift[J]. Tectonophysics, 606: 178-186. doi: 10.1016/j.tecto.2013.03.019 ZHAO J M, YUAN X H, LIU H B, et al., 2010. The boundary between the Indian and Asian tectonic plates below Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(25): 11229-11233. doi: 10.1073/pnas.1001921107 ZHAO W, MECHIE J, BROWN L D, et al., 2001. Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data[J]. Geophysical Journal International, 145(2): 486-498. doi: 10.1046/j.0956-540x.2001.01402.x ZHAO Z D, MO X X, NOMADE S, et al., 2006. Post-collisional ultrapotassic rocks in Lhasa block, Tibetan Plateau: spatial and temporal distribution and its' implications[J]. Acta Petrologica Sinica, 22(4): 787-794. (in Chinese with English abstract) http://www.researchgate.net/publication/279756550_Post-collisional_ultrapotassic_rocks_in_Lhasa_Block_Tibetan_Plateau_Spatial_and_temporal_distribution_and_its_implications ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2019. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 25(5): 699-721. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201905007.htm ZHU D C, WANG Q, ZHAO Z D, et al., 2015. Magmatic record of India-Asia collision[J]. Scientific Reports, 5: 14289. doi: 10.1038/srep14289 ZHU G H, LIANG X F, TIAN X B, et al., 2017. Analysis of the seismicity in central Tibet based on the SANDWICH network and its tectonic implications[J]. Tectonophysics, 702: 1-7. doi: 10.1016/j.tecto.2017.02.020 ZHU L P, HELMBERGER D V, 1996. Intermediate depth earthquakes beneath the India-Tibet Collision Zone[J]. Geophysical Research Letters, 23(5): 435-438. doi: 10.1029/96GL00385 ZUO J M, WU Z H, HA G G, et al., 2021. Spatial variation of nearly NS-trending normal faulting in the southern Yadong-Gulu rift, Tibet: New constraints from the Chongba Yumtso fault, Duoqing Co graben[J]. Journal of Structural Geology, 144: 104256. doi: 10.1016/j.jsg.2020.104256 才巴央增, 赵俊猛, 2018. 藏南裂谷系的研究综述[J]. 地震研究, 41(1): 14-21. doi: 10.3969/j.issn.1000-0666.2018.01.002 曹圣华, 李德威, 余忠珍, 等, 2009. 西藏冈底斯当惹雍错-许如错南北向地堑的特征及成因[J]. 地球科学: 中国地质大学学报, 34(6): 914-920. doi: 10.3321/j.issn:1000-2383.2009.06.005 丁林, 钟大赉, 潘裕生, 等, 1995. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J]. 科学通报, 40(16): 1497-1500. doi: 10.3321/j.issn:0023-074X.1995.16.018 丁林, 岳雅慧, 蔡福龙, 等, 2006. 西藏拉萨地块高镁超钾质火山岩及对南北向裂谷形成时间和切割深度的制约[J]. 地质学报, 80(9): 1252-1261. doi: 10.3321/j.issn:0001-5717.2006.09.003 哈广浩, 吴中海, 何林, 2018. 藏南邛多江地堑的晚新生代沉积地层及对南北向裂谷形成时代的初步限定[J]. 地质学报, 92(10): 2051-2067. doi: 10.3969/j.issn.0001-5717.2018.10.007 贺日政, 高锐, 2003. 西藏高原南北向裂谷研究意义[J]. 地球物理学进展, 18(1): 35-43. doi: 10.3969/j.issn.1004-2903.2003.01.006 侯增谦, 李振清, 2004. 印度大陆俯冲前缘的可能位置: 来自藏南和藏东活动热泉气体He同位素约束[J]. 地质学报, 78(4): 482-493. doi: 10.3321/j.issn:0001-5717.2004.04.007 侯增谦, 赵志丹, 高永丰, 等, 2006a. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山-岩浆作用证据[J]. 岩石学报, 22(4): 761-774. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604001.htm 侯增谦, 曲晓明, 杨竹森, 等, 2006b. 青藏高原碰撞造山带: Ⅲ. 后碰撞伸展成矿作用[J]. 矿床地质, 25(6): 629-651. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200606000.htm 江万, 莫宣学, 赵崇贺, 等, 1998. 矿物裂变径迹年龄与青藏高原隆升速率研究[J]. 地质力学学报, 4(1): 13-18. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=19980102&journal_id=dzlxxb 李三忠, 曹现志, 王光增, 等, 2019. 太平洋板块中-新生代构造演化及板块重建[J]. 地质力学学报, 25(5): 642-677. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190504&journal_id=dzlxxb 孙晨光, 赵志丹, 莫宣学, 等, 2007. 青藏高原拉萨地块西部中新世赛利普超钾质岩石的地球化学与岩石成因[J]. 岩石学报, 23(11): 2715-2716. doi: 10.3969/j.issn.1000-0569.2007.11.004 孙晨光, 赵志丹, 莫宣学, 等, 2008. 青藏高原西南部赛利普超钾质火山岩富集地幔源区和岩石成因: 锆石U-Pb年代学和Hf同位素制约[J]. 岩石学报, 24(2): 249-264. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802008.htm 吴珍汉, 江万, 吴中海, 等, 2002. 青藏高原腹地典型盆-山构造形成时代[J]. 地球学报, 23(4): 289-294. doi: 10.3321/j.issn:1006-3021.2002.04.001 吴中海, 张永双, 胡道功, 等, 2007. 西藏错那-沃卡裂谷带中段邛多江地堑晚新生代正断层作用[J]. 地质力学学报, 13(4): 297-306. doi: 10.3969/j.issn.1006-6616.2007.04.002 吴中海, 张永双, 胡道功, 等, 2008. 藏南错那-沃卡裂谷的第四纪正断层作用及其特征[J]. 地震地质, 30(1): 144-160. doi: 10.3969/j.issn.0253-4967.2008.01.010 张佳伟, 李汉敖, 张会平, 等, 2020. 青藏高原新生代南北走向裂谷研究进展[J]. 地球科学进展, 35(8): 848-862. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ202008007.htm 张进江, 丁林, 钟大赉, 等, 1999. 喜玛拉雅平行于造山带伸展: 是垮塌的标志还是挤压隆升过程的产物?[J]. 科学通报, 44(19): 2031-2036. doi: 10.3321/j.issn:0023-074X.1999.19.004 张进江, 丁林, 2003. 青藏高原东西向伸展及其地质意义[J]. 地质科学, 38(2): 179-189. doi: 10.3321/j.issn:0563-5020.2003.02.005 赵志丹, 莫宣学, NOMADE S, 等, 2006. 青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义[J]. 岩石学报, 22(4): 787-794. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604003.htm 郑文俊, 张培震, 袁道阳, 等, 2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190506&journal_id=dzlxxb