Centrifuge model tests on the near-horizontal slide of hard soil-soft rock landslides
-
摘要: 中国西北地区存在大量的新近纪硬土软岩滑坡灾害,为研究该类滑坡的变形特征,开展两组离心机模型试验模拟滑带劣化引起滑坡变形破坏的全过程,获取模型坡体土压及位移的实时变化曲线。研究表明,当软弱带强度降低时,硬土软岩滑坡的上部滑体呈块体状滑动,在快速运动滑动过程中,滑体呈现块状平移,不会彻底解体、液化;硬土软岩滑坡中前部出现水平应力集中,导致下伏滑带塑性流动变形,诱发其中前部上覆滑体的水平运动,并向滑坡后缘扩展,最终形成多级水平滑动。Abstract: In order to study the deformation characteristics of the Neogene hard soil-soft rock landslides in northwest China, two sets of centrifuge model tests were conducted to simulate the deformation process under the degraded state of shear zones, and the soil pressure and displacement-time curve during the deformation process of the landslides were obtained. The test results reveal that when the strength of the soft zone decreases, the main body of the hard soil-soft rock landslide is block-like. In the process of fast slide, the slip mass presents an overall translational slide, without complete liquefaction and disintegration. The attenuation of the dynamic friction strength of the slide zone is the main controlling factor in the distance and time of the movement. Moreover, the slide zones of hard soil-soft rock landslides with high stress underwent plastic flow deformations, which caused the horizontal stress concentration in the front part of the landslide, resulting in the horizontal movement of the overlying slip mass in the front part of the landslide and the extension to the back edge of the landslide, and multi-level horizontal slides occurred at the end.
-
Key words:
- hard soil-soft rock /
- landslide /
- slide /
- centrifuge /
- model test
-
表 1 模型土体的配比及力学参数
Table 1. Proportion and mechanical parameters of the slope model
类别 粒径/mm 含水率/% 最大干密度/(g/cm3) 粘聚力/kPa 内摩擦角/(°) 滑体 0.5标准筛 20.1 1.65 25 16 滑床 0.5标准筛 20.1 1.75 28 18 表 2 模型滑带土参数
Table 2. Mechanical properties of the landslide-influenced zones
材料名称 粘聚力/kPa 内摩擦角/(°) 试验值 现场值 试验值 现场值 T1滑带 17.0 20.2 13.7 15.0 T2滑带 4.8 9.8 7.2 8.5 表 3 模型试验方案
Table 3. Programs of the centrifugal tests
试验编号 试验条件 T1试验 基于地质模型,开展滑带土饱和条件下硬土软岩斜坡的变形、稳定离心试验 T2试验 基于试验T1,开展滑带土残余强度条件下的硬土软岩斜坡离心试验,研究硬土软岩滑坡的变形、运动形式 表 4 T2试验变形过程及水平累积位移
Table 4. Deformation process and horizontal cumulative displacements of Test 2
离心时间/s 离心加速度/g 现象描述 后缘水平位移/mm 前缘水平位移/mm 0~1200 0~30 滑带塑性流动,滑体表面出现细小裂缝 0~0.63 0~1.15 1200~2400 30 滑带塑性流动导致拉裂缝扩大,滑体逐步解体为块体 0.63~12.81 1.15~51.15 2400~2900 30~40 模型中部裂缝贯通,前缘产生平推式滑动 13.74~16.85 57.51~77.58 2900~4500 40~60 模型后缘产生水平滑动 45.07~45.08 超量程 4500~结束 60~100 模型解体为系列块体 45.08~ 超量程 -
BAO Y J, GE H, FENG W K, et al., 2019. Centrifugal tests on geological evolution and sliding process for red-bed soft rock landslide in Wumeng Mountain Area[J]. Chinese Journal of Rock Mechanics and Engineering, 38(S1): 3025-3035. (in Chinese with English abstract) CHENG Y H, CHENG Z L, ZHANG Y B, 2011. Centrifugal model tests on expansive soil slope under rainfall[J]. Chinese Journal of Geotechnical Engineering, 33(S1): 416-421. (in Chinese with English abstract) http://www.researchgate.net/publication/288556121_Centrifugal_model_tests_on_expansive_soil_slope_under_rainfall FENG Z, YING Y P, CAI Q P, et al., 2014. Modeling test on initiation mechanism of landslide in oblique inclined thick-bedded mountain[J]. Chinese Journal of Rock Mechanics and Engineering, 33(1): 2600-2604. (in Chinese with English abstract) http://www.researchgate.net/publication/289742844_Modeling_test_on_initiation_mechanism_of_landslide_in_oblique_inclined_thick-bedded_mountain GENEG X F, MIAO T D, 2014. Formation mechanism of red soft bedded mudstone landslides[J]. Journal of Geological Hazards and Environment Preservation, 25(1): 9-12. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/dzzhyhjbh201401001 HART M W, 2000. Bedding-parallel shear zones as landslide mechanisms in horizontal sedimentary rocks[J]. Environmental and Engineering Geoscience, 6(2): 95-113. doi: 10.2113/gseegeosci.6.2.95 HU H T, XING S J, WANG Q F, et al., 1965. The characteristic constitution and structure of landslides in western Kwanchung region and analysis of their stability[J]. Acta Geologica Sinica, 45(4): 435-460, 479-483. (in Chinese with English abstract) LI B, YING Y P, WU S R, et al., 2011. Basic types and characteristics of multiple rotational landslides in Loess[J]. Journal of Engineering Geology, 19(5): 703-711. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201105012.htm LI B, WU S R, SHI J S, et al., 2013. Engineering geological properties and hazard effects of Hipparion laterite in Baoji, Shaanxi Province[J]. Geological Bulletin of China, 32(12): 1918-1924. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252282877.html LI B X, MIAO T D, 2004. The sliding mechanism of red-mudstone layer landslides[J]. Journal of Lanzhou University (Natural Sciences), 40(3): 95-98. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_journal-lanzhou-university-natural-sciences_thesis/0201250138948.html LING H I, WU M H, LESHEHINSKY D, et al., 2009. Centrifuge modeling of slope instability[J]. Journal of Geotechnical and Geoenvironmental Engineering, 135(6): 758-767. doi: 10.1061/(ASCE)GT.1943-5606.0000024 LUPINI J F, SKINNNER A E, VAUGHAN P R, 1981. The drained residual strength of cohesive soils[J]. Geotechnique, 31(2): 181-213. doi: 10.1680/geot.1981.31.2.181 MENG J, HU Q Y, SHI J S, et al., 2018. Research on basic features and stability of large and deep-seated loess landslide on the north bank of the Weihe river in Baoji area[J]. Journal of Geomechanics, 24(1): 78-86. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201801065.htm MU W P, WANG K, QIAN C, et al., 2016. Study of formation mechanism of giant red bed old landslide in Shangwan of Qinghai province[J]. Rock and Soil Mechanics, 37(3): 802-812. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX201603025.htm PEI X J, ZHANG S, HUANG R Q, et al., 2018. Study on centrifuge model test of loess landslide induced by enrichment of groundwater[J]. Advanced Engineering Sciences, 50(5): 55-63. (in Chinese with English abstract) http://www.researchgate.net/publication/329752917_Study_on_Centrifuge_Model_Test_of_Loess_Landslide_Induced_by_Enrichment_of_Groundwater SHI J S, LI B, WU S R, et al., 2013. Mechanism of large-scale slide at edge of loess plateau on north of Weihe River in Baoji urban area, Shaanxi province[J]. Journal of Engineering Geology, 21(6): 938-949. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ201306025.htm SHI L, WANG T, XIN P, 2013. Development characteristics of the geo-harzards in Baoji city, Shaanxi province[J]. Journal of Geomechanics, 19(4): 351-363. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201304001.htm SKEMPTON A W, 1985. Residual strength of clays in landslides folded strata and the laboratory[J]. Geotechnique, 35(1): 3-18. doi: 10.1680/geot.1985.35.1.3 TANG M G, LI S L, XU Q, et al., 2020. Study of deformation characteristics of reservoir landslide based on centrifugal model test[J]. Rock and Soil Mechanics, 41(3): 755-764. (in Chinese with English abstract) TIAN H, KONG L W, LI B, 2015. Centrifugal modeling tests on stability of deposits slope under rainfall[J]. Rock and Soil Mechanics, 36(11): 3180-3186. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX201511019.htm TIAN Y, YANG W M, LIU T, et al., 2015. Deformation mechanism and evolutionary process of the Tianshui forging machine plant landslide in Gansu[J]. Journal of Geomechanics, 21(2): 298-308. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201502020.htm VARNES D J, 1978. Slope movement types and processes[C]//SCHUETER R L, KRIZEK R J. Special Report 176: Landslides: Analysis and control. Washington D.C.: National Academy of Science: 11-33. WANG L, LI X B, SU Z D, et al., 2019. Application of high-density electrical method in loess-mudstone interface landslide investigation[J]. Journal of Geomechanics, 25(4): 536-543. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_journal-geomechanics_thesis/0201272958185.html WANG W Z, XU Q, ZHENG G, et al., 2016. Centrifugal model tests on sliding failure of gentle debris slope under rainfall[J]. Rock and Soil Mechanics, 37(1): 87-95. (in Chinese with English abstract) http://www.researchgate.net/publication/301554442_Centrifugal_model_tests_on_sliding_failure_of_gentle_debris_slope_under_rainfall WU H G, MA H M, HOU D Y, et al., 2010. Geological analysis and model experimental study of deformation mechanism of ditch-Moore red bed landslide at Qinghai plateau[J]. Chinese Journal of Rock Mechanics and Engineering, 29(10): 2094-2102. (in Chinese with English abstract) http://www.researchgate.net/publication/292266849_Geological_analysis_and_model_experimental_study_of_deformation_mechanism_of_Ditch-Moore_red_bed_landslide_at_Qinghai_Plateau WU L Z, LI B, SUN P, 2017. Study on shear creep behavior of mudstone and Its correction model of Gangu fissure in Gansu[J]. Journal of Geomechanics, 23(6): 923-934. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201706013.htm XIN P, SHI J S, HU L, et al., 2020. The structure and distribution characteristic of clay minerals in bedding parallel to the shear zone of the Neogene soft rock[J]. Acta Geologica Sinica, 94(5): 1625-1637. (in Chinese with English abstract) XIN P, WANG T, WU S R, 2015. The formation mechanism of multilevel rotational mudstone landslides in Hanjiashan of Datong County, Qinghai Province[J]. Acta Geoscientica Sinica, 36(6): 771-780. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_acta-geoscientica-sinica_thesis/0201253092296.html XIN P, WU S R, SHI J S, et al., 2014. Research on kinematics and dynamic mechanism of large-scale deep-seated landslide on the north bank of Baoji stream segment of Weihe River in Loess Plateau[J]. Acta Geologica Sinica, 88(7): 1341-1352. (in Chinese with English abstract) YAO Y C, YAO L K, YUAN B Y, 2004. Analysis of a centrifugal model of slope damage mechanism during rainfall[J]. China Railway Science, 25(4): 64-68. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-ZGTK200404012.htm YENES M, MONTERRUBIO S, NESPEREIRA J, et al., 2009. Geometry and kinematics of a landslide surface in tertiary clays from the Duero Basin (Spain)[J]. Engineering Geology, 104(1-2): 41-54. doi: 10.1016/j.enggeo.2008.08.008 YIN Z Q, CHENG G Q, HU G S, et al., 2010. Preliminary study on characteristic and mechanism of super-large landslides in upper Yellow River since Late-Pleistocene[J]. Journal of Engineering Geology, 18(1): 41-51. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201001007.htm ZHANG M, WU H W, 2007. Rainfall simulation techniques in centrifuge modelling of slopes[J]. Rock and Soil Mechanics, 28(S1): 53-57. http://www.researchgate.net/publication/289274217_Rainfall_simulation_techniques_in_centrifuge_modelling_of_slopes ZHANG Z L, WU S R, WANG T, et al., 2016. Centrifugal shaking table test on dynamic response and failure characteristics of loess-mudstone slopes under earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 35(9): 1844-1853. (in Chinese with English abstract) http://www.cqvip.com/QK/96026X/20169/670046251.html ZHOU Y F, GONG B W, HU B, et al., 2014. Evolution mode of retrogressive landslide[J]. Chinese Journal of Geotechnical Engineering, 36(10): 1855-1862. (in Chinese with English abstract) http://www.researchgate.net/publication/288227109_Evolution_mode_of_retrogressive_landslide 白永健, 葛华, 冯文凯, 等, 2019. 乌蒙山区红层软岩滑坡地质演化及灾变过程离心机模型试验研究[J]. 岩石力学与工程学报, 38(S1): 3025-3035. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1043.htm 程永辉, 程展林, 张元斌, 2011. 降雨条件下膨胀土边坡失稳机理的离心模型试验研究[J]. 岩土工程学报, 33(S1): 416-421. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2011S1079.htm 冯振, 殷跃平, 蔡奇鹏, 等, 2014. 斜倾厚层山体滑坡启动机制的模型试验研究[J]. 岩石力学与工程学报, 33(S1): 2600-2604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1002.htm 耿兴福, 苗天德, 2014. 近水平层状红层软岩滑坡成因机制研究[J]. 地质灾害与环境保护, 25(1): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201401005.htm 胡海涛, 项式均, 王肇芬, 等, 1965. 关中西部滑坡的结构、构造特征及稳定性分析[J]. 地质学报, 45(4): 435-460, 479-483. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE196504006.htm 李滨, 殷跃平, 吴树仁, 等, 2011. 多级旋转黄土滑坡基本类型及特征分析[J]. 工程地质学报, 19(5): 703-711. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201105012.htm 李滨, 吴树仁, 石菊松, 等, 2013. 陕西宝鸡市三趾马红土工程地质特性及灾害效应[J]. 地质通报, 32(12): 1918-1924. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201312005.htm 李保雄, 苗天德, 2004. 红层软岩滑坡运移机制[J]. 兰州大学学报(自然科学版), 40(3): 95-98. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200403020.htm 孟静, 胡秋韵, 石菊松, 等, 2018. 宝鸡渭河北岸大型深层黄土滑坡基本特征与稳定性研究[J]. 地质力学学报, 24(1): 78-86. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180109&journal_id=dzlxxb 穆文平, 王康, 钱程, 等, 2016. 青海上湾特大型红层老滑坡体形成机制研究[J]. 岩土力学, 37(3): 802-812. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201603025.htm 裴向军, 张硕, 黄润秋, 等, 2018. 地下水雍高诱发黄土滑坡离心模型试验研究[J]. 工程科学与技术, 50(5): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201805007.htm 石菊松, 李滨, 吴树仁, 等, 2013. 宝鸡渭河北岸黄土塬边大型滑坡成因机制研究[J]. 工程地质学报, 21(6): 938-949. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201306025.htm 石玲, 王涛, 辛鹏, 2013. 陕西省宝鸡市地质灾害发育特征[J]. 地质力学学报, 19(4): 351-363. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20130401&journal_id=dzlxxb 汤明高, 李松林, 许强, 等, 2020. 基于离心模型试验的库岸滑坡变形特征研究[J]. 岩土力学, 41(3): 755-764. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003005.htm 田海, 孔令伟, 李波, 2015. 降雨条件下松散堆积体边坡稳定性离心模型试验研究[J]. 岩土力学, 36(11): 3180-3186. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201511019.htm 田尤, 杨为民, 刘廷, 等, 2015. 天水锻压机床厂滑坡变形破坏机制及形成演化[J]. 地质力学学报, 21(2): 298-308. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20150220&journal_id=dzlxxb 王磊, 李孝波, 苏占东, 等, 2019. 高密度电法在黄土-泥岩接触面滑坡勘察中的应用[J]. 地质力学学报, 25(4): 536-543. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190411&journal_id=dzlxxb 王维早, 许强, 郑光, 等, 2016. 强降雨诱发缓倾堆积层边坡失稳离心模型试验研究[J]. 岩土力学, 37(1): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601011.htm 吴红刚, 马惠民, 侯殿英, 等, 2010. 青海高原龙穆尔沟红层滑坡变形机制的地质分析与模型试验研究[J]. 岩石力学与工程学报, 29(10): 2094-2102. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201010021.htm 吴礼舟, 李部, 孙萍, 2017. 甘肃甘谷裂隙泥岩剪切蠕变行为及其修正模型研究[J]. 地质力学学报, 23(6): 923-934. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20170613&journal_id=dzlxxb 辛鹏, 石菊松, 胡乐, 等, 2020. 新近纪软岩质水平滑带的结构与内部黏土矿物聚集规律[J]. 地质学报, 94(5): 1625-1637. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202005019.htm 辛鹏, 王涛, 吴树仁, 2015. 青海西宁大通县韩家山泥岩质多级旋转型滑坡形成机制研究[J]. 地球学报, 36(6): 771-780. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201506009.htm 辛鹏, 吴树仁, 石菊松, 等, 2014. 黄土高原渭河宝鸡段北岸大型深层滑坡动力学机制研究[J]. 地质学报, 88(7): 1341-1352. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201407011.htm 姚裕春, 姚令侃, 袁碧玉, 2004. 降雨条件下边坡破坏机理离心模型研究[J]. 中国铁道科学, 25(4): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200404012.htm 殷志强, 程国明, 胡贵寿, 等, 2010. 晚更新世以来黄河上游巨型滑坡特征及形成机理初步研究[J]. 工程地质学报, 18(1): 41-51. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201001007.htm 张敏, 吴宏伟, 2007. 边坡离心模型试验中的降雨模拟研究[J]. 岩土力学, 28(S1): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2007S1011.htm 张泽林, 吴树仁, 王涛, 等, 2016. 地震作用下黄土-泥岩边坡动力响应及破坏特征离心机振动台试验研究[J]. 岩石力学与工程学报, 35(9): 1844-1853. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201609014.htm 周跃峰, 龚壁卫, 胡波, 等, 2014. 牵引式滑坡演化模式研究[J]. 岩土工程学报, 36(10): 1855-1862. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201410018.htm