留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磷灰石裂变径迹退火影响因素研究进展

程璐瑶 唐晓音 李毅

程璐瑶, 唐晓音, 李毅, 2021. 磷灰石裂变径迹退火影响因素研究进展. 地质力学学报, 27 (1): 127-134. DOI: 10.12090/j.issn.1006-6616.2021.27.01.013
引用本文: 程璐瑶, 唐晓音, 李毅, 2021. 磷灰石裂变径迹退火影响因素研究进展. 地质力学学报, 27 (1): 127-134. DOI: 10.12090/j.issn.1006-6616.2021.27.01.013
CHENG Luyao, TANG Xiaoyin, LI Yi, 2021. Research progress of factors affecting apatite fission track annealing. Journal of Geomechanics, 27 (1): 127-134. DOI: 10.12090/j.issn.1006-6616.2021.27.01.013
Citation: CHENG Luyao, TANG Xiaoyin, LI Yi, 2021. Research progress of factors affecting apatite fission track annealing. Journal of Geomechanics, 27 (1): 127-134. DOI: 10.12090/j.issn.1006-6616.2021.27.01.013

磷灰石裂变径迹退火影响因素研究进展

doi: 10.12090/j.issn.1006-6616.2021.27.01.013
基金项目: 

国家自然科学基金项目 41602251

中国博士后基金项目 2015M582636

详细信息
    作者简介:

    程璐瑶(1996-), 女, 在读硕士, 从事低温热年代学、地热资源开发研究。E-mail: chengluyao2018@stu.xjtu.edu.cn

    通讯作者:

    唐晓音(1987-), 女, 副研究员, 从事低温热年代学、盆地热史恢复研究。E-mail: xytang2015@mail.xjtu.edu.cn

  • 中图分类号: P619.14

Research progress of factors affecting apatite fission track annealing

  • 摘要: 磷灰石裂变径迹退火是一个繁杂的化学动力学过程,清楚地了解其退火的影响因素对于该技术的应用十分重要。文章概述了磷灰石裂变径迹退火动力学模型的发展史,并结合以往对其退火影响因素的研究,将磷灰石裂变径迹退火影响因素分为自身和外部环境两方面:自身影响因素包括化学成分、晶体结构、径迹长度与半径、径迹与结晶轴的方位关系,其中化学成分对退火起到主导作用;外部环境影响中,温度是主导因素,压力和蚀刻条件的改变也会影响退火。研究成果有利于完善磷灰石裂变径迹的实验室退火模型,提高其作为热历史记录器的精度。

     

  • 图  1  Durango磷灰石退火实验(30 min)中径迹半径与温度变化图(Nadzri et al., 2017)

    Figure  1.  Track radius as a function of annealing temperature for 30 min for Durango apatite (Nadzri et al., 2017)

    图  2  不同退火程度下AFT退火的各向异性(Donelick et al., 1999)

    la—椭圆面上平行结晶c轴的径迹长度;lc—椭圆面上垂直结晶c轴的径迹长度(椭圆的长短半轴)

    Figure  2.  Anisotropy of AFT annealing at different levels of annealing (Donelick et al., 1999)

  • AFRA B, LANG M, BIERSCHENK T, et al. , 2014. Annealing behaviour of ion tracks in olivine, apatite and britholite[J]. Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 326: 126-130. http://www.sciencedirect.com/science/article/pii/S0168583X14000937
    AHRENS T J, FLEISCHER R L, PRICE P B, et al. , 1970. Erasure of fission tracks in glasses and silicates by shock waves[J]. Earth and Planetary Science Letters, 8(6): 420-426. doi: 10.1016/0012-821X(70)90145-7
    BARBARAND J, CARTER A, WOOD I, et al. , 2003. Compositional and structural control of fission-track annealing in apatite[J]. Chemical Geology, 198(1-2): 107-137. doi: 10.1016/S0009-2541(02)00424-2
    CARLSON W D, 1990. Mechanisms and kinetics of apatite fission-track annealing[J]. American Mineralogist, 75(9-10): 1120-1139. http://www.researchgate.net/publication/236536903_Mechanisms_and_kinetics_of_apatite_fission-track_annealing
    CARLSON W D, DONELICK R A, KETCHAM R A, 1999. Variability of apatite fission-track annealing kinetics: I. Experimental results[J]. American Mineralogist, 84(9): 1213-1223. doi: 10.2138/am-1999-0901
    CARPENA J, LACOUT J L, 2010. Thermal annealing of fission tracks in synthetic apatites[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(19): 3191-3194. doi: 10.1016/j.nimb.2010.05.085
    CHEW D M, DONELICK R A, 2012. Combined apatite fission track and U-Pb dating by LA-ICP-MS and its application in apatite provenance analysis[M]//Quantitative mineralogy and microanalysis of sediments and sedimentary rocks. Mineralogical Association of Canada Short Course, 42: 219-247.
    CROWLEY K D, CAMERON M, SCHAEFER R L, 1991. Experimental studies of annealing of etched fission tracks in fluorapatite[J]. Geochimica et Cosmochimica Acta, 55(5): 1449-1465. doi: 10.1016/0016-7037(91)90320-5
    DING B, LIU H X, LI P, et al. , 2019. The tectonic activity in the southern margin of the ili basin and its constraint on sandstone-type uranium deposits: evidence from apatite fission track and U-Pb dating[J]. Journal of Geomechanics, 25(S1): 84-89. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX2019S1015.htm
    DONELICK R A, 1991. Crystallographic orientation dependence of mean etchable fission track length in apatite: An empirical model and experimental observations[J]. American Mineralogist, 76(1-2): 83-91. http://www.researchgate.net/publication/236471972_Crystallographic_orientation_dependence_of_mean_etchable_fission_track_length_in_apatite_An_empirical_model_and_experimental_observations
    DONELICK R A, Ketcham R A, Carlson W D, 1999. Variability of apatite fission-track annealing kinetics: Ⅱ. Crystallographic orientation effects[J]. American Mineralogist, 84(9): 1224-1234. doi: 10.2138/am-1999-0902
    DONELICK R A, FARLEY K, ASIMOW P D, et al. , 2003. Pressure dependence of He diffusion and fission-track annealing kinetics in apatite?: Experimental results[J]. Geochimica et Cosmochimica Acta, 67(18): A82. http://adsabs.harvard.edu/abs/2003GeCAS..67Q..82D
    DONELICK R A, O'SULLIVAN P B, KETCHAM R A, 2005. Apatite fission-track analysis[J]. Reviews in Mineralogy and Geochemistry, 58(1): 49-94. doi: 10.2138/rmg.2005.58.3
    DUDDY I R, GREEN P F, LASLETt G M, 1988. Thermal annealing of fission tracks in apatite 3. Variable temperature behaviour[M]. Chemical Geology: Isotope Geoscience Section, 73(1): 25-38.
    FLEISCHER R L, PRICE P B, 1964. Glass dating by fission fragment tracks[J]. Journal of Geophysical Research, 69(2): 331-339. doi: 10.1029/JZ069i002p00331
    FLEISHER R L, PRICE P B, WALKER R M, 1981. Nuclear tracks in solids (principles & applications)[J]. Nuclear Technology, 54(1): 126.
    FU M X, 2003. Review on the model of the apatite fission track annealing kinetics[J]. Progress in Geophysics, 18(4): 650-655. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200304013.htm
    GLAESER A M, 2001. Model studies of rayleigh instabilities via microdesigned interfaces[J]. Interface Science, 9(1-2): 65-82. doi: 10.1023/A%3A1011279015039
    GLEADOW A J W, DUDDY I R, GREEN P F, et al. , 1986. Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis[J]. Contributions to Mineralogy and Petrology, 94(4): 405-415. doi: 10.1007/BF00376334
    GLEADOW A J W, LOVERING J F, 1978. Thermal history of granitic rocks from western Victoria: A fission-track dating study[J]. Journal of the Geological Society of Australia, 25(5-6): 323-340. doi: 10.1080/00167617808729039
    GLEADOW A J W, SEILER C, 2015. Fission track dating and thermochronology[M]//JACK R W, THOMPSON J W. Encyclopedia of scientific dating methods. Encyclopedia of earth sciences series. Dordrecht: Springer: 286-295.
    GREEN P F, DUDDY I R, GLEADOW A J W, et al. , 1986. Thermal annealing of fission tracks in apatite: 1. A qualitative description[J]. Chemical Geology: Isotope Geoscience Section, 59: 237-253. doi: 10.1016/0168-9622(86)90074-6
    GUEDES S, CURVO E A C, TELLO C A et al. , 2007. On the annealing of fission tracks in randomly oriented grains of apatite[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 256(2): 683-692. doi: 10.1016/j.nimb.2006.12.185
    HURFORD A J, 2018. An historical perspective on fission-track thermochronology[M]//MALUSÀ M G, FITZGERALD P G. Fission-track thermochronology and its application to geology. Berlin: Springer: 3-23.
    JIAO Y X, QIU N S, QUE Y Q, 2013. Effects of fission-track angle to crystallographic C axis in apatite on thermal history[J]. Geoscience, 27(5): 1131-1136. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_geoscience_thesis/0201254374088.html
    KETCHAM R A, DONELICK R A, CARLSON W D, 1999. Variability of apatite fission-track annealing kinetics; Ⅲ: extrapolation to geological time scales[J]. American Mineralogist, 84(9): 1235-1255. doi: 10.2138/am-1999-0903
    KETCHAM R A, 2003. Observations on the relationship between crystallographic orientation and biasing in apatite fission-track measurements[J]. American Mineralogist, 88(5-6): 817-829. doi: 10.2138/am-2003-5-610
    KETCHAM R A, 2005a. Forward and inverse modeling of low-temperature thermochronometry data[J]. Reviews in Mineralogy & Geochemistry, 58(1): 275-314. http://adsabs.harvard.edu/abs/2005RvMG...58..275K
    KETCHAM R A, 2005b. The role of crystallographic angle in characterizing and modeling apatite fission-track length data[J]. Radiation Measurements, 39(6): 595-601. doi: 10.1016/j.radmeas.2004.07.008
    KETCHAM R A, Carter A, Donelick R A, et al. , 2007a. Improved modeling of fission-track annealing in apatite[J]. American Mineralogist, 92(5-6): 799-810 doi: 10.2138/am.2007.2281
    KETCHAM R A, Carter A, Donelick R A, et al. , 2007b. Improved measurement of fission-track annealing in apatite using c-axis projection[J]. American Mineralogist, 92(5-6): 789-798. doi: 10.2138/am.2007.2280
    KETCHAM R A, Donelick R A, Balestrieri M L, et al. , 2009. Reproducibility of apatite fission-track length data and thermal history reconstruction[J]. Earth and Planetary Science Letters, 284(3-4): 504-515. doi: 10.1016/j.epsl.2009.05.015
    KETCHAM R A, 2019. Fission-track annealing: from geologic observations to thermal history modeling[M]//MALUSÀ M, FITZGERALD P. Fission-track thermochronology and its application to geology. Berlin: Springer: 49-75.
    KINOSHITA T, IWATA T, BÉCHADE E, et al. , 2010. Effect of Mg substitution on crystal structure and oxide-ion conductivity of apatite-type lanthanum silicates[J]. Solid State Ionics, 181(21-22): 1024-1032. doi: 10.1016/j.ssi.2010.06.001
    KOHN B P, BELTON D X, BROWN R W, et al. , 2003. Comment on: "Experimental evidence for the pressure dependence of fission track annealing in apatite" by A. S. Wendt et al. [Earth Planet. Sci. Lett. 201 (2002) 593-607] [J]. Earth and Planetary Science Letters, 215(1-2): 299-306. doi: 10.1016/S0012-821X(03)00077-3
    KOHN B P, GREEN P F, 2002. Low temperature thermochronology: from tectonics to landscape evolution[J]. Tectonophysics, 349(1-4): 1-4. doi: 10.1016/S0040-1951(02)00042-2
    LAKATOS S, MILLER D S, 1970. Water-pressure effect on fission-track annealing in an Alpine muscovite[J]. Earth and Planetary Science Letters, 9(1): 77-81. doi: 10.1016/0012-821X(70)90028-2
    LASLETT G M, GREEN P F, DUDDY I R, et al. , 1987. Thermal annealing of fission tracks in apatite 2. A quantitative analysis[J]. Chemical Geology: Isotope Geoscience Section, 65(1): 1-13. doi: 10.1016/0168-9622(87)90057-1
    LASLETT G M, GALBRAITH R F, 1996. Statistical modelling of thermal annealing of fission tracks in apatite[J]. Geochimica et Cosmochimica Acta, 60(24): 5117-5131. doi: 10.1016/S0016-7037(96)00307-9
    LI W X, WANG L M, LANG M, et al. , 2011. Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon[J]. Earth and Planetary Science Letters, 302(1-2): 227-235. doi: 10.1016/j.epsl.2010.12.016
    LIU J, GLASMACHER U A, LANG M, et al. , 2008. Raman spectroscopy of apatite irradiated with swift heavy ions with and without simultaneous exertion of high pressure[J]. Applied Physics A, 91(1): 17-22. doi: 10.1007/s00339-008-4402-9
    LIU B, LI S Q, ZHANG N, et al. , 2006. Effect of trace elements on crystal structure of hydroxyapatite[J]. Journal of Jinan University(Science & Technology), 20(3): 193-194. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDJC200603001.htm
    LIU Y, Comodi P, 1993. Some aspects of the crystal-chemistry of apatites[J]. Mineralogical Magazine, 57(389): 709-719. doi: 10.1180/minmag.1993.057.389.15
    LIU Y, XU H Y, 2001. The effects of structural channel inos of apatite on their lattice parameters[J]. Journal of Mineralogy and Petrology, 21(1): 1-4. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200101000.htm
    MCDANNELL K T, ISSLER D R, O'SULLIVAN P B, 2019. Radiation-enhanced fission track annealing revisited and consequences for apatite thermochronometry[J]. Geochimica et Cosmochimica Acta, 252: 213-239. doi: 10.1016/j.gca.2019.03.006
    MOREIRA P A F P, IUNES P J, GUEDES S, et al. , 2008. Comparison between thorium and uranium fission track diameters in glass[J]. Radiation Measurements, 43: S329-S333. doi: 10.1016/j.radmeas.2008.04.080
    MOREIRA P A F P, GUEDES S, IUNES P J, et al. , 2010. Fission track chemical etching kinetic model[J]. Radiation Measurements, 45(2): 157-162. doi: 10.1016/j.radmeas.2009.12.003
    MURRELL G R, SOBEL E R, CARRAPA B, et al. , 2009. Calibration and comparison of etching techniques for apatite fission-track thermochronology[J]. Geological Society, London, Special Publications, 324(1): 73-85. doi: 10.1144/SP324.6
    NADZRI A, SCHAURIES D, MOTA-SANTIAGO P, et al. , 2017. Composition and orientation dependent annealing of ion tracks in apatite: Implications for fission track thermochronology[J]. Chemical Geology, 451: 9-16. doi: 10.1016/j.chemgeo.2016.12.039
    NAESER C W, FAUL H, 1969. Fission track annealing in apatite and sphene[J]. Journal of Geophysical Research, 74(2): 705-710. doi: 10.1029/JB074i002p00705
    POWELL J W, SCHNEIDER D A, ISSLER D R. 2017. Application of multi-kinetic apatite fission track and (U-Th)/He thermochronology to source rock thermal history: a case study from the Mackenzie Plain, NWT, Canada[J]. Basin Research.
    RAVENHURSt C E, RODEN M K, MILLER D S, 2003. Thermal annealing of fission tracks in fluorapatite, chlorapatite, manganoanapatite, and Durango apatite: experimental results[J]. Canadian Journal of Earth Sciences, 40(7): 995-1007. doi: 10.1139/e03-032
    SCHMIDT J S, LELARGE M L M V, CONCEICAO R V, et al. , 2014. Experimental evidence regarding the pressure dependence of fission track annealing in apatite[J]. Earth and Planetary Science Letters, 390: 1-7. doi: 10.1016/j.epsl.2013.12.041
    SPIEGEL C, KOHN B, RAZA A, et al. , 2007. The effect of long-term low-temperature exposure on apatite fission track stability: A natural annealing experiment in the deep ocean[J]. Geochimica et Cosmochimica Acta, 71(18): 4512-4537. doi: 10.1016/j.gca.2007.06.060
    TANG X Y, ZUO Y H, KOHN B, et al. , 2019. Cenozoic thermal history reconstruction of the Dongpu Sag, Bohai Bay Basin: insights from apatite fission-track thermochronology[J]. Terra Nova, 31(3): 159-168. doi: 10.1111/ter.12379
    TANG Y H, YUAN W M, ZHANG B H, et al. , 2004a. Standardization study on confined fission-track length measurement: study on etching standard of zircon[J]. Rock and Mineral Analysis, 23(4): 251-255. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YKCS200404003.htm
    TANG Y H, YUAN W M, HAN C M, et al. , 2004b. The standardization of length measurement of fission track[J]. Acta Petrologica et Mineralogica, 23(4): 346-350. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW200404007.htm
    TELLO C A, PALISSARI R, HADLER J C, et al. , 2006. Annealing experiments on induced fission tracks in apatite: Measurements of horizontal-confined track lengths and track densities in basal sections and randomly oriented grains[J]. American Mineralogist, 91(2-3): 252-260. doi: 10.2138/am.2006.1269
    TIAN Y T, YUAN Y S, Hu S B, 2009. New progresses in apatite fission track analysis[J]. Progress in Geophysics, 24(3): 909-920. (in Chinese)
    VIDAL O, WENDT A S, CHADDERTON L T, 2003. Further discussion on the pressure dependence of fission track annealing in apatite: reply to the critical comment of Kohn et al. [J]. Earth and Planetary Science Letters, 215(1-2): 307-316. doi: 10.1016/S0012-821X(03)00434-5
    WENDT A S, VIDAL O, CHADDERTON L T, 2002. Experimental evidence for the pressure dependence of fission track annealing in apatite[J]. Earth and Planetary Science Letters, 201(3-4): 593-607. doi: 10.1016/S0012-821X(02)00727-6
    WENDT A S, VIDAL O, CHADDERTON L T, 2003. The effect of simultaneous temperature, pressure and stress on the experimental annealing of spontaneous fission tracks in apatite: a brief overview[J]. Radiation Measurements, 36(1-6): 339-342. doi: 10.1016/S1350-4487(03)00148-3
    YAN Y, LIN G, WANG Y J, et al. , 2003. Apatite fission track age of Mesozoic sandstones from Beipiao basin, eastern China: Implications for basin provenance and tectonic evolution[J]. Geochemical Journal, 37(3): 377-389. doi: 10.2343/geochemj.37.377
    YANG N, ZHANG Y Q, 2010. Tission-track dating for activity of the Longmenshan fault zone and uplifting of the western Sichuan Plateau[J]. Journal of Geomechanics, 16(4): 359-371. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201004005.htm
    ZHAI P J, 1991. The comparison of revealing flssion tracks in zircon using different mixed acid systems[J]. Nuclear Techniques, 14(7): 416-418. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJSU199107010.htm
    ZHANG X T, ZHANG Q L, WANG X C, et al. , 2012. A constraining thermal history of basin fission-track technology[J]. Geology and Mineral Resources of South China, 28(2): 93-99. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HNKC201202001.htm
    ZHOU C L, FENG S, WANG S C. 1994. Numerical modelling on the length distributions of apatite fission-tracks and its applications in geology[J]. Experimental Petroleum Geology, 16(4): 409-416. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD404.013.htm
    ZHOU H, LEI C, 2013. The study progress in apatite fission track (AFT)[J]. Northwestern Geology, 46(1): 168-177. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDI201301021.htm
    ZHUO Y Z, ZHAO H G, LI M, et al. , 2015. Preliminary discussion on the impact of pressure on fission track annealing of apatite[J]. Geology and Resources, 24(2): 141-145. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_geology-resources_thesis/0201253439187.html
    丁波, 刘红旭, 李平, 等, 2019. 伊犁盆地南缘构造活动及对砂岩型铀矿的制约: 来自磷灰石裂变径与U-Pb定年的证据[J]. 地质力学学报, 25(S1): 84-89. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=2019S115&journal_id=dzlxxb
    付明希, 2003. 磷灰石裂变径迹退火动力学模型研究进展综述[J]. 地球物理学进展, 18(4): 650-655. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200304013.htm
    焦亚先, 邱楠生, 阙永泉, 2013. 磷灰石裂变径迹与结晶C轴的夹角对模拟热历史的影响[J]. 现代地质, 27(5): 1131-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201305016.htm
    刘飚, 李仕群, 张宁, 等, 2006. 微量元素对羟基磷灰石晶体结构的影响[J]. 济南大学学报(自然科学版), 20(3): 193-194. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJC200603001.htm
    刘羽, 胥焕岩, 2001. 磷灰石结构通道离子对晶胞参数的影响[J]. 矿物岩石, 21(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200101000.htm
    汤云晖, 袁万明, 张本宏, 等, 2004a. 裂变径迹长度测量标准化研究: 锆石蚀刻标准探讨[J]. 岩矿测试, 23(4): 251-255. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200404003.htm
    汤云晖, 袁万明, 韩春明, 等, 2004b. 裂变径迹长度测量的标准化研究[J]. 岩石矿物学杂志, 23(4): 346-350. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200404007.htm
    田云涛, 袁玉松, 胡圣标, 2009. 磷灰石裂变径迹分析新进展[J]. 地球物理学进展, 24(3): 909-920. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200903014.htm
    杨农, 张岳桥, 2010. 龙门山断裂活动和川西高原隆升历史的裂变径迹测年[J]. 地质力学学报, 16(4): 359-371. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20100404&journal_id=dzlxxb
    翟鹏济, 1991. 不同混合酸蚀刻体系揭示锆石中裂变径迹之比较[J]. 核技术, 14(7): 416-418. https://www.cnki.com.cn/Article/CJFDTOTAL-HJSU199107010.htm
    张向涛, 张青林, 王绪诚, 等, 2012. 一种约束盆地低温热历史的裂变径迹技术[J]. 华南地质与矿产, 28(2): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC201202001.htm
    周成礼, 冯石, 王世成, 1994. 磷灰石裂变径迹长度分布数值模拟及地质应用[J]. 石油实验地质, 16(4): 409-416. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD404.013.htm
    周海, 雷川, 2013. 磷灰石裂变径迹(AFT)研究进展[J]. 西北地质, 46(1): 168-177. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201301021.htm
    卓鱼周, 赵红格, 李蒙, 等, 2015. 压力对磷灰石裂变径迹退火的影响初步探讨[J]. 地质与资源, 24(2): 141-145. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD201502011.htm
  • 加载中
图(2)
计量
  • 文章访问数:  570
  • HTML全文浏览量:  123
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-18
  • 修回日期:  2020-05-29
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回