留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空地球物理勘查科技创新与应用

熊盛青

熊盛青, 2020. 航空地球物理勘查科技创新与应用. 地质力学学报, 26 (5): 791-818. DOI: 10.12090/j.issn.1006-6616.2020.26.05.063
引用本文: 熊盛青, 2020. 航空地球物理勘查科技创新与应用. 地质力学学报, 26 (5): 791-818. DOI: 10.12090/j.issn.1006-6616.2020.26.05.063
XIONG Shengqing, 2020. Innovation and application of airborne geophysical exploration technology. Journal of Geomechanics, 26 (5): 791-818. DOI: 10.12090/j.issn.1006-6616.2020.26.05.063
Citation: XIONG Shengqing, 2020. Innovation and application of airborne geophysical exploration technology. Journal of Geomechanics, 26 (5): 791-818. DOI: 10.12090/j.issn.1006-6616.2020.26.05.063

航空地球物理勘查科技创新与应用

doi: 10.12090/j.issn.1006-6616.2020.26.05.063
基金项目: 

国家重点研发计划 2017YFC0602200

国家高技术研究发展计划(863计划) 2013AA063905

详细信息
    作者简介:

    熊盛青(1963-), 男, 教授级高级工程师, 主要从事航空地球物理、遥感技术及其地学应用研究工作。E-mail:xsqagrs@126.com

  • 中图分类号: P631

Innovation and application of airborne geophysical exploration technology

  • 摘要: 简要回顾了中国航空物探技术的发展历程,重点阐述了21世纪以来、尤其是"十一五"以来国内航空物探的主要技术创新与应用成果,并对今后发展趋势进行了分析与预测。为满足国家与社会需求,"十一五"以来,中国的航空物探技术,尤其是航磁多参量、矢量测量、航空重力测量和时间域航空电磁测量技术得到快速发展;在航空物探技术创新过程中,航空物探资料的综合研究和应用得到了加强,在基础地质、固体矿产勘查与评价、能源勘查与评价等方面取得了重要成果,在地下水资源调查、工程地质勘查、环境地质调查等方面显示出了良好的应用前景。为满足国家资源勘查和环境评价对航空探测技术的需求,未来中国航空物探测量系统的分辨率、稳定性和实用性将进一步提高,航空物探在加强基础地质、固体矿产勘查、能源勘查等传统领域应用的基础上,将拓展及加强在深地探测、深海探测、深部地热调查、水资源调查、地质灾害调查、军事及测绘等领域的应用。

     

  • 图  1  自主研制航空物探仪器装备及其技术指标的标志性进展

    Figure  1.  China's airborne geophysical exploration instruments and the landmark progress of technical indicators

    图  2  高分辨综合航空地球物理勘查技术体系

    Figure  2.  Technical system of the high resolution integrated airborne geophysical exploration

    图  3  中国陆域航磁ΔT化极立体阴影图(Xiong et al., 2016a)

    Figure  3.  Stereo shaded-relief image of aeromagnetic ΔT data of continental China with magnetic pole reduction. (Xiong et al., 2016a)

    图  4  中国陆域磁性基底深度图(Xiong et al., 2016a)

    Figure  4.  Magnetic basement depth map of continental China (Xiong et al., 2016a)

    图  5  中国陆域断裂及岩浆岩分布图(Xiong et al., 2016a)

    Figure  5.  Distribution of faults and magmatic rocks in continental China based on aeromagnetic data (Xiong et al., 2016a)

    图  6  中国陆域居里面深度图(熊盛青等,2016b)

    Figure  6.  Depth map of curie surface in continental China (Xiong et al., 2016b)

    图  7  曹妃甸地区不同深度电阻率切片(He et al., 2019)

    Figure  7.  Resistivity slices corresponding to elevation levels in Caofeidian area (He et al., 2019)

    图  8  航空地球物理勘查科学技术体系建设框图

    Figure  8.  Flow chart for the construction of science and technology system of airborne geophysical exploration

    表  1  航空物探方法的理论基础、物理性质及探测对象

    Table  1.   Theory, physical properties and detection objects of the airborne geophysical exploration methods

    方法 理论基础 物理性质基础 测量对象
    航空磁测 毕奥-萨伐尔定律 磁化率、磁化强度差异 磁场
    航空重力测量 牛顿万有引力定律 密度差异 重力场
    航空电磁测量 麦克斯韦方程 导磁性、导电性差异 电磁场
    航空放射性测量 放射性同位素衰变 衰变常数差异 伽马能谱
    下载: 导出CSV

    表  2  国内外航空地球物理勘查系统核心仪器关键指标对比表

    Table  2.   Comparison of key indicators of domestic and foreign airborne geophysical exploration systems

    装备 技术指标 当前国际 当前国内 评价
    航空磁测系统 总场 灵敏度/pT ±0.35 ±0.3 先进
    灵敏度/pT ±0.5 ±0.3
    梯度 水平梯度噪声/(pT/m) 5 2 先进
    垂向梯度噪声/(pT/m) 20 10
    三分量 噪声/nT 60 3 领先
    张量梯度 噪声/(pT/m) 5 / 差距大
    航空重力测量系统 总场 测量精度/mGal ±0.6 ±0.6 先进
    静态精度/mGal ±0.01~±0.1 ±0.1
    梯度 测量精度/E ±1~±5 / 差距大
    直升机航空电磁系统 TEM 发射磁矩/Am2 1.3×106 3.5×105 先进,有差距
    动态噪声/(nT/s) ±1 ±2
    勘探深度/m 500~800 300~400
    大地电磁 动态范围/dB 130 / 差距大
    系统噪声/fT 30 /
    探测深度/km 1~3 /
    航空伽马能谱测量系统 能量分辨率/%(137Cs) 8.0 4.0 先进
    峰漂/道 < 1 < 0.5
    起始能量/keV 50~70 < 20
    注:组成上述系统的仪器,除航空磁力仪、重力仪、电磁仪和伽马能谱仪等核心仪器外,还包括:磁干扰场补偿器、磁日变观测系统、数据收录仪、专用导航系统、综合定位数据采集系统、仪器供电适配系统等配套仪器与设备,中国均实现了自主研制,并保持与国外同等先进水平
    下载: 导出CSV

    表  3  中国不同时期航空地球物理勘查技术对比表

    Table  3.   Comparison of airborne geophysical exploration techniques of different periods in China

    内容 第一代(20世纪50年代初期—20世纪80年初期) 第二代(20世纪80代中期—20世纪90年中期) 第三代(20世纪90年代末期—现在) 第三代主要进步
    勘查方法 航磁(总场)、航空放射性(伽马总量、后期4道伽马能谱)、航空电磁(频率域) 航磁(总场、水平梯度)、航空放射性(伽马能谱,4道、512道)、航空电磁(频率域) 航磁(总场、全轴梯度、矢量)、航空放射性(伽马能谱,512道、1024道)、航空电磁(频率域、时间域)、航空重力 实现全部4类方法勘查应用
    测量仪器 引进为主, 部分自研 航磁自研,其它引进 自主研制与引进结合 自主研制各类仪器,主要技术指标与国外相当,并工程化应用
    测量参量 4~11个:航磁(1),航空伽马(1)和伽马能谱(4),频率域航电(2-6) 13个:航磁(3)、三频航电(6)、航空伽马能谱(4) 42个:航磁(10)、航电(频率域12+时间域15)、航空伽马能谱(4)、航空重力(1) 增加29个
    飞行平台 固定翼飞机、直升机 固定翼飞机、直升机 多型固定翼飞机、直升机、无人机、滑翔机、飞艇 多样化,全地域测量能力
    测量比例尺 1:100万—1:20万为主,部分1:10万,最大1:5万 1:20万、1:10万为主,部分1:100万、1:5万,最大1:2.5万 1:5万为主,部分1:20万和1:10万,最大1:4000 提高5倍以上,实现高分辨、精细化探测
    导航定位 地形图目视领航;后期多普勒导航等;布标+照相定位、后期部分应答定位等,定位精度约1 km~n×100 m 仪表导航,后期GPS、GLONASS导航定位为主;
    定位精度±n×100~±10 m
    GPS和DGPS导航定位;
    定位精度±10~±1 m
    三维自主导航;
    定位精度提高5倍以上
    高度测量 人工记录气压高度, 后期中低精度无线电测高仪 数字气压高度, 无线电测高 GPS高度、高精度无线电测高 精度达到米级
    数据收录方法 模拟曲线记录 微机数字收录/模拟曲线记录 完全数字收录 软件国产化、全流程数字化
    资料处理解释与成图方法 人工、半机械整理,手工清绘成图,成果为纸介质 引进专用软件处理、解释、成图,成果以纸介质为主 国产专用软件处理、解释、成图,数字化成果
    测量精度 低—中精度(磁测精度±100~±5 nT) 高精度(磁测精度±5~±3 nT) 高精度(磁测精度±3~±1 nT;航空重力±1.0 mGal) 磁测精度提高2~3倍
    应用领域 以找铁矿、铀矿和圈油气盆地与局部构造为主 固体矿产与油气勘查、区域地质调查、地球深部结构探测、地下水资源调查等 固体矿产与油气勘查、区域地质调查、地球深部结构探测、地下水资源调查、工程地质勘查、环境评价、军事地质、测绘、核应急监测等 应用领域更广
    注:分代时间在前人的基础上进行了适当调整
    下载: 导出CSV

    表  4  不同航空物探方法的主要用途及相应的测量比例尺

    Table  4.   Main application of different airborne geophysical methods and corresponding measurement scales

    方法 主要用途 局限性 测量比例尺 备注
    航空磁测 铁矿、多金属和非金属矿、油气勘查,区域地质调查,工程地质勘查,地球深部结构探测、军事等 垂向分辨率较低 1:4000—1:20万 可有以下几种不同组合:如重/磁、磁/伽马能谱、磁/电磁、磁/电磁/伽马能谱,等等。
    航空重力测量 油气、固体矿产勘查,区域地质调查,地球深部结构探测,军事,测绘等 目前空间分辨率难于满足固体矿产勘查 1:5万—1:20万
    航空电磁测量 矿产勘查、地下水资源调查、环境评价、地下电性结构探测等 易受电性干扰,探测深度受环境电阻率影响 1:4000—1:5万
    航空放射性测量 铀矿、稀土稀有金属矿、钾盐矿、多金属和非金属矿勘查,区域地质调查,环境辐射评价,核应急监测等 固体矿产调查局限于浅地表 1:2.5万—1:5万
    下载: 导出CSV
  • BEARD L P, LUTRO O, 2000. Airborne geophysics and infrastructure planning:a case study[J]. Journal of Environmental and Engineering Geophysics, 5(2):1-10. doi: 10.4133/JEEG5.2.1
    BEDROSIAN P A, BALL L B, BLOSS B R, 2013. Airborne electromagnetic data and processing within Leach Lake Basin, Fort Irwin, California[R]. Reston, VA: U.S. Geological Survey.
    BEHURA J, 2020. Geophysics bright spots[J]. The Leading Edge, 39(8):597. doi: 10.1190/tle39080597.1
    CAI J, QI Y F, YIN C C, 2014. Weighted Laterally-constrained inversion of frequency-domain airborne EM data[J]. Chinese Journal of Geophysics, 57(3):953-960. (in Chinese with English abstract)
    CAI S K, ZHANG K D, WU M P, et al., 2012. Long-term stability of the SGA-WZ strapdown airborne gravimeter[J]. Sensors (Basel), 12(8):11091-11099. doi: 10.3390/s120811091
    CAI S K, WU M P, ZHANG K D, et al., 2013. The first airborne scalar gravimetry system based on SINS/DGPS in China[J]. Science China:Earth Sciences, 56(12):2198-2208. doi: 10.1007/s11430-013-4726-y
    CAI W J, SHEN Z X, QI C, et al. 2017. Airborne gamma ray spectrum characteristics and uranium mineralization prospect forecast of Ning'an Basin area[J]. Uranium Geology, 33(3):156-163. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykdz201703005
    CAI Z J, 1989. The application of high-precision large scale (1:50, 000) aerogeophysical prospecting to the exploration of oil-gas reservoirs[J]. Geophysical & Geochemical Exploration, 13(6):401-411. (in Chinese with English abstract)
    CHEN B, LU C D, LIU G D, 2014a. A denoising method based on kernel principal component analysis for airborne time domain electromagnetic data[J]. Chinese Journal of Geophysics, 57(1):295-302. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/cjg2.20087
    CHEN B, MAO L F, LIU G D, 2014b. The estimated prospecting depth of CHTEM-I system by the method of diffusion electric field[J]. Chinese Journal of Geophysics, 57(1):303-309. (in Chinese with English abstract)
    CHEN J Y, JIANG M Z, CHANG S S, et al., 2017. An analysis of uranium ore-searching prospect of airborne radiocactive anomaly zone on the southern margin of Pingyi depression in the Chaoshui Basin[J]. Geophysical and Geochemical Exploration, 41(1):102-110. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201701016
    CHEN J Y, 2019. An analysis of the prospect in the search for uranium deposits in the aerial radioactive anomaly area of Chengyang-Wugou region on the southern margin of Ordos basin[J]. Geophysical and Geochemical Exploration, 43(3):509-521. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201903009
    CHEN S J, LIU J H, WANG Z W, 2007. The application of airborne gamma-ray spectrometric survey in classification of geological mapping element in shallow overburden atea[J]. Geophysical and Geochemical Exploration, 31(2):110-114, 119. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200702004
    CHENG X Y, 1958. Trial production of aeromagnetometer[J]. Geophysical Exploration(4):49. (in Chinese)
    CHENG X Y, 1982. Report on trial manufacture of HDY-202 compensated airborne electromagnetic system[C]. Geophysical and geochemical research report, 11: 81. (in Chinese)
    DOLL W E, SHEEHAN J R, GAMEY T J, et al., 2008. Results of an airborne vertical magnetic gradient demonstration, New Mexico[J]. Journal of Environmental & Engineering Geophysics, 13(3):277-290. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d858ee7f44ff7da59d1fb22ad85e7870
    DOLL W E, GAMEY T J, BELL D T, et al., 2012. Historical development and performance of airborne magnetic and electromagnetic systems for mapping and detection of Unexploded Ordnance[J]. Journal of Environmental and Engineering Geophysics, 7(1):1-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=06e9b4472e1b3fe42de469ec89a4df0e
    DONG L H, FENG J, ZHUANG D Z, et al., 2008. The made headways of exploration on geology and mineral resources of Xinjiang in 2007 and the work points on it in 2008[J]. Xinjiang Geology, 26(1):1-3. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz200801001
    DONG S W, LI T D, CHEN X H, et al., 2012. Progress of deep exploration in mainland China:A review[J]. Chinese Journal of Geophysics, 55(12):3884-3901. (in Chinese with English abstract)
    FAN Z G, YU C C, 2005. A new terrain correction technique in air-borne gamma-ray spectrometer survey and its application[J]. Geophysical and Geochemical Exploration, 29(1):28-30, 33. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200501009
    FAN Z G, FANG Y Y, WANG M J, et al., 2007. The application of aerogeophysical techniques to 1:250 000 regional geological mapping[J]. Geophysical and Geochemical Exploration, 31(6):504-509. (in Chinese with English abstract)
    FAN Z G, HUANG X Z, XIONG S Q, et al., 2010. Technical requirements for application of magnetic survey data[M]. Beijing:Geological Publishing House. (in Chinese)
    FAN Z G, HUANG X Z, TAN L, et al., 2014. A study of iron deposits in the Anshan area, China based on interactive inversion technique of gravity and magnetic anomalies[J]. Ore Geology Reviews, 57:618-627. doi: 10.1016/j.oregeorev.2013.09.017
    FAN Z G, ZHOU D Q, XIONG S Q, et al., 2015. Aeromagnetic anomaly prospecting case[M]. Beijing:Geological Publishing House. (in Chinese)
    FANG J Q, LI S Q, CAI W J, et al., 2016. Design and application test of new airborne gamma ray spectrometry system (AGRSS)[J]. Progress in Geophysics, 31(2):900-907. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201602054
    FANG T, ZHANG J J, FU C Q, et al., 2015. Using ground-airborne transient electromagnetic system on unmanned aerial vehicle detecting Yeshan underground tunnels[J]. Progress in Geophysics, 30(5):2366-2372. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201505052
    FANG Y Y, WANG W P, XIAO G Y, et al., 2010. The lithologic and geological unit mapping technique based on frequency-domain aeroelectromagnetic method and its effct[J]. Geophysical & Geochemical Exploration, 34(3):308-314. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201003009
    FENG X L, LIU B, 2019. Gravity and magnetic field characteristics and hydrocarbon prospects of the Nanweixi Basin[J]. Journal of Geomechanics, 25(1):105-114. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201901011
    FOLEY N, TULACZYK S, AUKEN E, et al., 2020. Mapping geothermal heat flux using permafrost thickness constrained by airborne electromagnetic surveys on the western coast of Ross Island, Antarctica[J]. Exploration Geophysics, 51(1):84-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/08123985.2019.1651618
    FOUNTAIN D, 1988. Airborne electromagnetic systems-50 years of development[J]. Exploration Geophysics, 29(1-2):1-11.
    GAO B L, TAO D Y, ZHAN Y L, et al., 2010. Application of aero-surface and borehole magnetic exploration to the prospecting of exhausted mines in the Daye iron mine[J]. Geology and Exploration, 46(3):483-490. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201003016
    GE L Q, ZENG G Q, LAI W C, et al., 2011. The development of a digital airborne gamma-ray spectrometry[J]. Nuclear Techniques, 34(2):156-160. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjs201102018
    GE L Q, XIONG S Q, ZENG G Q, et al., 2016. Airborne gamma ray spectrum detection and application[M]. Beijing:Science Press. (in Chinese)
    GUAN Z N, 2005. Geomagnetic field and magnetic exploration[M]. Beijing:Geological Publishing House. (in Chinese)
    GUO Z H, YU C C, ZHOU J X, 2003. The tangent technique of ΔT profile magnetic anomaly in the low magnetic latitude area[J]. Geophysical & Geochemical Exploration, 27(5):391-394. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200305016
    GUO Z H, LUO F, AN Z F, 2007. Experimental researches on FIR lowpass digital filters based on window functions of airborne gravity data[J]. Geophysical & Geochemical Exploration, 31(6):568-571, 576. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200706020
    GUO Z H, XIONG S Q, ZHOU J X, et al. 2008. The research on quality evaluation method of test repeat lines in airborne gravity survey[J]. Chinese Journal of Geophysics, 51(5):1538-1543. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200805028
    GUO Z H, LUO F, WANG M, et al., 2011. The design and experiment of IIR lowpass digital filters for airborne gravity data[J]. Chinese Journal of Geophysics, 54(8):2148-2153. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/cjg2.1644
    GUO Z W, XUE G Q, LIU J X, et al., 2020. Electromagnetic methods for mineral exploration in China:A review[J]. Ore Geology Reviews, 118:103357. doi: 10.1016/j.oregeorev.2020.103357
    HAN D F, 1994. Airborne electrical method of China[J]. Geophysical and Geochemical Exploration, 18(3):179-185. (in Chinese with English abstract)
    HE B Z, JIAO C L, CAI Z H, et al., 2011. A new interpretation of the high aeromagnetic anomaly zone in central Tarim Basin[J]. Geology in China, 38(4):961-969. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201104013
    HE R Z, GAO R, ZHENG H W, 2007a. Aeromagnetic anomaly of subtle east-west striking faults in the central Tibet and its significance[J]. Journal of Jilin University (Earth Science Edition), 37(5):1002-1008. (in Chinese with English abstract)
    HE R Z, GAO R, ZHENG H W, et al., 2007b. Matched filter analysis of aeromagnetic anomaly in mid-western Tibetan Plateau and its tectonic implications[J]. Chinese Journal of Geophysics, 50(4):1131. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200704020
    HE Y Y, CHEN B, ZHANG Y J, et al., 2019. Saltwater intrusion in Caofeidian, Bohai Bay by airborne electromagnetic surveys[C]. SEG/CGS Workshop: GEM 2019 Xi'an.
    HODGES G, ANNISON C, 2015. Airborne geophysics applied to engineering and environmental problems[C]//International conference on engineering geophysics. Al Ain, United Arab Emirates: SEG: 248-251.
    HOU Z Q, ZHAO Z D, GAO Y F, et al. 2006. Tearing and dischronal subduction of the Indian continental slab:evidence from Cenozoic Gangdese volcano-magmatic rocks in south Tibet[J]. Acta Petrologica Sinica, 22(4):761-774. (in Chinese with English abstract)
    HOU Z Q, ZHENG Y C, YANG Z M, et al., 2012. Metallogenesis of continental collision setting:Part Ⅰ. Gangdese cenozoic porphyry Cu-Mo systems in Tibet[J]. Mineral Deposits, 31(4):647-670. (in Chinese with English abstract)
    HU P, LI W J, LI J F, et al., 2012. The advances in the development of fixed-wing airborne time-domain electromagnetic system[J]. Acta Geoscientica Sinica, 33(1):7-12. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201201002
    HUANG X Z, FAN Z G, LIANG Y M, et al., 2004. The radioactive parameter statistical method based on prior geological data[J]. Geophysical & Geochemical Exploration, 28(5):439-442. (in Chinese with English abstract)
    HUANG X Z, GUO Z H, XU K, 2007. The development of the manual computer interaction aeromagnetic tangent method system[J]. Geophysical & Geochemical Exploration, 31(6):572-576. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200706021
    HUANG X Z, LIANG Y M, LI T L, 2010. The classification of aerogeophysical data based on BP neutral net[J]. Geophysical & Geochemical Exploration, 34(4):485-488. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201004015
    HUANG Y M, OLESEN A V, WU M P, et al., 2012. SGA-WZ:a new strapdown airborne gravimeter[J]. Sensors, 12(7):9336-9348. doi: 10.3390/s120709336
    JAQUES A L, WELLMAN P, WHITAKER A, et al., 1997. High-resolution geophysics in modern geological mapping[J]. AGSO Journal of Australian Geology and Geophysics, 17(2):159-173.
    JI Y J, LI S Y, YU S B, et al., 2011. A study on time-domain AEM testing and calibration method based on anomaly loop[J]. Chinese Journal of Geophysics, 54(10):2690-2697. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201110026
    JI Y J, WANG Y, XU J, et al., 2013. Development and application of the grounded long wire source airborne electromagnetic exploration system based on an unmanned airship[J]. Chinese Journal of Geophysics, 56(11):3640-3650. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201311005
    JI Y J, WU Q, WANG Y, et al., 2018. Noise reduction of grounded electrical source airborne transient electromagnetic data using an exponential fitting-adaptive Kalman filter[J]. Exploration Geophysics, 49(3):243-252. doi: 10.1071/EG16046
    JIANG Z X, ZHANG H, QU J H, et al., 2018. A quality evaluation method of airborne gravity survey based on statistics of discrepancies between measurements at intersection points[J]. Geophysical and Geochemical Exploration, 42(3):616-623. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201803025
    JØRGENSEN F, SCHEER W, THOMSEN S, et al., 2012. Transboundary geophysical mapping of geological elements and salinity distribution critical for the assessment of future sea water intrusion in response to sea level rise[J]. Hydrology and Earth System Sciences, 16(7):1845-1862. doi: 10.5194/hess-16-1845-2012
    LAN X, ZHUANG D Z, DUAN X L, 2010. Application of geophysical prospecting technique in non-oil gas mineral resources in the 21st century[J]. Northwestern Geology, 43(2):107-119. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201002017
    LI D S, TIAN Z B, MA Y L, et al., 2019. Application of grounded electrical source airborne transient electromagnetic (GREATEM) system in goaf water detection[J]. Journal of Environmental and Engineering Geophysics, 24(3):387-397.
    LI F, CHENG Z Y, TIAN C S, et al., 2020. Progress in recent airborne gamma ray spectrometry measurement technology[J]. Applied Spectroscopy Reviews, doi: 10.1080/05704928.2020.1768107.
    LI H X, XU S Z, YU H L, et al., 2010. Transformations between aeromagnetic gradients in frequency domain[J]. Journal of Earth Science, 21(1):114-122. doi: 10.1007/s12583-010-0003-6
    LI H Y, JIANG M Z, CHEN G S, et al., 2018. The brilliant achievements and technological innovation of airborne radioactivity survey in China[J]. Geophysical & Geochemical Exploration, 2018, 42(4):645-652. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201804001
    LI Q S, GAO Y, WANG X B, et al., 2020. New research progress in geophysics and continental dynamics of the Tibetan Plateau[J]. Chinese Journal of Geophysics, 63(3):789-801. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb202003002
    LI W Y, ZHOU J X, XIONG S Q, et al., 2010. Tectonic geometry of Tan-lu Faults in the Bohai Sea and its adjacent areas viewed from airborne gravity[J]. Acta Geoscientica Sinica, 31(4):549-556. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201004007
    LI W Y, ZHOU J X, LIU Y X, et al., 2015. First application of airborne gravity to oil exploration in the Shengli oil province, eastern China[J]. Exploration Geophysics, 46(3):297-307. doi: 10.1071/EG13086
    LI W Y, LIU Y X, ZHOU J X, et al., 2016. Sedimentary basin analysis using airborne gravity data:a case study from the Bohai Bay Basin, China[J]. International Journal of Earth Sciences, 105(8):2241-2252. doi: 10.1007/s00531-015-1284-x
    LI X B, LIU Y B, 2010. Development and application of airborne gravimetry[J]. China mining magazine, 19(S1):199-201, 209. (in Chinese with English abstract)
    LI Z M, 2009. The brife introduction of the super-great potash deposit discovery in Lop Nor:Brife history of potash prospecting in Lop Nor[J]. Geology of Chemical Minerals, 31(4):237-241, 250. (in Chinese with English abstract)
    LIANG S J, ZHANG L K, CAO X F, et al., 2014. Research progress of the time-domain airborne electromagnetic method[J]. Geology and Exploration, 50(4):735-740. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201404013
    LIAO G X, WU S, XI Y Z, et al., 2013. The application of airborne electromagnetic method to the search for shallow groundwater and the survey of soil salinization in the sand area[J]. Geophysical & Geochemical Exploration, 37(5):899-903, 910. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201305027
    LIN J, DIAO S, ZHANG Y, et al., 2017. Research progress of geophysical vector magnetic field survey technology[J]. Chinese Science Bulletin, 62(23):2606-2618. (in Chinese with English abstract) doi: 10.1360/N972017-00010
    LIN J, KANG L L, LIU C S, et al., 2019. The frequency-domain airborne electromagnetic method with a grounded electrical source[J]. Geophysics, 84(4):E269-E280. doi: 10.1190/geo2017-0777.1
    LIU F B, LI J T, LIU L H, et al., 2017. Development and application of a new semi-airborne transient electromagnetic system with UAV platform[J]. Progress in Geophysics, 32(5):2222-2229. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201705051
    LIU H J, XUE D J, GUO Z H, et al., 2003. The development of the aerogeophysical software system[J]. Geophysical & Geochemical Exploration, 27(2):146-149. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200302018
    LIU S P, 1989. Aeromagnetic anomaly map of China and its adjacent sea regions (1:4, 000, 000)[M]. Beijing:China Map Publishing House. (in Chinese)
    LIU S Y, 2016. The third pillar of geophysical exploration[M]. Beijing:Geological Publishing House. (in Chinese)
    LIU Y H, GU R K, HOU Z R, 2002. Airborne radiometrics survey[J]. Geophysical & Geochemical Exploration, 26(4):250-252. (in Chinese with English abstract)
    LIU Y H, YIN C C, 2013.3D inversion for frequency-domain HEM data[J]. Chinese Journal of Geophysics, 56(12):4278-4287. (in Chinese with English abstract)
    LOHVA J, JOKINEN T, VIRONMAKI J, 2008. Detection of landfill's leakages using airborne geophysics[J]. Polish Geological Institute Special Papers, 24:105-110.
    LU H X, ZHANG E, FENG B, et al., 2020. An analysis of anomaly characteristics of aerial gamma spectrum and uranium metallogenic potential in Bashenghe area, Inner Mongolia[J]. Geophysical & Geochemical Exploration, 44(1):59-65. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht202001007
    LU J Z, WU Q F, FANG Y Y, et al., 2007. The application of aerogeophysical exploration to the evaluation of shallow water resource environment of Zhuhai-Shenzhen area[J]. Geophysical & Geochemical Exploration, 31(6):598-604. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200706027
    LU J Z, FANG Y Y, WU Q F, 2010. The role of aerogeophysical survey in the water resource environment survey of coastal areas[J]. Geophysical & Geochemical Exploration, 34(4):517-522. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201004022
    LUO Y, WANG P, DUAN S L, et al., 2012. Leveling total field aeromagnetic data with measured vertical gradient[J]. Chinese Journal of Geophysics, 55(11):3854-3861. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201211033
    MAN Y L, 1990. Investigation of shallow water resources using frequency domain aeroelectroma-gnetic method[J]. Acta Geophysica Sinica, 33(5):604-610. (in Chinese with English abstract)
    MAO J W, YANG Z X, XIE G Q, et al., 2019. Critical minerals:International trends and thinking[J]. Mineral Deposits, 38(4):689-698. (in Chinese with English abstract)
    MAO L F, WANG X B, LI W J, 2011. Research on 1D inversion method of fix-wing airborne transient electromagnetic record with flight altitude inversion simultaneously[J]. Chinese Journal of Geophysics, 54(8):2136-2147. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201108021
    MENG Q M, GAO W D, MAN Y L, et al., 2004. The airborne electromagnetic method for regional agricultural eco-geological survey and its evaluation[J]. Geophysical & Geochemical Exploration, 28(4):333-336, 340. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200404016
    MENG Q M, HU H, YU Q F, 2006. The application of an airborne electromagnetic system in groundwater resource and salinization studies in Jilin, China[J]. Journal of Environmental & Engineering Geophysics, 11(2):103-109.
    MI Y H, FAN Z G, ZHOU X H, et al., 2013. The terrain correction method for airborne gamma-ray spectrometry survey[J]. Geophysical & Geochemical Exploration, 37(6):1034-1038. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201306015
    MINSLEY B J, ABRAHAM J D, SMITH B D, et al., 2012. Airborne electromagnetic imaging of discontinuous permafrost[J]. Geophysical Research Letters, 39(2):L02503. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=65cedb73e38f0ab16ad2c829eca8c695
    MORSE J G, 1977. Nuclear methods in mineral exploration and production[M]. Amsterdam: Elsevier Scientific Publishing Company.
    Commission on Science, Technology, and Industry for National Defense, 2005. Specification for airborne gamma-ray spectrometry: EJ/T 1032-2005[S]. Beijing: Commission on Science, Technology, and Industry for National Defense. (in Chinese)
    NETTLETON L L, LACOSTE L J B, HARRISON J C, 1960. Tests of an airborne gravity meter[J]. Geophysics, 25(1):181-202.
    NI W C, LIU S K, GAO G L, et al., 2011. Airborne testing of AGS-863 airborne gamma spectrometry survey system[R]. Progress Report on China Nuclear Science & Technology (Vol. 2), Uranium geology volume: 334-343. (in Chinese with English abstract)
    OUYANG Y Z, DENG K L, LU X P, et al., 2013. Tests of multi-type airborne gravimeters and data analysis[J]. Hydrographic Surveying and Charting, 33(4):6-11. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hych201304002
    PFAFFHUBER A A, MONSTAD S, RUDD J, 2009. Airborne electromagnetic hydrocarbon mapping in Mozambique[J]. Exploration Geophysics, 40(3):237-245. doi: 10.1071/EG09011
    QI Y F, LI X, YIN C C, et al., 2020. Three-dimensional adaptive finite-element method for time-domain airborne EM over an anisotropic earth[J]. Chinese Journal of Geophysics, 63(6):2434-2448. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb202006026
    QIAO R X, ZHANG Y X, 2002. New knowledge obtained from the application of high-precision aeromagnetic survey to oil and gas exploration in Tarim basin[J]. Geophysical & Geochemical Exploration, 26(5):334-339, 371. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200205002
    SENGPIEL K P, MEISER P, 1981. Locating the freshwater/salt water interface on the island of Spiekeroog by airborne EM resistivity/depth mapping[J]. Geologisches Jahrbuch C, 29:255-271.
    SENGPIEL K P, 1983. Resistivity/depth mapping with airborne electromagnetic survey data[J]. Geophysics, 48(2):181-196. doi: 10.1190/1.1441457
    SIEMON B, CHRISTIANSEN A V, AUKEN E, 2009. A review of helicopter-borne electromagnetic methods for groundwater exploration[J]. Near Surface Geophysics, 7(5-6):629-646. doi: 10.3997/1873-0604.2009043
    SMITH B D, THAMKE J N, CAIN M J, et al., 2006. Helicopter electromagnetic and magnetic survey maps and data, East Poplar Oil Field area, August 2004, Fort Peck Indian Reservation, northeastern Montana[R]. Open-File Report 2006-1216. USGS.
    STEUER A, SIEMON B, EBERLE D, 2008. Airborne and ground-based electromagnetic investigations of the freshwater potential in the tsunami-hit Area Sigli, Northern Sumatra[J]. Journal of Environmental & Engineering Geophysics, 13(1):39-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e7a50db099c371b8ef8a5489d4d6a5b
    SU Y, YIN C C, LIU Y H, et al., 2019. Inversions of time-domain airborne EM based on generalized model constraints[J]. Chinese Journal of Geophysics, 62(2):743-751. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201902024
    SUN D H, LI H Y, JIANG M Z, et al., 2017. A further discussion on the boundary of North China Platform's north margin based on time-domain airborne electromagnetic data[J]. Geophysical & Geochemical Exploration, 41(3):478-483. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201703012
    SUN W K, 1984a. Magnetic exploration problems and prospect[J]. Geophysical & Geochemical Exploration, 8(3):129-133. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC027242324
    SUN W K, 1984b. Advance geophysical prospecting to a newstage to meet the challenge of the newsituation[J]. Geophysical & Geochemical Exploration, 8(5):257-266. (in Chinese with English abstract)
    SUN W K, 1990. The present situation and prospects ofgeophysical prospecting for solidore resources in China[J]. Geophysical & Geochemical Exploration, 14(3):161-171. (in Chinese with English abstract)
    SUN W K, WANG J L, QI W X, et al., 1997. A review and prospects for the geophysical exploration on metallic and nonmetallic deposits in China[J]. Acta Geophysica Sinica, 40(S1):351-361. (in Chinese with English abstract)
    TENG J W, ZHANG H S, SUN R M, et al., 2011. Geophysical field characteristics and dynamic response of segmentations in East-west direction and their boundary zone in central Tibetan plateau[J]. Chinese Journal of Geophysics, 54(10):2510-2527. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201110009
    TENG J W, SONG P H, DONG X P, et al., 2019a. The crust-mantle structure and geophysical boundary field characteristics of Panzhihua ancient mantle plume "relics"[J]. Chinese Journal of Geophysics, 62(9):3296-3320. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201909008
    TENG J W, YANG D H, TIAN X B, et al., 2019b. Geophysical investigation progresses of the Qinghai-Tibetan Plateau in the past 70 years[J]. Scientia Sinica Terrae, 49(10):1546-1564. (in Chinese with English abstract) doi: 10.1360/SSTe-2019-0132
    THOMPSON L G D, 1959. Airborne gravity meter test[J]. Journal of Geophysical Research, 64(4):488. doi: 10.1029/JZ064i004p00488
    TONG J, ZHANG X J, ZHANG W, et al., 2018. Marine strata morphology of the South Yellow Sea based on high-resolution aeromagnetic and airborne gravity data[J]. Marine and Petroleum Geology, 96:429-440. doi: 10.1016/j.marpetgeo.2018.06.018
    VIEZZOLI A, TOSI L, TEATINI P, et al., 2010. Surface water-groundwater exchange in transitional coastal environments by airborne electromagnetics:The Venice Lagoon example[J]. Geophysical Research Letters, 2010, 37(1):L01402.
    WALKER S, KEYSER H, DURHAM D, 2018. Airborne gamma ray surveying in hydrocarbon exploration[C]//GeoConvention 2018.
    WAN J H, XIONG S S, FAN Z G, 2012. The status and prospects of airborne gamma-ray spectrometry technology and its application[J]. Geophysical & Geochemical Exploration, 36(3):386-391. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201203012
    WANG D F, WANG N D, ZHANG Y J, et al., 2013. Aeromagnetic series maps and its explanatory note in Qinghai-Tibet Plateau and adjacent area[M]. Beijing:Geological Publishing House (in Chinese).
    WANG J B, XIONG S Q, GUO Z H, et al., 2012. Kalman smoothing for airborne gravity data[J]. Progress in Geophysics, 27(4):1717-1722. (in Chinese with English abstract)
    WANG J B, XIONG S Q, ZHOU X H, et al., 2009. The advances in the study of the airborne gravimetry system[J]. Geophysical & Geochemical Exploration, 33(4):368-373. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200904002
    WANG J, YAO C L, LI Z L, 2020. Aeromagnetic anomalies in central Yarlung-Zangbo suture zone (Southern Tibet) and their geological origins[J]. Journal of Geophysical Research:Solid Earth, 125(2):e2019JB017351.
    WANG J B, XIONG S Q, LUO F, et al., 2020. Wavelet filter processing in airborne gravimetry[J]. Geophysical & Geochemical Exploration, 44(2):300-312. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht202002009
    WANG L F, XIONG S Q, HE H, et al., 2011. Current status and future trends of non-seismic geophysical software[J]. Geophysical & Geochemical Exploration, 35(6):837-844. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201106027
    WANG L F, XUE D J, HE H, et al., 2013. The application of the plug-in technology to geophysical software platform (GeoProbe)[J]. Geophysical & Geochemical Exploration, 37(3):547-551. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201303032
    WANG N D, 2004. Aeromagnetic ΔT anomaly map of China and adjacent sea regions (1:5, 000, 000)[M]. Beijing:Geological Publishing House. (in Chinese)
    WANG P, DAI L J, 1992. On the methods of drawing gamma-ray spectrometry anomalies over oil field[J]. Journal of Changchun University of Earth Sciences, 22(1):109-114. (in Chinese with English abstract)
    WANG P, XIONG S Q, 1997. Principle, method and application of oil and gas radioactive exploration[M]. Beijing:Geological Publishing House. (in Chinese)
    WANG T H, YU P, MA G Q, et al., 2019. Edge detection and space location inversion techniques of magnetic tensor gradient data based on ratio of analytic signal[J]. Chinese Journal of Geophysics, 62(10):3723-3733. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201910007
    WANG W P, WANG Y S, 1999. The application of airborne electromagnetic method to the exploration of shallow fresh water at the mouth area of the yellow river[J]. Geophysical & Geochemical Exploration, 1999, 23(2):115-121. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht199902008
    WANG W P, XU D C, 1999. The application of aerogeophysical integrated survey to the hydrological-engineering-environmental geological exploration in east coastal areas[J]. Geophysical & Geochemical Exploration, 23(5):321-325. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht199905001
    WANG W P, WANG S T, ZHOU X H, et al., 2011, Frequency domain airborne electromagnetic method and its application[M]. Beijing:Geological Publishing House. (in Chinese)
    WU Q, LI D S, JIANG C D, et al., 2019a. Ground-source Airborne Time-domain ElectroMagnetic (GATEM) modelling and interpretation method for a rough medium based on fractional diffusion[J]. Geophysical Journal International, 217(3):1915-1928. doi: 10.1093/gji/ggz128
    WU X, XUE G Q, FANG G Y, 2019. Development of helicopter-borne transient electromagnetic in China[J]. Progress in Geophysics, 34(4):1679-1686. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201904050
    WU X, XUE G Q, FANG G Y, et al., 2019b. The development and applications of the semi-airborne electromagnetic system in China[J]. IEEE Access, 7:104956-104966. doi: 10.1109/ACCESS.2019.2930961
    XIANG L N, WANG Z H, SUN D H, et al., 2018. The application of the airborne electromagnetic method to rapid prospecting breakthrough in high mountain areas[J]. Geophysical & Geochemical Exploration, 42(2):225-233. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201802001
    XIE R K, XIONG S Q, DUAN S L, et al., 2020. Noise estimation in vector magnetic data derived from airborne vector magnetic system[J]. Geophysics, 85(4):J71-J83. doi: 10.1190/geo2019-0663.1
    XIONG S Q, 1992. Some advances in radioactive exploration of oil and gas abroad in 1980s[J]. Aerogeophysical Techniques(2):55. (in Chinese)
    XIONG S Q, YANG P, FAN Z G, 1993. Interpretation processing system of airborn gamma-ray spectrometry for IBM-4341 and its application[J]. Computing Techniques for Geophysical and Geochemical Exploration, 15(1):54-59. (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-WTHT199301009.htm
    XIONG S Q, 1998. Researches in terrain interference calibration for airborne gamma spectrometry anomaly interpretation[J]. Earth science frontiers, 15(1-2):341. (in Chinese)
    XIONG S Q, 1999. The present situation and prospect of airborne geophysical exploration in China[J]. China Geology(9):18-22. (in Chinese)
    XIONG S Q, ZHOU F H, YAO Z X, et al., 2001a. An important achievement gained on aero-magnetic reconnaissance in Middle-West Qing Hai-Tibet Plateau[J]. Geology of China, 28(2):21-24. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200102005
    XIONG S Q, ZHOU F H, YAO Z X, et al., 2001b. Aero Magnetic survey in central and western Qinghai-Tibet plateau[M]. Beijing:GEOLOGY PUBLISHING HOUSE. (in Chinese with English abstract)
    XIONG S Q, 2002. The advances in airborne geophysical survey in the period of the ninth five-year plan[J]. Geophysical & Geochemical Exploration, 26(1):1-5, 16. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200201001
    XIONG S Q, CHEN B, YU C C, et al., 2006. The technology of remote sensing and geophysics for detecting underground coal seam spontaneous combustion[M]. Beijing:Geological Publishing House. (in Chinese)
    XIONG S Q, 2007. The advances of aerogeophysical survey in China since the tenth five year plan and its development trend[J]. Geophysical & Geochemical Exploration, 31(6):479-484. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200706001
    XIONG S Q, ZHOU F H, YAO Z X, et al., 2007. Aero magnetic survey in central and westren Qinghai-Tibet plateau[J]. Geophysical & Geochemical Exploration, 31(5):404-407. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200705005
    XIONG S Q, YU C C, WANG W P, et al., 2008. Large scale aero geophysical survey with helicopter and its application to deep ore prospecting[J]. Advances in Earth Science, 23(3):270-275. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200803007
    XIONG S Q, 2009a. The strategic consideration of the development of China's airborne geophysical technology[J]. Geology in China, 36(6):1366-1374. (in Chinese with English abstract)
    XIONG S Q, 2009b. The present situation and development of airborne gravity and magnetic survey techniques in China[J]. Progress in Geophysics, 24(1):113-117. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz200901013
    XIONG S Q, YU C C, SUI S W, et al., 2009. High precision aeromagnetic method in middle and high mountain area[M]. Beijing:Geological Publishing House. (in Chinese)
    XIONG S Q, ZHOU X H, GUO Z H, et al., 2010a. Theory, method and application of the airborne gravity prospecting[M]. Beijing:Geological Publishing House. (in Chinese with English abstract)
    XIONG S Q, CHEN B, ZHAO B M, et al., 2010b. Criterion of aeromagnetic survey: DZ/T 0142-2010[S]. Beijing: China Standardization Press. (in Chinese)
    XIONG S Q, 2011. The new development trends of the airborne geophysical technology in China[C]. GEM Beijing 2011: International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications.
    XIONG S Q, DING Y Y, LI Z K, 2012. Characteristics of gravity and magnetic field in Xizang (Tibet) and new understanding on tectonic framework in eastern Xizang[J]. Geological Review, 58(2):201-207. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201202001
    XIONG S Q, WANG N P, FAN Z G, et al., 2012. Mapping the terrestrial air-absorbed gamma dose rate based on the data of airborne gamma-ray spectrometry in southern cities of China[J]. Journal of Nuclear Science and Technology, 49(1):61-70. doi: 10.1080/18811248.2011.636550
    XIONG S Q, YU C C, 2013. Characteristics and mechanisms of rock magnetic increasing in underground coal spontaneous combustion area:take Wuda coal mine of Inner Mongolia and Ruqigou coal mine in Ningxia as examples[J]. Chinese Journal of Geophysics, 56(8):2827-2836. (in Chinese with English abstract)
    XIONG S Q, FAN Z G, ZHANG H R, et al., 2013. Aeromagnetic series maps and instructions of China's land domain (1:5, 000, 000)[M]. Beijing:Geological Publishing House. (in Chinese)
    XIONG S Q, DING Y Y, LI Z K, 2014a. A new understanding on the pattern of deep faults in Xizang and the southwestern Sanjiang area[J]. Chinese Journal of Geophysics, 57(12):4097-4109. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/cjg2.20159
    XIONG S Q, DING Y Y, LI Z K, 2014b. Characteristics of China continent magnetic basement depth[J]. Chinese Journal of Geophysics, 57(12):3981-3993. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4205666a6a484b3df7a5b652cf698e3f
    XIONG S Q, DING Y Y, LI Z K, 2015a. Map of magnetic basement depth in Chinese continent (1:2, 500, 000)[M]. Beijing:Geological Publishing House. (in Chinese)
    XIONG S Q, DING Y Y, LI Z K, 2015b. Map of regional structure in Chinese continent (1:2, 500, 000)[M]. Beijing:Geological Publishing House. (in Chinese)
    XIONG S Q, FAN Z G, ZHANG H R, 2015c. Series map of aeromagnetic in Chinese continent and its explanatory note (1:2, 500, 000)[M]. Beijing:Geological Publishing House. (in Chinese)
    XIONG S Q, FAN Z G, HUANG X Z, et al., 2015d. Prediction map and specification of China's continental magnetic iron ore resources[M]. Beijing:Geological Publishing House. (in Chinese)
    XIONG S Q, DING Y Y, LI Z K, et al., 2016a. Study on aeromagnetic characteristics and geological structure of China's continental region:interpretation based on 1:1, 000, 000 aeromagnetic data[M]. Beijing:Geological Publishing House. (in Chinese)
    XIONG S Q, YANG H, DING Y Y, et al., 2016b. Characteristics of Chinese continent Curie point isotherm[J]. Chinese Journal of Geophysics, 59(10):3604-3617. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/cjg2.30014
    XIONG S Q, TONG J, DING Y Y, et al., 2016a. Aeromagnetic data and geological structure of continental China:A review[J]. Applied Geophysics, 13(2):227-237. doi: 10.1007/s11770-016-0552-2
    XIONG S Q, YANG H, DING Y Y, et al., 2016b. Distribution of igneous rocks in China revealed by aeromagnetic data[J]. Journal of Asian Earth Sciences, 129:231-242. doi: 10.1016/j.jseaes.2016.08.016
    XIONG S Q, ZHOU X H, XUE D J, et al., 2018a. Theory technology method instruments and application of comprehensive airborne geophysical exploration[M]. Beijing:Geological Publishing House. (in Chinese)
    XIONG S Q, YANG H, DING Y Y, et al., 2018b. Subdivision of tectonic units in China based on aeromagnetic data[J]. Geology in China, 45(4):658-680. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201804003
    XIONG S Q, ZHOU D Q, CAO B B, et al., 2020. Characteristics of the central uplift zone in Qiangtang Basin and its tectonic implications:Evidences from airborne gravity and magnetic data[J].Chinese J. Geophys (in Chinese with English abstract),
    XU S Z, 2004. Downward continuation of aeromagnetic anomaly from flying altitude to terrain[J]. Chinese Journal of Geophysics, 47(6):1127-1130. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/cjg2.614
    XU S Z, WANG R, ZHOU J X, et al., 2007. To continue aeromagnetic data to the sea level[J]. Acta Oceanologica Sinica, 29(6):53-57. (in Chinese with English abstract)
    XUE G Q, LI X, YU S B, et al., 2018. The application of ground-airborne tem systems for underground cavity detection in China[J]. Journal of Environmental and Engineering Geophysics, 23(1):103-113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa210e3a637cdedb6ef0971557a65109
    YANG G Q, ZHU Y, 1955. Introduction to aeromagnetic survey[J]. Geological Knowledge(6):28-29. (in Chinese)
    YANG G Q, 1959. Airborne geophysical exploration:the scout of geological exploration[J]. Geological Monthly(10):76-77. (in Chinese)
    YANG G Q, ZHU Y, 1979. Aeromagnetic survey for geological reconnaissance work in China[J]. Acta Geophysica Sinica, 22(4):374-382. (in Chinese with English abstract)
    YANG G Q, SHI Q Y, YU B C, 1994. Status and development of airborne geophysical exploration in China[J]. Acta Geophysica Sinica, 37(S1):367-377. (in Chinese with English abstract)
    YANG H, LIANG Y M, 2013. Nationwide aeromagnetic ΔT anomalies and China's geoscience block structures[J]. Geophysical and Geochemical Exploration, 37(6):957-967 (in Chinese with English abstract)
    YANG H, ZHAO T Y, LI S J, et al., 2019. Anomaly characteristics of airborne gamma-ray spectrometric survey and uranium prospecting direction in Huayangchuan, Qinling[J]. Geology in China, 46(3):651-661. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201903017
    YANG W C, WANG J L, ZHONG H Z, et al., 2012. Analysis of regional magnetic field and source structure in Tarim Basin[J]. Chinese Journal of Geophysics, 55(4):1278-1287. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201204023
    YANG W C, YU C Q, 2014. Continental collision process reveled by worldwide comparison of crust and upper mantle structures (I)[J]. Geological Review, 60(2):237-259.
    YIN C C, QI Y F, LIU Y H, et al., 2014. Trans-dimensional Bayesian inversion of frequency-domain airborne EM data[J]. Chinese Journal of Geophysics, 57(9):2971-2980. (in Chinese with English abstract)
    YIN C C, ZHANG B, LIU Y H, et al., 2015a. Review on airborne EM technology and developments[J]. Chinese Journal of Geophysics, 58(8):2637-2653. (in Chinese with English abstract)
    YIN C C, ZHANG B, LIU Y H, et al., 2015b. 2.5-D forward modeling of the time-domain airborne EM system in areas with topographic relief[J]. Chinese Journal of Geophysics, 58(4):1411-1424. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201504027
    YIN C C, MIAO J J, LIU Y H, et al., 2016. The effect of induced polarization on time-domain airborne EM diffusion[J]. Chinese Journal of Geophysics, 59(12):4710-4719. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201612030
    YIN C C, ZHU J, QIU C K, et al., 2018. Spatially constrained inversion for airborne EM data using quasi-3D models[J]. Chinese Journal of Geophysics, 61(6):2537-2547. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201806031
    YU B C, 1990. The development of airborne radiometric survey in China[J]. Uranium Geology, 6(2):99-103, 119. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200906018
    YU B C, 1992. Review of airborne gamma-ray spectrometry in China and several major countries in the world[J]. Uranium and Gold Geology Abroad(4):64-72, 93. (in Chinese)
    YU C C, FAN Z G, WANG N D, et al., 2007. High-resolution aeromagnetic exploration methods and their application in Daye iron mines[J]. Progress in Geophysics, 22(3):979-983. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz200703048
    YU C C, XIONG S Q, LIU S Y, et al., 2010. An ore discovery example of deep prospecting by helicopter aeromagnetic survey in the Daye iron mine[J]. Geophysical & Geochemical Exploration, 34(4):435-439. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201004004
    YU H L, XU S Z, LI H X, et al., 2011. Transformation of total magnetic field anomaly and gradients on irregular surface[J]. Journal of Zhejiang University (Engineering Science), 45(2):397-403. (in Chinese with English abstract)
    YUAN G Q, XIONG S Q, MENG Q M, et al., 2011. Application research of geophysical prospecting techniques[J]. Acta Geologica Sinica, 85(11):1744-1805. (in Chinese with English abstract)
    ZENG G Q, ZHANG Q X, LI C, et al., 2014. Digital logarithmic airborne gamma ray spectrometer[J]. Chinese Physics C, 38(7):076001. doi: 10.1088/1674-1137/38/7/076001
    ZHAI J S, 1992. Studies on techniques and application of the second generation aerogeophysical prospecting[J]. Geophysical & Geochemical Exploration, 16(5):398-400, 344. (in Chinese)
    ZHANG C D, 2013. Research on the development trend of gravity and magnetism and time domain electromagnetic[M]. Wuhan:China University of Geosciences Press Co., Ltd. (in Chinese)
    ZHANG N, WU Y G, ZHOU S, et al., 2019.3D inversion of airborne gravity gradient data for physical properties based on optimizing constraints of spatial position of the geologic body[J]. Chinese Journal of Geophysics, 62(4):1515-1525. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201904027
    ZHANG W B, XIONG S Q, 1990. Airborne gama-ray spectrometric variation coefficient-a useful parameter for interpretation[J]. Geophysical & Geochemical Exploration, 14(4):276-284. (in Chinese with English abstract)
    ZHANG W B, YU C C, ZHOU X H, 2007. A new method for correction of the data from the air-borne gamma energy spectral measurement[J]. Geophysical & Geochemical Exploration, 31(2):143-148. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200702011
    ZHANG X, ZHAO L, 2003. Curie surface and aeromagnetic anomaly in Qinghai-Tibet Plateau[J]. Journal of Geodesy and Geodynamics, 23(4):14-20. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz200304004
    ZHANG Y, HUA R Z, SHI B S, 1990. Radioactive method exploration[M]. Beijing:Atomic Energy Press. (in Chinese)
    ZHANG Y, XIONG S Q, CHEN T Y, 1998. Application of airborne gamma-ray spectrometry to geoscience in China[J]. Applied Radiation and Isotopes, 49(1-2):139-146. doi: 10.1016/S0969-8043(97)00222-4
    ZHANG Y M, SHENG J, ZHANG G B, 2006. Status and applications of airborne gravimetry[J]. Progress in Exploration Geophysics, 29(2):94-97. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ktdqwljz200602004
    ZHAO L, FORSBERG R, WU M P, et al., 2015. A flight test of the strapdown airborne gravimeter SGA-WZ in Greenland[J]. Sensors, 15(6):13258-13269. doi: 10.3390/s150613258
    ZHAO X G, WU H N, YANG J J, et al., 2007. Geological significance of weak information enhancement of airborne gamma energy spectral data for sandstone type uranium deposits[J]. Geology in China, 34(3):478-485. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200703017
    ZHENG W, ZHANG G B, 2016. Application research on adaptive Kalman filtering for airborne gravity anomaly determination[J]. Chinese Journal of Geophysics, 59(4):1275-1283. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201604010
    ZHOU D Q, TAN L, TAN H D, et al., 2010. Inversion of frequency domain helicopter-borne electromagnetic data with Marquardt's method[J]. Chinese Journal of Geophysics, 53(2):421-427. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201002020
    ZHOU F H, YAO Z X, LIU Z J, et al., 2002. The origin and implication of the nne-trending deep negative magnetic anomaly zone in central Qinghai-Tibet Plateau. Geophysical & Geochemical Exploration, 26(1):12-16. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200201003
    ZHOU X H, QIAO G Z, 2002. The introduction and application of the new generation airborne multi-channel gamma spectrometer[J]. Geophysical & Geochemical Exploration, 26(4):318-320, 324. (in Chinese with English abstract)
    ZHOU X H, JIANG Z X, QU J H, et al., 2015. The application of the rise-and-fall flight to the aerial gravity measurement[J]. Geophysical & Geochemical Exploration, 39(S1):98-104. (in Chinese with English abstract)
    ZHU W P, XIONG S Q, XUE D J, et al., 2014. Aerogeophysical jointly remote sensing detection technology present and prospect[J]. Progress in Geophysics, 29(5):2356-2363. (in Chinese with English abstract)
    ZHU Y, 1989. Some geotectonic problems around eastern margin of the Tarim basin[J]. Acta Geophysica Sinica, 32(4):399-408. (in Chinese with English abstract)
    ZHU Y, 2013. Framework:geotectonic and deep crustal architectural features of China and some peripheral areas[M]. 2nd ed. Beijing:Geological Publishing House (in Chinese)
    ZHUO S N, 1985. Carrying out the second generation airborne geophysical survey to improve geological prospecting effect[J]. Geology of China(7):3-7. (in Chinese)
    蔡晶, 齐彦福, 殷长春, 2014.频率域航空电磁数据的加权横向约束反演[J].地球物理学报, 57(3):953-960.
    蔡文军, 沈正新, 祁程, 等, 2017.宁安盆地航空伽马能谱特征及铀成矿远景预测[J].铀矿地质, 33(3):156-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykdz201703005
    蔡振京, 1989.高精度大比例尺(1:5万)航空物探在油气藏勘探中的应用[J].物探与化探, 13(6):401-411.
    陈斌, 陆从德, 刘光鼎, 2014a.基于核主成分分析的时间域航空电磁去噪方法[J].地球物理学报, 57(1):295-302. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201401025
    陈斌, 毛立峰, 刘光鼎, 2014b.用扩散电场法估算CHTEM-I系统的探测深度[J].地球物理学报, 57(1):303-309. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HYC201505290000006682
    陈江源, 江民忠, 常树帅, 等, 2017.潮水盆地平易凹陷南缘航放异常区铀找矿前景分析[J].物探与化探, 41(1):102-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201701016
    陈江源, 2019.鄂尔多斯盆地南缘城阳-武沟地区航放异常铀找矿前景分析[J].物探与化探, 43(3):509-521.
    陈树军, 刘菁华, 王祝文, 2007.航空伽马能谱测量在浅覆盖区地质填图单元划分中的应用[J].物探与化探, 31(2):110-114, 119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200702004
    程信尧, 1958.航空磁力仪的试制[J].地球物理勘探(4):49.
    程信尧, 1982. HDY-202补偿式航电仪试制总结报告[C].物化探研究报导, 11: 81.
    董连慧, 冯京, 庄道泽, 等, 2008.2007年新疆地质矿产勘查进展及2008年工作重点[J].新疆地质, 26(1):1-3. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xjdz200801001
    董树文, 李廷栋, 陈宣华, 等, 2012.我国深部探测技术与实验研究进展综述[J].地球物理学报, 55(12):3884-3901. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201212002
    范正国, 于长春, 2005.航空伽马能谱地形改正新方法及应用[J].物探与化探, 29(1):28-30, 33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200501009
    范正国, 方迎尧, 王懋基, 等, 2007.航空物探技术在1:25万区域地质调查中的应用[J].物探与化探, 31(6):504-509.
    范正国, 黄旭钊, 熊盛青, 等, 2010.磁测资料应用技术要求[M].北京:地质出版社.
    范正国, 周道卿, 熊盛青, 等, 2015.航磁异常找矿案例[M].北京:地质出版社.
    房江奇, 李素岐, 蔡文军, 等, 2016.新型AGRSS航空伽玛能谱测量系统设计及其性能测试[J].地球物理学进展, 31(2):900-907. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201602054
    方涛, 张建军, 付成群, 等, 2015.无人机地空瞬变电磁系统在冶山地下巷道探测中的应用[J].地球物理学进展, 30(5):2366-2372. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201505052
    方迎尧, 王卫平, 肖刚毅, 等, 2010.频率域航空电磁法岩性地质单元填图技术[J].物探与化探, 34(3):308-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201003009
    冯旭亮, 刘斌, 2019.南薇西盆地重磁场特征及油气资源远景[J].地质力学学报, 25(1):105-114. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190110&journal_id=dzlxxb
    高宝龙, 陶德益, 詹应林, 等, 2010.大冶铁矿接替资源勘察项目中"空、地、井"磁法测量的应用[J].地质与勘探, 46(3):483-490.
    葛良全, 曾国强, 赖万昌, 等, 2011.航空数字γ能谱测量系统的研制[J].核技术, 34(2):156-160.
    葛良全, 熊盛青, 曾国强, 等, 2016.航空伽马能谱探测技术与应用[M].北京:科学出版社.
    管志宁, 2005.地磁场与磁力勘探[M].北京:地质出版社.
    郭志宏, 于长春, 周坚鑫, 2003.低磁纬度区ΔT剖面磁异常场源深度计算的切线法[J].物探与化探, 27(5):391-394. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200305016
    郭志宏, 罗锋, 安战锋, 2007.航空重力数据窗函数法FIR低通数字滤波试验[J].物探与化探, 31(6):568-571, 576. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200706020
    郭志宏, 熊盛青, 周坚鑫, 等, 2008.航空重力重复线测试数据质量评价方法研究[J].地球物理学报, 51(5):1538-1543. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200805028
    郭志宏, 罗锋, 王明, 等, 2011.航空重力数据无限脉冲响应低通数字滤波器设计与试验研究[J].地球物理学报, 54(8):2148-2153. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201108022
    国防科学技术工业委员会, 2005.航空伽玛能谱测量规范: EJ/T 1032-2005[S].北京: 国防科学技术工业委员会.
    韩登峰, 1994.我国的航空电法[J].物探与化探, 18(3):179-185.
    何碧竹, 焦存礼, 蔡志慧, 等, 2011.塔里木盆地中部航磁异常带新解译[J].中国地质, 38(4):961-969. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201104013
    贺日政, 高锐, 郑洪伟, 2007a.隐伏在青藏高原中部的东西走向断裂的航磁异常场特征及其意义[J].吉林大学学报(地球科学版), 37(5):1002-1008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200705027
    贺日政, 高锐, 郑洪伟, 等, 2007b.青藏高原中西部航磁异常的匹配滤波分析与构造意义[J].地球物理学报, 50(4):1131. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200704020
    侯增谦, 赵志丹, 高永丰, 等, 2006.印度大陆板片前缘撕裂与分段俯冲:来自冈底斯新生代火山-岩浆作用证据[J].岩石学报, 2006, 22(4):761-774.
    侯增谦, 郑远川, 杨志明, 等, 2012.大陆碰撞成矿作用:Ⅰ.冈底斯新生代斑岩成矿系统[J].矿床地质, 31(4):647-670.
    胡平, 李文杰, 李军峰, 等, 2012.固定翼时间域航空电磁勘查系统研发进展[J].地球学报, 33(1):7-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201201002
    黄旭钊, 范正国, 梁月明, 等, 2004.以先验地质资料为基础的放射性参数统计方法[J].物探与化探, 28(5):439-442. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200405018
    黄旭钊, 郭志宏, 徐昆, 2007.交互式航磁异常切线法系统研制[J].物探与化探, 31(6):572-576. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200706021
    黄旭钊, 梁月明, 李桐林, 2010.基于BP神经网络的航空物探数据分类方法[J].物探与化探, 34(4):485-488. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201004015
    嵇艳鞠, 李肃义, 于生宝, 等, 2011.基于异常线圈的时间域AEM系统测试和标定方法研究[J].地球物理学报, 54(10):2690-2697. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201110026
    嵇艳鞠, 王远, 徐江, 等, 2013.无人飞艇长导线源时域地空电磁勘探系统及其应用[J].地球物理学报, 56(11):3640-3650. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201311005
    姜作喜, 张虹, 屈进红, 等, 2018.基于交叉点不符值统计的航空重力测量质量评估方法[J].物探与化探, 42(3):616-623. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201803025
    兰险, 庄道泽, 段新力, 2010.进入21世纪新疆非油气矿产资源物探勘查技术的应用[J].西北地质, 43(2):107-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdz201002017
    李怀渊, 江民忠, 陈国胜, 等, 2018.我国航空放射性测量进展及发展方向[J].物探与化探, 42(4):645-652. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201804001
    李秋生, 高原, 王绪本, 等, 2020.青藏高原地球物理与大陆动力学研究的新进展[J].地球物理学报, 63(3):789-801. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb202003002
    李文勇, 周坚鑫, 熊盛青, 等, 2010.从航空重力看郯庐断裂系(渤海)及其围区构造几何学特征[J].地球学报, 31(4):549-556. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201004007
    李晓斌, 刘寅彪, 2010.航空重力测量进展和应用[J].中国矿业, 19(S1):199-201, 209.
    李钟模, 2009.罗布泊超大型钾盐矿床的发现记略:罗布泊找钾简史[J].化工矿产地质, 31(4):237-241, 250.
    梁盛军, 张力卡, 曹学峰, 等, 2014.时间域航空电磁法研究进展综述[J].地质与勘探, 50(4):735-740. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201404013
    廖桂香, 吴珊, 西永在, 等, 2013.沙地区航空电磁法找浅层水和土壤盐渍化普查效果[J].物探与化探, 37(5):899-903, 910. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201305027
    林君, 刁庶, 张洋, 等, 2017.地球物理矢量场磁测技术的研究进展[J].科学通报, 62(23):2606-2618. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201723006
    刘富波, 李巨涛, 刘丽华, 等, 2017.无人机平台半航空瞬变电磁勘探系统及其应用[J].地球物理学进展, 32(5):2222-2229. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201705051
    刘浩军, 薛典军, 郭志宏, 等, 2003.航空物探软件系统研制[J].物探与化探, 27(2):146-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200302018
    刘寿彭, 1989.1:400万中国及其毗邻海区航空磁力异常图[M].北京:中国地图出版社.
    刘士毅, 2016.物探技术的第三根支柱[M].北京:中国地质出版社.
    刘裕华, 顾仁康, 侯振荣, 2002.航空放射性测量[J].物探与化探, 26(4):250-252. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200204002
    刘云鹤, 殷长春, 2013.三维频率域航空电磁反演研究[J].地球物理学报, 56(12):4278-4287. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201312030
    卢辉雄, 张恩, 冯博, 等, 2020.内蒙古巴升河地区航空伽马能谱异常特征及其铀成矿潜力分析[J].物探与化探, 44(1):59-65. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht202001007
    卢建忠, 吴其反, 方迎尧, 等, 2007.航空物探在珠海-深圳地区浅层水资源环境评价中的应用[J].物探与化探, 31(6):598-604. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200706027
    卢建忠, 方迎尧, 吴其反, 2010.航空地球物理在海岸带水资源环境调查中的作用[J].物探与化探, 34(4):517-522. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201004022
    骆遥, 王平, 段树岭, 等, 2012.航磁垂直梯度调整ΔT水平方法研究[J].地球物理学报, 55(11):3854-3861.
    满延龙, 1990.频率域航空电磁法浅层水资源调查的试验研究[J].地球物理学报, 33(5):604-610.
    毛景文, 杨宗喜, 谢桂青, 等, 2019.关键矿产:国际动向与思考[J].矿床地质, 38(4):689-698.
    毛立峰, 王绪本, 李文杰, 2011.飞行高度同时反演的固定翼航空瞬变电磁一维反演[J].地球物理学报, 54(8):2136-2147.
    孟庆敏, 高卫东, 满延龙, 等, 2004.航空电磁法区域农业生态地质调查与评价[J].物探与化探, 28(4):333-336, 340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200404016
    米耀辉, 范正国, 周锡华, 等, 2013.航空伽马能谱测量地形影响改正实现方法[J].物探与化探, 37(6):1034-1038. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201306015
    倪卫冲, 刘士凯, 高国林, 等, 2011. AGS-863航空伽马能谱勘查系统机载试验[R].中国核科学技术进展报告(第二卷), 铀矿地质分卷: 334-343.
    欧阳永忠, 邓凯亮, 陆秀平, 等, 2013.多型航空重力仪同机测试及其数据分析[J].海洋测绘, 33(4):6-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hych201304002
    齐彦福, 李貅, 殷长春, 等, 2020.时间域航空电磁各向异性大地三维自适应有限元正演研究[J].地球物理学报, 63(6):2434-2448. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb202006026
    乔日新, 张用夏, 2002.高精度航空磁测在塔里木盆地油气勘查中的几点新认识[J].物探与化探, 26(5):334-339, 371. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200205002
    苏扬, 殷长春, 刘云鹤, 等, 2019.基于广义模型约束的时间域航空电磁反演研究[J].地球物理学报, 62(2):743-751. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201902024
    孙栋华, 李怀渊, 江民忠, 等, 2017.利用时间域航空电磁资料再论华北地台北界的划分[J].物探与化探, 41(3):478-483. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201703012
    孙文珂, 1984a.磁法勘探中的几个问题及展望[J].物探与化探, 8(3):129-133.
    孙文珂, 1984b.迎接新形势将物探推进到一个新阶段[J].物探与化探, 8(5):257-266.
    孙文珂, 1990.我国固体矿产物探现状与展望[J].物探与化探, 14(3):161-171.
    孙文珂, 王继伦, 齐文秀, 等, 1997.我国金属与非金属矿物探的回顾与展望[J].地球物理学报, 40(S1):351-361. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000002246420
    滕吉文, 张洪双, 孙若昧, 等, 2011.青藏高原腹地东西分区和界带的地球物理场特征与动力学响应[J].地球物理学报, 54(10):2510-2527. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201110009
    滕吉文, 宋鹏汉, 董兴朋, 等, 2019a.攀枝花古地幔柱壳、幔结构与地球物理边界场特征[J].地球物理学报, 62(9):3296-3320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201909008
    滕吉文, 杨顶辉, 田小波, 等, 2019b.青藏高原深部地球物理探测70年[J].中国科学:地球科学, 49(10):1546-1564. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201910004
    万建华, 熊盛青, 范正国, 2012.航空伽马能谱测量方法技术现状与展望[J].物探与化探, 36(3):386-391. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201203012
    王德发, 王乃东, 张永军, 等, 2013.青藏高原及邻区航磁系列图及说明书[M].北京:地质出版社.
    王静波, 熊盛青, 周锡华, 等, 2009.航空重力测量系统研究进展[J].物探与化探, 33(4):368-373. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200904002
    王静波, 熊盛青, 郭志宏, 等, 2012.航空重力数据Kalman滤波平滑技术应用研究[J].地球物理学进展, 27(4):1717-1722. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201204052
    王静波, 熊盛青, 罗锋, 等, 2020.航空重力测量数据的小波滤波处理[J].物探与化探, 44(2):300-312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht202002009
    王林飞, 熊盛青, 何辉, 等, 2011.非地震地球物理软件发展现状与趋势[J].物探与化探, 35(6):837-844. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201106027
    王林飞, 薛典军, 何辉, 等, 2013.插件技术在GeoProbe地球物理软件平台中的应用[J].物探与化探, 37(3):547-551. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201303032
    王乃东, 2004.中国及其毗邻海域航空磁力ΔT异常图(1:500万)[M].北京:地质出版社.
    王平, 戴丽君, 1992.提取油气田伽玛能谱弱异常方法研究[J].长春地质学院学报, 22(1):109-114.
    王平, 熊盛青, 1997.油气放射性勘查的原理方法与应用[M].北京:地质出版社.
    王泰涵, 于平, 马国庆, 等, 2019.磁张量梯度数据方向解析信号比值的边界识别和空间位置反演方法[J].地球物理学报, 62(10):3723-3733. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201910007
    王卫平, 王越胜, 1999.航空电磁法在黄河口地区寻找浅层淡水的地质效果[J].物探与化探, 23(2):115-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht199902008
    王卫平, 徐东宸, 1999.航空物探综合测量在我国东部沿海地区水工环勘查中的应用[J].物探与化探, 23(5):321-325. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht199905001
    王卫平, 王守坦, 周锡华, 等, 2011.频率域航空电磁法及应用[M].北京:地质出版社.
    武欣, 薛国强, 方广有, 2019.中国直升机航空瞬变电磁探测技术进展[J].地球物理学进展, 34(4):1679-1686. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201904050
    相丽娜, 王志宏, 孙栋华, 等, 2018.航电在高山区找矿快速突破中的应用[J].物探与化探, 42(2):225-233. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201802001
    熊盛青, 1992.八十年代国外放射性方法勘查油气的某些进展[J].航空物探技术(2):55.
    熊盛青, 杨蓓, 范正国, 1993. IBM-4341计算机航空伽玛能谱解释处理系统及应用[J].物探化探计算技术, 15(1):54-59.
    熊盛青, 1998.航空伽玛能谱异常解释中地形影响及校正方法研究[J].地学前缘, 15(1-2):341.
    熊盛青, 1999.我国航空物探现状与展望[J].中国地质(9):18-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900048806
    熊盛青, 周伏洪, 姚正煦, 等, 2001a.青藏高原中西部航磁概查取得重要成果[J].中国地质, 28(2):21-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200102005
    熊盛青, 周伏洪, 姚正煦, 等, 2001b.青藏高原中西部航磁调查[M].北京:地质出版社.
    熊盛青, 2002.航空物探"九五"进展综述[J].物探与化探, 26(1):1-5, 16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200201001
    熊盛青, 陈斌, 于长春, 等, 2006.地下煤层自燃遥感与地球物理探测技[M].北京:地质出版社.
    熊盛青, 2007. "十五"以来我国航空物探进展与展望[J].物探与化探, 31(6):479-484. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200706001
    熊盛青, 周伏洪, 姚正煦, 等, 2007.青藏高原中西部航磁概查[J].物探与化探, 31(5):404-407. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200705005
    熊盛青, 于长春, 王卫平, 等, 2008.直升机大比例尺航空物探在深部找矿中的应用前景[J].地球科学进展, 23(3):270-275. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200803007
    熊盛青, 2009a.发展中国航空物探技术有关问题的思考[J].中国地质, 36(6):1366-1374. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200906018
    熊盛青, 2009b.我国航空重磁勘探技术现状与发展趋势[J].地球物理学进展, 24(1):113-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz200901013
    熊盛青, 于长春, 睢素文, 等, 2009.中高山区高精度航磁方法技术[M].北京:地质出版社.
    熊盛青, 周锡华, 郭志宏, 等, 2010a.航空重力勘探理论方法及应用[M].北京:地质出版社, .
    熊盛青, 陈斌, 赵百民, 等, 2010b.航空磁测技术规范: DZ/T 0142-2010[S].北京: 中国标准化出版社.
    熊盛青, 丁燕云, 李占奎, 2012.西藏地区重磁场特征及藏东构造格局新认识[J].地质论评, 58(2):201-207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201202001
    熊盛青, 于长春, 2013.地下煤层自燃区岩石磁性增强特征及机理研究:以内蒙古乌达和宁夏汝萁沟煤矿为例[J].地球物理学报, 56(8):2827-2836.
    熊盛青, 范正国, 张洪瑞, 等, 2013.中国陆域航磁系列图及说明书(1:500万)[M].北京:地质出版社.
    熊盛青, 丁燕云, 李占奎, 2014a.西藏及西南三江深断裂构造格局新认识[J].地球物理学报, 57(12):4097-4109.
    熊盛青, 丁燕云, 李占奎, 2014b.中国陆域磁性基底深度及其特征[J].地球物理学报, 57(12):3981-3993.
    熊盛青, 丁燕云, 李占奎, 2015a.中国陆域磁性基底深度图(1:250万)[M].北京:地质出版社.
    熊盛青, 丁燕云, 李占奎, 2015b.中国陆域区域构造图(1:250万)[M].北京:地质出版社.
    熊盛青, 范正国, 张洪瑞, 2015c.中国陆域航磁系列图及说明书(1:250万)[M].北京:地质出版社.
    熊盛青, 范正国, 黄旭钊, 等, 2015d.中国陆域磁性铁矿资源潜力预测图及说明书[M].北京:地质出版社.
    熊盛青, 丁燕云, 李占奎, 等, 2016a.中国陆域航磁特征与地质构造研究:基于1:100万航磁资料解释[M].北京:地质出版社.
    熊盛青, 杨海, 丁燕云, 等, 2016b.中国陆域居里等温面深度特征[J].地球物理学报, 59(10):3604-3617. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201610008
    熊盛青, 周锡华, 薛典军, 等, 2018a.航空地球物理综合探测理论技术方法装备应用[M].北京:地质出版社.
    熊盛青, 杨海, 丁燕云, 等, 2018b.中国航磁大地构造单元划分[J].中国地质, 45(4):658-680. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201804003
    熊盛青, 周道卿, 曹宝宝, 等, 2020, 羌塘盆地中央隆起带的重磁场证据及其构造意义[J].地球物理学报, 63(9):3491-3504. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb202009022
    徐世浙, 2004.将航磁异常从飞行高度向下延拓至地形线[J].地球物理学报, 47(6):1127-1130. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb200406028
    徐世浙, 王瑞, 周坚鑫, 等, 2007.从航磁资料延拓出海面磁场[J].海洋学报, 29(6):53-57.
    杨光庆, 朱英, 1955.航空磁法测量简介[J].地质知识(6):28-29.
    杨光庆, 1959.航空物探-地质勘探的侦察兵[J].地质月刊(10):76-77.
    杨光庆, 朱英, 1979.中国地质普查勘探中的航空磁测工作[J].地球物理学报, 22(4):374-382.
    杨光庆, 石青云, 于百川, 1994.中国航空物探的现状和发展[J].地球物理学报, 37(S1):367-377. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HY000001807520
    杨华, 梁月明, 2013.全国航磁ΔT异常与中国地学断块构造[J].物探与化探, 37(6):957-967.
    杨海, 赵廷严, 李诗珺, 等, 2019.秦岭华阳川地区航空伽马能谱异常特征及铀找矿方向[J].中国地质, 46(3):651-661. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201903017
    杨文采, 王家林, 钟慧智, 等, 2012.塔里木盆地航磁场分析与磁源体结构[J].地球物理学报, 55(4):1278-1287. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201204023
    杨文采, 于常青, 2014.从地壳上地幔构造看大陆碰撞作用(上)[J].地质论评, 60(2):237-259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201402001
    殷长春, 齐彦福, 刘云鹤, 等, 2014.频率域航空电磁数据变维数贝叶斯反演研究[J].地球物理学报, 57(9):2971-2980.
    殷长春, 张博, 刘云鹤, 等, 2015a.航空电磁勘查技术发展现状及展望[J].地球物理学报, 58(8):2637-2653. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201508005
    殷长春, 张博, 刘云鹤, 等, 2015b. 2.5维起伏地表条件下时间域航空电磁正演模拟[J].地球物理学报, 58(4):1411-1424. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201504027
    殷长春, 缪佳佳, 刘云鹤, 等, 2016.时间域航空电磁法激电效应对电磁扩散的影响[J].地球物理学报, 59(12):4710-4719. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201612030
    殷长春, 朱姣, 邱长凯, 等, 2018.航空电磁拟三维模型空间约束反演[J].地球物理学报, 61(6):2537-2547. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201806031
    于百川, 1990.我国航空放射性测量的进展[J].铀矿地质, 6(2):99-103, 119.
    于百川, 1992.中国和世界几个主要国家航空γ能谱测量评述[J].国外铀金地质(4):64-72, 93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000858502
    于长春, 范正国, 王乃东, 等, 2007.高分辨率航磁方法及在大冶铁矿区的应用[J].地球物理学进展, 22(3):979-983. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz200703048
    于长春, 熊盛青, 刘士毅, 等, 2010.直升机航磁方法在大冶铁矿区深部找矿中的见矿实例[J].物探与化探, 34(4):435-439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht201004004
    余海龙, 徐世浙, 李海侠, 等, 2011.曲面上航磁异常与梯度分量的转换方法[J].浙江大学学报(工学版), 45(2):397-403.
    袁桂琴, 熊盛青, 孟庆敏, 等, 2011.地球物理勘查技术与应用研究[J].地质学报, 85(11):1744-1805. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201111003
    翟甲森, 1992.第二代航空物探方法技术及应用研究[J].物探与化探, 16(5):398-400, 344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0900320816
    张昌达, 2013.重磁与时间域电磁法发展趋势研究[M].武汉:中国地质大学出版社有限责任公司.
    张楠, 吴燕冈, 周帅, 等, 2019.基于地质体空间位置优化约束的航空重力梯度数据三维物性反演[J].地球物理学报, 62(4):1515-1525. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201904027
    张文斌, 熊盛青, 1990.一种有用的解释参数:航空伽玛能谱变异系数[J].物探与化探, 14(4):276-284. http://www.cqvip.com/Main/Detail.aspx?id=383083
    张文斌, 于长春, 周锡华, 2007.一种新的航空伽马能谱测量数据改正方法[J].物探与化探, 31(2):143-148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200702011
    张先, 赵丽, 2003.青藏高原航磁异常及居里面研究[J].大地测量与地球动力学, 23(4):14-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz200304004
    章晔, 华荣洲, 石柏慎, 1990.放射性方法勘查[M].北京:原子能出版社.
    张永明, 盛君, 张贵宾, 2006.航空重力测量技术的现状及应用[J].勘探地球物理进展, 29(2):94-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ktdqwljz200602004
    赵希刚, 吴汉宁, 杨建军, 等, 2007.砂岩型铀矿航空伽马能谱数据微弱信息增强的地质意义[J].中国地质, 34(3):478-485. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200703017
    郑崴, 张贵宾, 2016.自适应卡尔曼滤波在航空重力异常解算的应用研究[J].地球物理学报, 59(4):1275-1283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201604010
    周道卿, 谭林, 谭捍东, 等, 2010.频率域吊舱式直升机航空电磁资料的马奎特反演[J].地球物理学报, 53(2):421-427. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201002020
    周伏洪, 姚正煦, 刘振军, 等, 2002.青藏高原中部北北东向深部负磁异常带的成因及其意义[J].物探与化探, 26(1):12-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200201003
    周锡华, 乔广志, 2002.新一代航空多道伽马能谱仪的引进和初步应用[J].物探与化探, 26(4):318-320, 324. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht200204019
    周锡华, 姜作喜, 屈进红, 等, 2015.起伏飞行在航空重力测量的应用研究[J].物探与化探, 39(S1):98-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtyht2015z1021
    朱卫平, 熊盛青, 薛典军, 等, 2014.航空物探遥感联合探测技术现状及应用前景[J].地球物理学进展, 29(5):2356-2363. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxhjs201610255
    朱英, 1989.塔里木盆地东缘的若干大地构造问题[J].地球物理学报, 32(4):399-408.
    朱英, 2013.中国及邻区大地构造和深部构造纲要:全国1:100万航磁异常图的初步解释[M]. 2版.北京:地质出版社.
    卓松年, 1985.开展第二代航空物探调查提高地质找矿效果[J].中国地质(7):3-7.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  626
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-02
  • 修回日期:  2020-08-28
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回