留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

页岩各向异性力学特性微观测试方法研究

贾锁刚 万有余 王倩 刘世铎 刘又铭 王志晟 叶禹 齐春艳

贾锁刚, 万有余, 王倩, 等, 2021. 页岩各向异性力学特性微观测试方法研究. 地质力学学报, 27 (1): 10-18. DOI: 10.12090/j.issn.1006-6616.2021.27.01.002
引用本文: 贾锁刚, 万有余, 王倩, 等, 2021. 页岩各向异性力学特性微观测试方法研究. 地质力学学报, 27 (1): 10-18. DOI: 10.12090/j.issn.1006-6616.2021.27.01.002
JIA Suogang, WAN Youyu, WANG Qian, et al., 2021. Research on the micro-scale method for testing the mechanical anisotropy of shale. Journal of Geomechanics, 27 (1): 10-18. DOI: 10.12090/j.issn.1006-6616.2021.27.01.002
Citation: JIA Suogang, WAN Youyu, WANG Qian, et al., 2021. Research on the micro-scale method for testing the mechanical anisotropy of shale. Journal of Geomechanics, 27 (1): 10-18. DOI: 10.12090/j.issn.1006-6616.2021.27.01.002

页岩各向异性力学特性微观测试方法研究

doi: 10.12090/j.issn.1006-6616.2021.27.01.002
基金项目: 

中国石油天然气股份有限公司重大科技专项 2016E-0105

详细信息
    作者简介:

    贾锁刚(1965-), 男, 硕士, 教授级高级工程师, 从事增产措施和采油工艺研究。E-mail: jsgqh@petrochina.com.cn

    通讯作者:

    王倩(1983-), 女, 博士, 高级工程师, 从事钻完井工程地质力学研究。E-mail: wangqiandri@cnpc.com.cn

  • 中图分类号: TE142

Research on the micro-scale method for testing the mechanical anisotropy of shale

  • 摘要: 页岩力学各向异性特征是地应力、井壁稳定、水力裂缝扩展相关研究的重要基础参数。针对页岩力学各向异性宏观测试中存在样品制取困难、制样成功率低的特点,采用来源丰富的钻井岩屑或破碎岩块,通过研究纳米压痕实验原理、实验方法和数据解释方法,采用连续刚度测试方法对平行层理和垂直层理的页岩试样进行纳米压痕测试;基于硬度的分类准则将纳米压痕数据分为三类主要矿物基质进行合理解释,采用接触刚度法计算硬度、杨氏模量,采用能量法计算断裂韧性,得出了页岩粘土基质的杨氏模量、硬度和断裂韧性。测试结果表明这种基于硬度的分类准则处理纳米压痕数据是方便合理的。页岩粘土基质力学特性在纳米尺度上具有各向异性,纳米尺度力学参数与层理方向相关。页岩不同力学参数的各向异性表现不同,杨氏模量各向异性较弱,断裂韧性各向异性较强。平行层理方向断裂韧性为垂直层理方向断裂韧性的80%。

     

  • 图  1  纳米压痕实验原理

    Figure  1.  Principle of the nano-indentation test

    图  2  纳米压痕测试制样示意图

    Figure  2.  Schematic diagram of the sample preparation for the nano-indentation tests

    图  3  纳米压痕测试曲线

    Figure  3.  Curves drawn through the nano-indentation tests

    图  4  纳米压痕微观图

    Figure  4.  Micrographs taken in the nano-indentation tests

    图  5  纳米压痕测试平均曲线

    Figure  5.  Mean curves drawn through the nano-indentation tests

    图  6  水平层理试样与竖直层理试样力学参数对比分析

    Figure  6.  Comparison and analysis of mechanical parameters for the samples with horizontal bedding and vertical bedding

    表  1  元素含量

    Table  1.   Element contents

    原子 原子含量/%
    O1s 62.2
    Si2p 16.1
    C1s 9.2
    Al2p 6.6
    K2p 2.2
    Na1s 2.1
    Ca2p 0.8
    Fe2p 0.5
    N1s 0.2
    下载: 导出CSV

    表  2  页岩试样粘土基质力学参数汇总表

    Table  2.   Mechanical parameters for clay matrix in the samples

    编号 分组 样品编号 粘土基质
    硬度H/GPa 杨氏模量E/GPa 断裂韧性Kc/MPa·m1/2 标准差
    1 1 2-V1 1.60 49.24 1.06 0.12
    2 2-V1 1.71 47.22 1.68 0.56
    3 2 3-H1 1.19 35.36 1.93 0.25
    4 3-H1 1.26 41.83 2.66 0.21
    5 3-H2 1.28 34.82 1.68 0.13
    6 3-H2 1.49 41.45 1.99 0.21
    7 3 4-H1 1.53 57.59 2.02 0.15
    8 4-H1 1.55 56.76 2.69 0.35
    9 4-H2 1.18 49.40 1.91 0.77
    10 4-H2 2.06 61.80 2.54 0.48
    11 4-V1 1.38 32.83 1.38 0.43
    12 4-V1 1.08 39.92 1.41 0.44
    13 4 5-H1 - - - -
    14 5-H1 1.12 30.94 1.80 0.51
    15 5-H2 2.68 69.86 2.92 -
    16 5-H2 1.12 48.67 1.89 -
    17 5-V1 2.44 62.19 2.86 0.35
    18 5-V1 1.99 45.07 2.05 -
    19 5 6-H1 2.46 63.44 3.32 1.22
    20 6-H1 1.68 56.24 1.42 0.45
    21 6-H2 2.03 56.10 1.86 0.63
    22 6-H2 2.61 59.47 2.63 0.55
    23 6-V1 3.05 53.16 3.29 0.42
    24 6-V1 3.57 67.41 3.25 0.93
    25 6 7-H1 1.61 40.42 1.66 0.54
    26 7-H1 0.88 23.95 1.36 0.15
    27 7-H2 1.71 55.09 1.70 0.08
    28 7-H2 2.06 59.54 2.29 0.52
    29 7-V1 1.85 53.86 3.19 0.48
    30 7-V1 1.91 45.19 2.12 0.11
    31 7 8-H1 1.78 57.06 2.55 0.61
    32 8-H1 2.26 70.99 2.85 0.21
    33 8-H2 1.98 71.24 2.43 0.26
    34 8-H2 2.15 68.81 2.99 0.17
    35 8-V1 2.26 74.96 2.69 0.31
    36 8-V1 2.46 75.02 2.99 0.18
    37 8 9-H1 2.27 70.78 2.25 0.20
    38 9-H1 2.26 75.23 2.33 0.48
    39 9-H2 2.16 70.40 2.14 0.23
    40 9-H2 1.64 18.98 1.36 0.18
    41 9-V1 2.27 71.83 2.61 0.34
    42 9-V1 2.28 73.85 2.59 0.28
    下载: 导出CSV

    表  3  页岩试样三轴力学参数汇总表

    Table  3.   Triaxial mechanical parameters of the shale samples

    编号 分组 样品编号 围压/MPa 宏观杨氏模量/GPa 泊松比 微观杨氏模量/GPa 偏差
    1 1 4-H1 20 55.61 0.29 57.18 2.8%
    2 4-H2 30 58.68 0.30 55.60 5.2%
    3 2 5-H1 20 46.80 0.23 30.94 33.9%
    4 5-H2 30 57.63 0.30 59.27 2.8%
    5 3 6-H1 20 58.42 0.29 59.84 2.4%
    6 6-H2 30 62.30 0.27 57.79 7.2%
    下载: 导出CSV
  • AI C, QIU D Z, ZHANG J, et al., 2017. Measurements of mechanical parameters and brittleness anisotropy of shale[J]. Fault-Block Oil and Gas Field, 24(5): 647-651. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_fault-block-oil-gas-field_thesis/0201217511418.html
    BORNERT M, VALÈS F, GHARBI H, et al., 2010. Multiscale full-field strain measurements for micromechanical investigations of the hydromechanical behaviour of clayey rocks[J]. Strain, 46(1): 33-46. doi: 10.1111/j.1475-1305.2008.00590.x
    CHEN P, HAN Q, MA T S, et al., 2015. Study of mechanical properties of shale based on micro-indentation test[J]. Petroleum Exploration and Development, 42(5): 662-670. (in Chinese with English abstract) http://www.sciencedirect.com/science/article/pii/S1876380415300690
    CHO J W, KIM H, JEON S, et al., 2012. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist[J]. International Journal of Rock Mechanics and Mining Sciences, 50: 158-169. doi: 10.1016/j.ijrmms.2011.12.004
    GAO C Y, XU J, LI Z H, et al., 2011. Experimental study of anisotropically mechanical characteristics of sandy slate in Xuefeng mountain tunnel[J]. Rock and Soil Mechanics, 32(5): 1360-1364. (in Chinese with English abstract) http://d.wanfangdata.com.cn/Periodical/ytlx201105013
    GUO L, JIANG Z X, GUO F, 2015. Mineral components of shales from Longmaxi Formation in southeastern Chongqing and their implications for shale gas[J]. Journal of Central South University (Science and Technology), 46(11): 4146-4154. (in Chinese with English abstract) http://www.cqvip.com/QK/90745B/201511/668275515.html
    GUO T K, ZHANG S C, GE H K, 2013. A new method for evaluating ability of forming fracture network in shale reservoir[J]. Rock and Soil Mechanics, 34(4): 947-953. (in Chinese with English abstract) http://www.cqvip.com/QK/94551X/201304/45289347.html
    HAN Q, CHEN P, MA T S, 2015. Influencing factor analysis of shale micro-indentation measurement[J]. Journal of Natural Gas Science and Engineering, 27: 641-650. doi: 10.1016/j.jngse.2015.09.010
    HE Y D, REN L, ZHAO J Z, et al., 2017. Finite element numerical simulation of shale gas production of hydraulically fractured horizontal well with stimulated reservoir volume[J]. Fault-Block Oil and Gas Field, 24(4): 550-556. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DKYT201704025.htm
    HENG S, YANG C H, GUO Y T, et al., 2015a. Influence of bedding planes on hydraulic fracture propagation in shale formations[J]. Chinese Journal of Rock Mechanics and Engineering, 34(2): 228-237. (in Chinese with English abstract) http://www.researchgate.net/publication/282381420_Influence_of_bedding_planes_on_hydraulic_fracture_propagation_in_shale_formations
    HENG S, YANG C H, ZHANG B P, et al., 2015b. Experimental research on anisotropic properties of shale[J]. Rock and Soil Mechanics, 36(3): 609-616. (in Chinese with English abstract) http://www.researchgate.net/publication/282267446_Experimental_research_on_anisotropic_properties_of_shale
    JIA L C, SUN B F, LIAN T W, 2017. Experimental study on anisotropic mechanical properties of organic-rich shale[J]. Drilling & Production Technology, 40(2): 20-23. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZCGY201702007.htm
    KUILA U, DEWHURST D N, SIGGINS A F, et al., 2011. Stress anisotropy and velocity anisotropy in low porosity shale[J]. Tectonophysics, 503(1-3): 34-44. http://www.sciencedirect.com/science/article/pii/S0040195110003847
    LI Z, JIA C G, YANG C H, et al., 2015. Propagation of hydraulic fissures and bedding planes in hydraulic fracturing of shale[J]. Chinese Journal of Rock Mechanics and Engineering, 34(1): 12-20. (in Chinese with English abstract) http://dl.acm.org/citation.cfm?id=2663360&picked=prox&preflayout=tabs
    LU B P, BAO H Z, 2005. Advances in calculation methods for rock mechanics parameters[J]. Petroleum Drilling Techniques, 33(5): 44-47. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYZT200505011.htm
    NASSERI M H B, RAO K S, RAMAMURTHY T, 2003. Anisotropic strength and deformational behavior of Himalayan schists[J]. International Journal of Rock Mechanics and Mining Sciences, 40(1): 3-23. doi: 10.1016/S1365-1609(02)00103-X
    NIANDOU H, SHAO J F, HENRY J P, et al., 1997. Laboratory investigation of the mechanical behaviour of Tournemire shale[J]. International Journal of Rock Mechanics and Mining Sciences, 34(1): 3-16. doi: 10.1016/S1365-1609(97)80029-9
    SCOTT T E JR, ABOUSLEIMAN Y, 2005. Acoustic measurements of the anisotropy of dynamic elastic and poromechanics moduli under three stress/strain pathways[J]. Journal of Engineering Mechanics, 131(9): 937-946. doi: 10.1061/(ASCE)0733-9399(2005)131:9(937)
    SIERRA R, TRAN M H, ABOUSLEIMAN Y N, et al., 2010. Woodford shale mechanical properties and the impacts of lithofacies[C]//The 44th U.S. Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium. Salt Lake City, UT: ARMA, 27-30.
    SONG L T, LIU Z H, LI C L, et al., 2015. Geostress logging evaluation method of tight sandstone based on transversely isotropic model[J]. Acta Petrolei Sinica, 36(6): 707-714. (in Chinese with English abstract) http://www.researchgate.net/publication/281807014_Geostress_logging_evaluation_method_of_tight_sandstone_based_on_transversely_isotropic_model
    TIAN H, ZENG L B, SHU Z G, et al., 2019. Method for determining elastic parameters for the prediction model of shale transversely isotropic geostress[J]. Journal of Geomechanics, 25(2): 166-176. (in Chinese with English abstract)
    TIEN Y M, KUO M C, 2001. A failure criterion for transversely isotropic rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 38(3): 399-412. doi: 10.1016/S1365-1609(01)00007-7
    ULM F J, DELAFARGUE A, CONSTANTINIDES G, 2005. Experimental microporomechanics[M]//DORMIEUX L, ULM F J. Applied Micromechanics of Porous Materials. Vienna: Springer, 207-288.
    ULM F J, VANDAMME M, BOBKO C, et al., 2007. Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale[J]. Journal of the American Ceramic Society, 90(9): 2677-2692. doi: 10.1111/j.1551-2916.2007.02012.x
    WANG H, WANG B, JING A Y, et al., 2007. An algorithm for extracting shear-wave anisotropy parameter γ from stoneley-wave inversion and its case study[J]. Well Logging Technology, 31(3): 241-244. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJJS200703012.htm
    WANG H, GUO Y T, WANG L, et al., 2017. An experimental study on mechanical anisotropy of shale reservoirs at different depths[J]. Rock and Soil Mechanics, 38(9): 2496-2506. http://www.researchgate.net/publication/321979951_An_experimental_study_on_mechanical_anisotropy_of_shale_reservoirs_at_different_depths
    WANG Q, WANG P, XIANG D G, et al., 2012. Anistropic property of mechanical parameters of shales[J]. Natural Gas Industry, 32(12): 62-65. (in Chinese) http://www.researchgate.net/publication/292092833_Anisotropic_property_of_mechanical_parameters_of_shales
    WANG Y P, LIU X J, LIANG L X, 2018. The effect of hydration on mechanical characteristics in carbonaceous[C]//The ISRM International Symposium-10th Asian Rock Mechanics Symposium, Singapore: ISRM International Symposium.
    WENG J Q, ZENG L B, LYU W Y, et al., 2020. Width of stress disturbed zone near fault and its influencing factors[J]. Journal of Geomechanics, 26(1): 39-47. (in Chinese with English abstract)
    YUAN J L, DENG J G, ZHANG D Y, et al., 2013. Fracability evaluation of shale-gas reservoirs[J]. Acta Petrolei Sinica, 34(3): 523-527. (in Chinese with English abstract) http://www.researchgate.net/publication/303072036_Fracability_evaluation_of_shale-gas_reservoirs
    ZHANG J C, JIN Z J, YUAN M S, 2004. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 24(7): 15-18. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200407004.htm
    ZOU X J, Chen Y L, 2018. Geostress logging evaluation method of Longmaxi Formation shale in Fuling area based on transversely isotropic model, Sichuan Basin[J]. Natural Gas Geoscience, 28(12): 1775-1780. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-TDKX201812009.htm
    艾池, 仇德智, 张军, 等, 2017. 页岩力学参数测试及脆性各向异性研究[J]. 断块油气田, 24(5): 647-651. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201705013.htm
    陈平, 韩强, 马天寿, 等, 2015. 基于微米压痕实验研究页岩力学特性[J]. 石油勘探与开发, 42(5): 662-670. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505016.htm
    高春玉, 徐进, 李忠洪, 等, 2011. 雪峰山隧道砂板岩各向异性力学特性的试验研究[J]. 岩土力学, 32(5): 1360-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201105013.htm
    郭岭, 姜在兴, 郭峰, 2015. 渝东南龙马溪组黑色页岩矿物组成及其页岩气意义[J]. 中南大学学报(自然科学版), 46(11): 4146-4154. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201511024.htm
    郭天魁, 张士诚, 葛洪魁, 2013. 评价页岩压裂形成缝网能力的新方法[J]. 岩土力学, 34(4): 947-953. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201304007.htm
    何易东, 任岚, 赵金洲, 等, 2017. 页岩气藏体积压裂水平井产能有限元数值模拟[J]. 断块油气田, 24(4): 550-556. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201704025.htm
    衡帅, 杨春和, 郭印同, 等, 2015a. 层理对页岩水力裂缝扩展的影响研究[J]. 岩石力学与工程学报, 34(2): 228-237. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502003.htm
    衡帅, 杨春和, 张保平, 等, 2015b. 页岩各向异性特征的试验研究[J]. 岩土力学, 36(3): 609-616. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201503001.htm
    贾利春, 孙本法, 连太炜, 2017. 富有机质页岩各向异性力学特性试验研究[J]. 钻采工艺, 40(2): 20-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCGY201702007.htm
    李芷, 贾长贵, 杨春和, 等, 2015. 页岩水力压裂水力裂缝与层理面扩展规律研究[J]. 岩石力学与工程学报, 34(1): 12-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201501002.htm
    路保平, 鲍洪志, 2005. 岩石力学参数求取方法进展[J]. 石油钻探技术, 33(5): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT200505011.htm
    宋连腾, 刘忠华, 李潮流, 等, 2015. 基于横向各向同性模型的致密砂岩地应力测井评价方法[J]. 石油学报, 36(6): 707-714. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201506007.htm
    田鹤, 曾联波, 舒志国, 等, 2019. 页岩横向各向同性地应力预测模型中弹性参数的确定方法[J]. 地质力学学报, 25(2): 166-176. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190202&journal_id=dzlxxb
    汪虎, 郭印同, 王磊, 等, 2017. 不同深度页岩储层力学各向异性的试验研究[J]. 岩土力学, 38(9): 2496-2506. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201709006.htm
    王华, 王兵, 景安语, 等, 2007. 斯通利波反演求取横波各向异性参数的方法及实例[J]. 测井技术, 2007, 31(3): 241-244. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS200703012.htm
    王倩, 王鹏, 项德贵, 等, 2012. 页岩力学参数各向异性研究[J]. 天然气工业, 32(12): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201212017.htm
    翁剑桥, 曾联波, 吕文雅, 等, 2020. 断层附近地应力扰动带宽度及其影响因素[J]. 地质力学学报, 26(1): 39-47. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200104&journal_id=dzlxxb
    袁俊亮, 邓金根, 张定宇, 等, 2013. 页岩气储层可压裂性评价技术[J]. 石油学报, 34(3): 523-527. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201303017.htm
    张金川, 金之钧, 袁明生, 2004. 页岩气成藏机理及分布[J]. 天然气工业, 24(7): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200407004.htm
    邹贤军, 陈亚琳, 2018. 四川盆地涪陵地区龙马溪组页岩横向各向同性地应力测井评价方法[J]. 天然气地球科学, 28(12): 1775-1780. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201812009.htm
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  60
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-12
  • 修回日期:  2020-10-31
  • 刊出日期:  2021-02-28

目录

    /

    返回文章
    返回