Research progress of factors affecting apatite fission track annealing
-
摘要: 磷灰石裂变径迹退火是一个繁杂的化学动力学过程,清楚地了解其退火的影响因素对于该技术的应用十分重要。文章概述了磷灰石裂变径迹退火动力学模型的发展史,并结合以往对其退火影响因素的研究,将磷灰石裂变径迹退火影响因素分为自身和外部环境两方面:自身影响因素包括化学成分、晶体结构、径迹长度与半径、径迹与结晶轴的方位关系,其中化学成分对退火起到主导作用;外部环境影响中,温度是主导因素,压力和蚀刻条件的改变也会影响退火。研究成果有利于完善磷灰石裂变径迹的实验室退火模型,提高其作为热历史记录器的精度。Abstract: Apatite fission track annealing is a complicated chemical kinetic process. It is crucial for the application of fission track thermochronology to clearly understand the factors affecting annealing. In the article, the development of apatite fission track annealing model is summarized, and the research progress on factors influencing annealing is reviewed. Generally, the factors can be divided into internal and external ones. The internal factors include chemical composition, crystal structure, track length and radius, and crystallographic orientation, among which, chemical composition plays a leading role. Among the external factors, temperature is the dominant one, and pressure and etching conditions can also affect annealing. The research results are conducive to improving the apatite fission track annealing model and increase its accuracy as a thermal history recorder.
-
Key words:
- apatite fission track /
- annealing model /
- factors affecting annealing
-
图 1 Durango磷灰石退火实验(30 min)中径迹半径与温度变化图(Nadzri et al., 2017)
Figure 1. Track radius as a function of annealing temperature for 30 min for Durango apatite (Nadzri et al., 2017)
图 2 不同退火程度下AFT退火的各向异性(Donelick et al., 1999)
la—椭圆面上平行结晶c轴的径迹长度;lc—椭圆面上垂直结晶c轴的径迹长度(椭圆的长短半轴)
Figure 2. Anisotropy of AFT annealing at different levels of annealing (Donelick et al., 1999)
-
AFRA B, LANG M, BIERSCHENK T, et al. , 2014. Annealing behaviour of ion tracks in olivine, apatite and britholite[J]. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 326: 126-130. http://www.sciencedirect.com/science/article/pii/S0168583X14000937 AHRENS T J, FLEISCHER R L, PRICE P B, et al. , 1970. Erasure of fission tracks in glasses and silicates by shock waves[J]. Earth and Planetary Science Letters, 8(6): 420-426. doi: 10.1016/0012-821X(70)90145-7 BARBARAND J, CARTER A, WOOD I, et al. , 2003. Compositional and structural control of fission-track annealing in apatite[J]. Chemical Geology, 198(1-2): 107-137. doi: 10.1016/S0009-2541(02)00424-2 CARLSON W D, 1990. Mechanisms and kinetics of apatite fission-track annealing[J]. American Mineralogist, 75(9-10): 1120-1139. http://www.researchgate.net/publication/236536903_Mechanisms_and_kinetics_of_apatite_fission-track_annealing CARLSON W D, DONELICK R A, KETCHAM R A, 1999. Variability of apatite fission-track annealing kinetics: I. Experimental results[J]. American Mineralogist, 84(9): 1213-1223. doi: 10.2138/am-1999-0901 CARPENA J, LACOUT J L, 2010. Thermal annealing of fission tracks in synthetic apatites[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(19): 3191-3194. doi: 10.1016/j.nimb.2010.05.085 CHEW D M, DONELICK R A, 2012. Combined apatite fission track and U-Pb dating by LA-ICP-MS and its application in apatite provenance analysis[M]//Quantitative mineralogy and microanalysis of sediments and sedimentary rocks. Mineralogical Association of Canada Short Course, 42: 219-247. CROWLEY K D, CAMERON M, SCHAEFER R L, 1991. Experimental studies of annealing of etched fission tracks in fluorapatite[J]. Geochimica et Cosmochimica Acta, 55(5): 1449-1465. doi: 10.1016/0016-7037(91)90320-5 DING B, LIU H X, LI P, et al. , 2019. The tectonic activity in the southern margin of the ili basin and its constraint on sandstone-type uranium deposits: evidence from apatite fission track and U-Pb dating[J]. Journal of Geomechanics, 25(S1): 84-89. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX2019S1015.htm DONELICK R A, 1991. Crystallographic orientation dependence of mean etchable fission track length in apatite: An empirical model and experimental observations[J]. American Mineralogist, 76(1-2): 83-91. http://www.researchgate.net/publication/236471972_Crystallographic_orientation_dependence_of_mean_etchable_fission_track_length_in_apatite_An_empirical_model_and_experimental_observations DONELICK R A, Ketcham R A, Carlson W D, 1999. Variability of apatite fission-track annealing kinetics: Ⅱ. Crystallographic orientation effects[J]. American Mineralogist, 84(9): 1224-1234. doi: 10.2138/am-1999-0902 DONELICK R A, FARLEY K, ASIMOW P D, et al. , 2003. Pressure dependence of He diffusion and fission-track annealing kinetics in apatite?: Experimental results[J]. Geochimica et Cosmochimica Acta, 67(18): A82. http://adsabs.harvard.edu/abs/2003GeCAS..67Q..82D DONELICK R A, O'SULLIVAN P B, KETCHAM R A, 2005. Apatite fission-track analysis[J]. Reviews in Mineralogy and Geochemistry, 58(1): 49-94. doi: 10.2138/rmg.2005.58.3 DUDDY I R, GREEN P F, LASLETt G M, 1988. Thermal annealing of fission tracks in apatite 3. Variable temperature behaviour[M]. Chemical Geology: Isotope Geoscience Section, 73(1): 25-38. FLEISCHER R L, PRICE P B, 1964. Glass dating by fission fragment tracks[J]. Journal of Geophysical Research, 69(2): 331-339. doi: 10.1029/JZ069i002p00331 FLEISHER R L, PRICE P B, WALKER R M, 1981. Nuclear tracks in solids (principles & applications)[J]. Nuclear Technology, 54(1): 126. FU M X, 2003. Review on the model of the apatite fission track annealing kinetics[J]. Progress in Geophysics, 18(4): 650-655. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200304013.htm GLAESER A M, 2001. Model studies of rayleigh instabilities via microdesigned interfaces[J]. Interface Science, 9(1-2): 65-82. doi: 10.1023/A%3A1011279015039 GLEADOW A J W, DUDDY I R, GREEN P F, et al. , 1986. Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis[J]. Contributions to Mineralogy and Petrology, 94(4): 405-415. doi: 10.1007/BF00376334 GLEADOW A J W, LOVERING J F, 1978. Thermal history of granitic rocks from western Victoria: A fission-track dating study[J]. Journal of the Geological Society of Australia, 25(5-6): 323-340. doi: 10.1080/00167617808729039 GLEADOW A J W, SEILER C, 2015. Fission track dating and thermochronology[M]//JACK R W, THOMPSON J W. Encyclopedia of scientific dating methods. Encyclopedia of earth sciences series. Dordrecht: Springer: 286-295. GREEN P F, DUDDY I R, GLEADOW A J W, et al. , 1986. Thermal annealing of fission tracks in apatite: 1. A qualitative description[J]. Chemical Geology: Isotope Geoscience Section, 59: 237-253. doi: 10.1016/0168-9622(86)90074-6 GUEDES S, CURVO E A C, TELLO C A et al. , 2007. On the annealing of fission tracks in randomly oriented grains of apatite[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 256(2): 683-692. doi: 10.1016/j.nimb.2006.12.185 HURFORD A J, 2018. An historical perspective on fission-track thermochronology[M]//MALUSÀ M G, FITZGERALD P G. Fission-track thermochronology and its application to geology. Berlin: Springer: 3-23. JIAO Y X, QIU N S, QUE Y Q, 2013. Effects of fission-track angle to crystallographic C axis in apatite on thermal history[J]. Geoscience, 27(5): 1131-1136. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_geoscience_thesis/0201254374088.html KETCHAM R A, DONELICK R A, CARLSON W D, 1999. Variability of apatite fission-track annealing kinetics; Ⅲ: extrapolation to geological time scales[J]. American Mineralogist, 84(9): 1235-1255. doi: 10.2138/am-1999-0903 KETCHAM R A, 2003. Observations on the relationship between crystallographic orientation and biasing in apatite fission-track measurements[J]. American Mineralogist, 88(5-6): 817-829. doi: 10.2138/am-2003-5-610 KETCHAM R A, 2005a. Forward and inverse modeling of low-temperature thermochronometry data[J]. Reviews in Mineralogy & Geochemistry, 58(1): 275-314. http://adsabs.harvard.edu/abs/2005RvMG...58..275K KETCHAM R A, 2005b. The role of crystallographic angle in characterizing and modeling apatite fission-track length data[J]. Radiation Measurements, 39(6): 595-601. doi: 10.1016/j.radmeas.2004.07.008 KETCHAM R A, Carter A, Donelick R A, et al. , 2007a. Improved modeling of fission-track annealing in apatite[J]. American Mineralogist, 92(5-6): 799-810 doi: 10.2138/am.2007.2281 KETCHAM R A, Carter A, Donelick R A, et al. , 2007b. Improved measurement of fission-track annealing in apatite using c-axis projection[J]. American Mineralogist, 92(5-6): 789-798. doi: 10.2138/am.2007.2280 KETCHAM R A, Donelick R A, Balestrieri M L, et al. , 2009. Reproducibility of apatite fission-track length data and thermal history reconstruction[J]. Earth and Planetary Science Letters, 284(3-4): 504-515. doi: 10.1016/j.epsl.2009.05.015 KETCHAM R A, 2019. Fission-track annealing: from geologic observations to thermal history modeling[M]//MALUSÀ M, FITZGERALD P. Fission-track thermochronology and its application to geology. Berlin: Springer: 49-75. KINOSHITA T, IWATA T, BÉCHADE E, et al. , 2010. Effect of Mg substitution on crystal structure and oxide-ion conductivity of apatite-type lanthanum silicates[J]. Solid State Ionics, 181(21-22): 1024-1032. doi: 10.1016/j.ssi.2010.06.001 KOHN B P, BELTON D X, BROWN R W, et al. , 2003. Comment on: "Experimental evidence for the pressure dependence of fission track annealing in apatite" by A. S. Wendt et al. [Earth Planet. Sci. Lett. 201 (2002) 593-607] [J]. Earth and Planetary Science Letters, 215(1-2): 299-306. doi: 10.1016/S0012-821X(03)00077-3 KOHN B P, GREEN P F, 2002. Low temperature thermochronology: from tectonics to landscape evolution[J]. Tectonophysics, 349(1-4): 1-4. doi: 10.1016/S0040-1951(02)00042-2 LAKATOS S, MILLER D S, 1970. Water-pressure effect on fission-track annealing in an Alpine muscovite[J]. Earth and Planetary Science Letters, 9(1): 77-81. doi: 10.1016/0012-821X(70)90028-2 LASLETT G M, GREEN P F, DUDDY I R, et al. , 1987. Thermal annealing of fission tracks in apatite 2. A quantitative analysis[J]. Chemical Geology: Isotope Geoscience Section, 65(1): 1-13. doi: 10.1016/0168-9622(87)90057-1 LASLETT G M, GALBRAITH R F, 1996. Statistical modelling of thermal annealing of fission tracks in apatite[J]. Geochimica et Cosmochimica Acta, 60(24): 5117-5131. doi: 10.1016/S0016-7037(96)00307-9 LI W X, WANG L M, LANG M, et al. , 2011. Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon[J]. Earth and Planetary Science Letters, 302(1-2): 227-235. doi: 10.1016/j.epsl.2010.12.016 LIU J, GLASMACHER U A, LANG M, et al. , 2008. Raman spectroscopy of apatite irradiated with swift heavy ions with and without simultaneous exertion of high pressure[J]. Applied Physics A, 91(1): 17-22. doi: 10.1007/s00339-008-4402-9 LIU B, LI S Q, ZHANG N, et al. , 2006. Effect of trace elements on crystal structure of hydroxyapatite[J]. Journal of Jinan University(Science & Technology), 20(3): 193-194. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDJC200603001.htm LIU Y, Comodi P, 1993. Some aspects of the crystal-chemistry of apatites[J]. Mineralogical Magazine, 57(389): 709-719. doi: 10.1180/minmag.1993.057.389.15 LIU Y, XU H Y, 2001. The effects of structural channel inos of apatite on their lattice parameters[J]. Journal of Mineralogy and Petrology, 21(1): 1-4. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200101000.htm MCDANNELL K T, ISSLER D R, O'SULLIVAN P B, 2019. Radiation-enhanced fission track annealing revisited and consequences for apatite thermochronometry[J]. Geochimica et Cosmochimica Acta, 252: 213-239. doi: 10.1016/j.gca.2019.03.006 MOREIRA P A F P, IUNES P J, GUEDES S, et al. , 2008. Comparison between thorium and uranium fission track diameters in glass[J]. Radiation Measurements, 43: S329-S333. doi: 10.1016/j.radmeas.2008.04.080 MOREIRA P A F P, GUEDES S, IUNES P J, et al. , 2010. Fission track chemical etching kinetic model[J]. Radiation Measurements, 45(2): 157-162. doi: 10.1016/j.radmeas.2009.12.003 MURRELL G R, SOBEL E R, CARRAPA B, et al. , 2009. Calibration and comparison of etching techniques for apatite fission-track thermochronology[J]. Geological Society, London, Special Publications, 324(1): 73-85. doi: 10.1144/SP324.6 NADZRI A, SCHAURIES D, MOTA-SANTIAGO P, et al. , 2017. Composition and orientation dependent annealing of ion tracks in apatite: Implications for fission track thermochronology[J]. Chemical Geology, 451: 9-16. doi: 10.1016/j.chemgeo.2016.12.039 NAESER C W, FAUL H, 1969. Fission track annealing in apatite and sphene[J]. Journal of Geophysical Research, 74(2): 705-710. doi: 10.1029/JB074i002p00705 POWELL J W, SCHNEIDER D A, ISSLER D R. 2017. Application of multi-kinetic apatite fission track and (U-Th)/He thermochronology to source rock thermal history: a case study from the Mackenzie Plain, NWT, Canada[J]. Basin Research. RAVENHURSt C E, RODEN M K, MILLER D S, 2003. Thermal annealing of fission tracks in fluorapatite, chlorapatite, manganoanapatite, and Durango apatite: experimental results[J]. Canadian Journal of Earth Sciences, 40(7): 995-1007. doi: 10.1139/e03-032 SCHMIDT J S, LELARGE M L M V, CONCEICAO R V, et al. , 2014. Experimental evidence regarding the pressure dependence of fission track annealing in apatite[J]. Earth and Planetary Science Letters, 390: 1-7. doi: 10.1016/j.epsl.2013.12.041 SPIEGEL C, KOHN B, RAZA A, et al. , 2007. The effect of long-term low-temperature exposure on apatite fission track stability: A natural annealing experiment in the deep ocean[J]. Geochimica et Cosmochimica Acta, 71(18): 4512-4537. doi: 10.1016/j.gca.2007.06.060 TANG X Y, ZUO Y H, KOHN B, et al. , 2019. Cenozoic thermal history reconstruction of the Dongpu Sag, Bohai Bay Basin: insights from apatite fission-track thermochronology[J]. Terra Nova, 31(3): 159-168. doi: 10.1111/ter.12379 TANG Y H, YUAN W M, ZHANG B H, et al. , 2004a. Standardization study on confined fission-track length measurement: study on etching standard of zircon[J]. Rock and Mineral Analysis, 23(4): 251-255. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YKCS200404003.htm TANG Y H, YUAN W M, HAN C M, et al. , 2004b. The standardization of length measurement of fission track[J]. Acta Petrologica et Mineralogica, 23(4): 346-350. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW200404007.htm TELLO C A, PALISSARI R, HADLER J C, et al. , 2006. Annealing experiments on induced fission tracks in apatite: Measurements of horizontal-confined track lengths and track densities in basal sections and randomly oriented grains[J]. American Mineralogist, 91(2-3): 252-260. doi: 10.2138/am.2006.1269 TIAN Y T, YUAN Y S, Hu S B, 2009. New progresses in apatite fission track analysis[J]. Progress in Geophysics, 24(3): 909-920. (in Chinese) VIDAL O, WENDT A S, CHADDERTON L T, 2003. Further discussion on the pressure dependence of fission track annealing in apatite: reply to the critical comment of Kohn et al. [J]. Earth and Planetary Science Letters, 215(1-2): 307-316. doi: 10.1016/S0012-821X(03)00434-5 WENDT A S, VIDAL O, CHADDERTON L T, 2002. Experimental evidence for the pressure dependence of fission track annealing in apatite[J]. Earth and Planetary Science Letters, 201(3-4): 593-607. doi: 10.1016/S0012-821X(02)00727-6 WENDT A S, VIDAL O, CHADDERTON L T, 2003. The effect of simultaneous temperature, pressure and stress on the experimental annealing of spontaneous fission tracks in apatite: a brief overview[J]. Radiation Measurements, 36(1-6): 339-342. doi: 10.1016/S1350-4487(03)00148-3 YAN Y, LIN G, WANG Y J, et al. , 2003. Apatite fission track age of Mesozoic sandstones from Beipiao basin, eastern China: Implications for basin provenance and tectonic evolution[J]. Geochemical Journal, 37(3): 377-389. doi: 10.2343/geochemj.37.377 YANG N, ZHANG Y Q, 2010. Tission-track dating for activity of the Longmenshan fault zone and uplifting of the western Sichuan Plateau[J]. Journal of Geomechanics, 16(4): 359-371. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201004005.htm ZHAI P J, 1991. The comparison of revealing flssion tracks in zircon using different mixed acid systems[J]. Nuclear Techniques, 14(7): 416-418. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJSU199107010.htm ZHANG X T, ZHANG Q L, WANG X C, et al. , 2012. A constraining thermal history of basin fission-track technology[J]. Geology and Mineral Resources of South China, 28(2): 93-99. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HNKC201202001.htm ZHOU C L, FENG S, WANG S C. 1994. Numerical modelling on the length distributions of apatite fission-tracks and its applications in geology[J]. Experimental Petroleum Geology, 16(4): 409-416. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD404.013.htm ZHOU H, LEI C, 2013. The study progress in apatite fission track (AFT)[J]. Northwestern Geology, 46(1): 168-177. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI201301021.htm ZHUO Y Z, ZHAO H G, LI M, et al. , 2015. Preliminary discussion on the impact of pressure on fission track annealing of apatite[J]. Geology and Resources, 24(2): 141-145. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_geology-resources_thesis/0201253439187.html 丁波, 刘红旭, 李平, 等, 2019. 伊犁盆地南缘构造活动及对砂岩型铀矿的制约: 来自磷灰石裂变径与U-Pb定年的证据[J]. 地质力学学报, 25(S1): 84-89. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=2019S115&journal_id=dzlxxb 付明希, 2003. 磷灰石裂变径迹退火动力学模型研究进展综述[J]. 地球物理学进展, 18(4): 650-655. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200304013.htm 焦亚先, 邱楠生, 阙永泉, 2013. 磷灰石裂变径迹与结晶C轴的夹角对模拟热历史的影响[J]. 现代地质, 27(5): 1131-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201305016.htm 刘飚, 李仕群, 张宁, 等, 2006. 微量元素对羟基磷灰石晶体结构的影响[J]. 济南大学学报(自然科学版), 20(3): 193-194. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJC200603001.htm 刘羽, 胥焕岩, 2001. 磷灰石结构通道离子对晶胞参数的影响[J]. 矿物岩石, 21(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200101000.htm 汤云晖, 袁万明, 张本宏, 等, 2004a. 裂变径迹长度测量标准化研究: 锆石蚀刻标准探讨[J]. 岩矿测试, 23(4): 251-255. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200404003.htm 汤云晖, 袁万明, 韩春明, 等, 2004b. 裂变径迹长度测量的标准化研究[J]. 岩石矿物学杂志, 23(4): 346-350. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200404007.htm 田云涛, 袁玉松, 胡圣标, 2009. 磷灰石裂变径迹分析新进展[J]. 地球物理学进展, 24(3): 909-920. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200903014.htm 杨农, 张岳桥, 2010. 龙门山断裂活动和川西高原隆升历史的裂变径迹测年[J]. 地质力学学报, 16(4): 359-371. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20100404&journal_id=dzlxxb 翟鹏济, 1991. 不同混合酸蚀刻体系揭示锆石中裂变径迹之比较[J]. 核技术, 14(7): 416-418. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU199107010.htm 张向涛, 张青林, 王绪诚, 等, 2012. 一种约束盆地低温热历史的裂变径迹技术[J]. 华南地质与矿产, 28(2): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201202001.htm 周成礼, 冯石, 王世成, 1994. 磷灰石裂变径迹长度分布数值模拟及地质应用[J]. 石油实验地质, 16(4): 409-416. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD404.013.htm 周海, 雷川, 2013. 磷灰石裂变径迹(AFT)研究进展[J]. 西北地质, 46(1): 168-177. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201301021.htm 卓鱼周, 赵红格, 李蒙, 等, 2015. 压力对磷灰石裂变径迹退火的影响初步探讨[J]. 地质与资源, 24(2): 141-145. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201502011.htm