Internal and external factors in continental lithosphere mantle replacement in eastern China
-
摘要: 克拉通大陆通常有古老、巨厚且难熔的岩石圈地幔。这种地幔高度亏损玄武质组分,有密度低、刚性程度高的特点,能长期漂浮于软流圈之上而稳定存在。中国东部大陆主要由华北和华南两个古老地块在古生代—早中生代沿中央造山带拼合形成,在晚中生代时强烈活化,表现为构造变形、盆地形成、岩浆活动、巨量成矿等,其深部原因是什么?在分析东部大陆形成过程和岩石圈地幔属性基础上发现:块体初始规模小且发育薄弱带,后期容易受改造;特别是显生宙以来中国大陆受周边多个构造域夹持,板块俯冲作用会引起软流圈物质扰动和上涌并沿薄弱带侵蚀和改造上覆岩石圈,使之发生有效减薄、明显再富集和最终地幔置换。改造和置换后的岩石圈地幔富含玄武质组分,有较高密度和较低刚性程度,容易发生变形和部分熔融,使克拉通大陆活化。因此,块体规模大小并发育薄弱带以及周边构造环境是大陆稳定性控制重要的内、外在因素;中国东部大陆岩石圈显生宙强烈活化和地幔置换是由于块体规模较小而且周边多体系俯冲作用等内、外在有利因素协同作用下的结果。Abstract: Cratonic continent usually has an ancient, thick and refractory lithosphere mantle. Depleted basaltic composition, low density and high rigidity make the cratonic lithosphere float above the asthenosphere enclosure and exist stably for a long time. The eastern China continent was formed through the collision of the North and South China blocks along the Qinling-Dabie-Sulu Orogenic Belt during the Paleozoic and the early Mesozoic, and was reactive in the Phanerozoic, especially in the late Mesozoic. Since then, the eastern China continent showed the charateristics of strong tectonic deformation, basin formation, magmatism and massive mineralization. What are the deep reasons which caused these effects? Based on the analysis of formation and evolution of the eastern continent and the properties of the lithosphere mantle, it can be found that the initial scale of the block was small, and the developed zones were weak and easily affected by later transformation. Especially since the Phanerozoic, the Chinese mainland has been clamped by several surrounding tectonic domains, and the asthenospheric upwellings caused by subductions in different stages and directions have eroded along the weak zones and reformed the overlying lithosphere. These effects led to the thinning lithosphere, significant re-enrichment and ultimate mantle replacement. After the transformation and replacement, the lithosphere mantle that was enriched in basaltic components and had high density and low rigidity, was prone to deformation and partial melting, which made the stable cratonic continent activated. The block scale, internal weak zones and surrounding tectonic environment are, therefore, important internal and external factors in controlling continental stability. The lithospheric evolution of eastern China in the Phanerozoic reflects comprehensive records of these favorable factors.
-
Key words:
- lithosphere /
- mantle replacement /
- internal factor /
- external factor /
- eastern China
-
图 1 主要构造单元分布简图
a—全球(Furnes et al., 2015);b—中国东部(翟明国,2019)
Figure 1. Sketch of the distribution of main structural units
图 2 华北、华南陆块前寒武纪基底岩石和捕虏体取样位置简图(构造划分引自文献Zhao et al., 2001, 2012)
a—华北陆块;b—华南陆块;CCSD-PP1—大陆科学钻探先导孔
Figure 2. Sampling locations of Precambrian basement rocks and xenoliths in North and South China Blocks (The structural division is cited from Zhao et al., 2001, 2012)
图 3 华北、华南陆块不同位置地幔橄榄石Mg#特征对比图(郑建平等,2019)
a—华北陆块;b—华南陆块
Figure 3. A comparison map of mantle olivine Mg# characteristics from different locations in North and South China Blocks (Zheng et al., 2019)
图 4 地幔单斜辉石(La/Yb)N-Ti/Eu相关性及交代介质性质对比(郑建平等,2019)
a—华北陆块;b—华南陆块
Figure 4. Plots of (La/Yb)N vs.Ti/Eu of mantle clinopyroxene and comparison of relative metasomatism agents from different locations in North and South China Blocks (Zheng et al., 2019)
图 5 不同厚度岩石圈地幔再富集过程难易对比(Zheng et al., 2015)
1—薄岩石圈(如 < 225 km)之下的软流圈易于熔融并引起上覆岩石圈的交代再富集;2—厚的岩石圈(如>250 km)的下伏软流圈不易熔融, 难以改造岩石圈性质
Figure 5. Complexity comparison of the reenrichment process of lithosphere mantle with different thickness(Zheng et al., 2015)
图 6 (古)太平洋板块俯冲与后撤引起中国东部大陆深部过程和浅部响应(郑建平等,2018)
T.L.F.—郯庐断裂带
a—~160 Ma, 古太平洋板片在局部地区开始俯冲, 驱赶软流圈物质上涌;b—~140 Ma, 西太平洋板片开始大规模的北西向俯冲, 中国东部全面进入弧后拉张阶段, 板片俯冲引起的上涌软流圈强烈侵蚀上覆的深部古老岩石圈地幔, 其中岩石圈断裂带是侵蚀作用有利区域, 岩石圈地幔发生显著减薄;c—~110 Ma以来, 俯冲带持续后撤, 中国东部逐渐远离俯冲带, 降温的软流圈转变为深部新增生的岩石圈, 实现岩石圈地幔置换和小幅增厚; 浅部地壳因拉张作用而发生持续伸展, 形成断陷盆地Figure 6. Subductions and roll backs of the Paleo-Pacific plate result in deep processes and shallow responding in the eastern China continent (Zheng et al., 2018)
-
CARLSON R W, PEARSON D G, BOYD F R, et al., 1999. Re-Os systematics of lithospheric peridotites: Implications for lithosphere formation and preservation[C]//7th international kimberlite conference. Cape Town: Red Roof Design: 99-108. CARLSON R W, PEARSON D G, JAMES D E, 2005. Physical, chemical, and chronological characteristics of continental mantle[J]. Reviews of Geophysics, 43(1):RG1001, doi: 10.1029/2004RG000156. CHEN C F, LIU Y S, FOLEY S F, et al., 2016. Paleo-Asian oceanic slab under the North China craton revealed by carbonatites derived from subducted limestones[J]. Geology, 44(12):1039-1042. doi: 10.1130/G38365.1 CHEN L, CHENG C, WEI Z G, 2009. Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton[J]. Earth and Planetary Science Letters, 286(1-2):171-183. doi: 10.1016/j.epsl.2009.06.022 CHEN Y, SU B, CHU Z Y, 2017. Modification of an ancient subcontinental lithospheric mantle by continental subduction:Insight from the Maowu garnet peridotites in the Dabie UHP belt, eastern China[J]. Lithos, 278-281:54-71. CHOUGH S K, SOHN Y K, 2010. Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula:New view[J]. Earth-Science Reviews, 101(3-4):225-249. doi: 10.1016/j.earscirev.2010.05.004 CHUNG S L, CHENG H, JAHN B M, et al., 1997a. Major and trace element, and Sr-Nd isotope constraints on the origin of Paleogene volcanism in South China prior to the South China Sea opening[J]. Lithos, 40(2-4):203-220. doi: 10.1016/S0024-4937(97)00028-5 CHUNG S L, LEE T Y, LO C H, et al., 1997b. Intraplate extension prior to continental extrusion along the Ailao Shan-Red River shear zone[J]. Geology, 25(4):311-314. doi: 10.1130/0091-7613(1997)025<0311:IEPTCE>2.3.CO;2 COLTORTI M, BONADIMAN C, HINTON R W, et al., 1999. Carbonatite metasomatism of the oceanic upper mantle:evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean[J]. Journal of Petrology, 40(1):133-165. doi: 10.1093/petroj/40.1.133 DAI H K, ZHENG J P, XIONG Q, et al., 2019. Fertile Lithospheric mantle underlying ancient continental crust beneath the northwestern North China craton:significant effect from the southward subduction of the Paleo-Asian Ocean[J]. GSA Bulletin, 131(1-2):3-20, doi: 10.1130/B31871.1. DAVIS G A, ZHENG Y D, WANG C, et al., 2001. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China[M]//HENDRIX M S, DAVIS G A. Paleozoic and mesozoic tectonic evolution of central and Eastern Asia: from continental assembly to intracontinental deformation. Boulder, Colorado: Geological Society of America Memoir, 171-197. DENG J F, MO X X, ZHAO H L, et al., 1994. Lithosphere root/de-rooting and activation of the East China continent[J]. Geoscience, 8(3):349-356. (in Chinese with English abstract) DENG J F, ZHAO G C, SU S G, et al., 2005. Structure overlap and tectonic setting of Yanshan orogenic belt in Yanshan Era[J]. Geotectonica et Metallogenia, 29(2):157-165. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200502001 DONG Y P, ZHANG G W, HAUZENBERGER C et al., 2011. Palaeozoic tectonics and evolutionary history of the Qinling orogen:Evidence from geochemistry and geochronology of ophiolite and related volcanic rocks[J]. Lithos, 122(1-2):39-56. doi: 10.1016/j.lithos.2010.11.011 FUKAO Y, OBAYASHI M, NAKAKUKI T, et al., 2009. Stagnant slab:a review[J]. Anneal Review of Earth and Planetary Sciences, 37:19-46. doi: 10.1146/annurev.earth.36.031207.124224 FURNES H, DILEK Y, DE WIT M, 2015. Precambrian greenstone sequences represent different ophiolite types[J]. Gondwana Research, 27(2):649-685. doi: 10.1016/j.gr.2013.06.004 GAO S, LING W L, QIU Y M, et al., 1999. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton:Evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 63(13-14):2071-2088. doi: 10.1016/S0016-7037(99)00153-2 GAO S, RUDNICK R L, CARLSON R W, et al., 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton[J]. Earth and Planetary Science Letters, 198(3-4):307-322. doi: 10.1016/S0012-821X(02)00489-2 GAO S, ZHANG B R, GU X M, et al., 1995. Silurian-Devonian provenance changes of South Qinling basins:implications for accretion of the Yangtze (South China) to the North China cratons. Tectonophysics, 250(1-3):183-197. doi: 10.1016/0040-1951(95)00051-5 GRIFFIN W L, O'REILLY S Y, RYAN C G, 1999. The composition and origin of sub-continental lithospheric mantle[M]//FEI Y W, BERTKA C M, MYSEN B O. Mantle petrology: field observations and high-pressure experimentation. Stony Brook: The Geochemical Society: 13-45. GUO J L, GAO S, WU Y B, et al., 2014.3.45 Ga granitic gneisses from the Yangtze Craton, South China:Implications for Early Archean crustal growth[J]. Precambrian Research, 242:82-95. doi: 10.1016/j.precamres.2013.12.018 HALL R, 1996. Reconstructing Cenozoic SE Asia[J]. Geological Society, London, Special Publications, 106(1):153-184. doi: 10.1144/GSL.SP.1996.106.01.11 HE L J, 2015. Thermal regime of the North China Craton:implications for craton destruction[J]. Earth-Science Reviews, 140:14-26. doi: 10.1016/j.earscirev.2014.10.011 HERZBERG C, 2004. Geodynamic information in peridotite petrology[J]. Journal of Petrology, 45(12):2507-2530. doi: 10.1093/petrology/egh039 HERZBERG C, RUDNICK R, 2012. Formation of cratonic lithosphere:an integrated thermal and petrological model[J]. Lithos, 149:4-15. doi: 10.1016/j.lithos.2012.01.010 HUANG J L, ZHAO D P, 2006. High-resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research:Solid Earth, 111(B9):B09305. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d9e8da1e9c0b55380dcff40b5e598512 HUANG S Q, DONG S W, HU J M, et al., 2016. The formation and tectonic evolution of the Mongol-Okhotsk belt[J]. Acta Geologica Sinica, 90(9):2192-2205. (in Chinese with English abstract) http://www.en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DZXE201609011&dbcode=CJFD&year=2016&dflag=pdfdown HUANG Z X, LI H Y, ZHENG Y J, et al., 2009. The lithosphere of North China Craton from surface wave tomography[J]. Earth and Planetary Science Letters, 288(1-2):164-173. doi: 10.1016/j.epsl.2009.09.019 KLOOTWIJK C T, CONAGHAN P J, POWELL C M, 1985. The Himalayan Arc:large-scale continental subduction, oroclinal bending and back-arc spreading[J]. Earth and Planetary Science Letters, 75(2-3):167-183. doi: 10.1016/0012-821X(85)90099-8 KRAVCHINSKY V A, COGNÉ J P, HARBERT W P, et al., 2002. Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia[J]. Geophysical Journal International, 148(1):34-57. doi: 10.1046/j.1365-246x.2002.01557.x KURITANI T, OHTANI E, KIMURA J I, 2011. Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation[J]. Nature Geoscience, 4(10):713-716. doi: 10.1038/ngeo1250 KUSKY T M, WINDLEY B F, WANG L, et al., 2014. Flat slab subduction, trench suction, and craton destruction:Comparison of the North China, Wyoming, and Brazilian cratons[J]. Tectonophysics, 630:208-221. doi: 10.1016/j.tecto.2014.05.028 LEBEDEV S, NOLET G, 2003. Upper mantle beneath Southeast Asia from S velocity tomography[J]. Journal of Geophysical Research:Solid Earth, 108(B1):2048. LEE C T A, 2003. Compositional variation of density and seismic velocities in natural peridotites at STP conditions:implications for seismic imaging of compositional heterogeneities in the upper mantle[J]. Journal of Geophysical Research:Solid Earth, 108(B9):2441, doi: 10.1029/2003JB002413. LEE C T A, 2006. Geochemical/petrologic constraints on the origin of cratonic mantle[M]//BENN K, MARESCHAL J C, CONDIE L C. Archean geodynamics and environments. Washington: Geophysical Monograph Series: 89-114. LEE C T A, LUFFI P, CHIN E J, 2011. Building and destroying continental mantle[J]. Annual Review of Earth and Planetary Sciences, 39:59-90. doi: 10.1146/annurev-earth-040610-133505 LEE C T, YIN Q Z, RUDNICK R L, et al., 2001. Preservation of ancient and fertile lithospheric mantle beneath the southwestern United States[J]. Nature, 411(6833):69-73. doi: 10.1038/35075048 LI J Y, ZHENG J, LIU J F, et al., 2019. Crustal tectonic framework of China and its formation processes:constraints from stuctural deformation[J]. Journal of Geomechanics, 25(5):678-698. (in Chinese with English abstract) LI L, SANTOSH M, LI S R, 2015a. The 'Jiaodong type' gold deposits:Characteristics, origin and prospecting[J]. Ore Geology Reviews, 65:589-611. doi: 10.1016/j.oregeorev.2014.06.021 LI S G, JAGOUTZ E, CHEN Y Z, et al., 2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China[J]. Geochimica et Cosmochimica Acta, 64(6):1077-1093. doi: 10.1016/S0016-7037(99)00319-1 LI T D, 2010. Principal characteristics of the lithosphere of China[J]. Earth Science Frontiers, 17(3):1-13. (in Chinese with English abstract) LI X H, LI W X, LI Z X, et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in south china:constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174(1-2):117-128. doi: 10.1016/j.precamres.2009.07.004 LI X Y, ZHENG J P, SUN M, et al., 2014. The cenozoic lithospheric mantle beneath the interior of south china block:constraints from mantle xenoliths in guangxi province[J]. Lithos, 210-211:14-26. doi: 10.1016/j.lithos.2014.09.028 LI Y, YANG J S, DILEK Y, et al., 2015b. Crustal architecture of the Shangdan suture zone in the early Paleozoic Qinling orogenic belt, China:Record of subduction initiation and backarc basin development[J]. Gondwana Research, 27(2):733-744. doi: 10.1016/j.gr.2014.03.006 LI Z, LIU S F, ZHANG J F, et al., 2003. Typical basin-fill sequences and basin migration in Yanshan, North China[J]. Science in China Series D:Earth Sciences, 47(2):181-192. LI Z X, LI X H, KINNY P D, et al., 1999. The breakup of Rodinia:did it start with a mantle plume beneath South China?[J]. Earth and Planetary Science Letters, 173(3):171-181. doi: 10.1016/S0012-821X(99)00240-X LIN A B, ZHENG J P, PENG S K, 2018. Nature and processes of microcontinents:Primary derivation for the heterogeneity of lithospheric mantle beneath northeastern China[J]. Acta Petrologica Sinica, 34(1):143-156. (in Chinese with English abstract) LIU C Z, LIU Z C, WU F Y, et al., 2012a. Mesozoic accretion of juvenile sub-continental lithospheric mantle beneath South China and its implications:geochemical and Re-Os isotopic results from Ningyuan mantle xenoliths[J]. Chemical Geology, 291:186-198. doi: 10.1016/j.chemgeo.2011.10.006 LIU C Z, WU F Y, SUN J, et al., 2012b. The Xinchang peridotite xenoliths reveal mantle replacement and accretion in southeastern China[J]. Lithos, 150:171-187. doi: 10.1016/j.lithos.2012.03.019 LIU D Y, NUTMAN A P, COMPSTON W, et al., 1992. Remnants of ≥ 3800 Ma crust in the Chinese part of the Sino-Korean craton[J]. Geology, 20(4):339-342. doi: 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2 LIU J G, RUDNICK R L, WALKER R J, et al., 2011. Mapping lithospheric boundaries using Os isotopes of mantle xenoliths:An example from the North China Craton[J]. Geochimica et Cosmochimica Acta, 75(13):3881-3902. doi: 10.1016/j.gca.2011.04.018 LIU S F, LI Z, ZHANG J F, 2004. Evolution and tectonic system of Mesozoic basins in Yanshan area[J]. Science in China Series D Earth Sciences, 47(S2):24-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb-e201502003 LIU Y S, GAO S, HU Z C, et al., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2):537-571. doi: 10.1093/petrology/egp082 MAO J W, XIE G Q, ZHANG Z H, et al., 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings[J]. Acta Petrologica Sinica, 21(1):169-188. (in Chinese with English abstract) MARUYAMA S, ISOZAKI Y, KIMURA G, et al., 2006. Paleogeographic maps of the Japanese Islands:Plate tectonic synthesis from 750 Ma to the present[J]. Island Arc, 6(1):121-142. MENG Q R, ZHANG G W, 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China. Tectonophysics, 323(3-4):183-196. doi: 10.1016/S0040-1951(00)00106-2 METCALFE I, 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments:the Korean Peninsula in context[J]. Gondwana Research, 9(1-2):24-46. doi: 10.1016/j.gr.2005.04.002 NORTHRUP C J, ROYDEN L H, BURCHFIEL B C, 1995. Motion of the Pacific Plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia[J]. Geology, 23(8):719-722, doi:10.1130/0091-7613(1995)023<0719:Motppr>2.3.Co;2. PARK Y, JUNG H, 2015. Deformation microstructures of olivine and pyroxene in mantle xenoliths in Shanwang, eastern China, near the convergent plate margin, and implications for seismic anisotropy[J]. International Geology Review, 57(5-8):629-649. doi: 10.1080/00206814.2014.928240 PEARSON D G, WITTIG N, 2008. Formation of Archaean continental lithosphere and its diamonds:The root of the problem[J]. Journal of the Geological Society, 165(5):895-914. doi: 10.1144/0016-76492008-003 PING X Q, ZHENG J P, TANG H Y, et al., 2018. Hadean continental crust in the southern North China Craton:evidence from the Xinyang felsic granulite xenoliths[J]. Precambrian Research, 307:155-174. doi: 10.1016/j.precamres.2017.10.011 RAPP R P, NORMAN M D, LAPORTE D, et al., 2010. Continent formation in the Archean and chemical evolution of the cratonic lithosphere:melt-rock reaction experiments at 3-4 GPa and petrogenesis of Archean Mg-diorites (Sanukitoids)[J]. Journal of Petrology, 51(6):1237-1266. doi: 10.1093/petrology/egq017 REISBERG L, ZHI X C, LORAND J P, et al., 2005. Re-Os and S systematics of spinel peridotite xenoliths from east central China:Evidence for contrasting effects of melt percolation[J]. Earth and Planetary Science Letters, 239(3-4):286-308. doi: 10.1016/j.epsl.2005.09.010 REN J Y, TAMAKI K, LI S T, et al., 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics, 344(3-4):175-205. doi: 10.1016/S0040-1951(01)00271-2 RUDNICK R L, GAO S, LING W L, et al., 2004. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton[J]. Lithos, 77(1-4):609-637. doi: 10.1016/j.lithos.2004.03.033 SAFONOVA I Y, SANTOSH M, 2014. Accretionary complexes in the Asia-Pacific region:Tracing archives of ocean plate stratigraphy and tracking mantle plumes[J]. Gondwana Research, 25(1):126-158. doi: 10.1016/j.gr.2012.10.008 SHU L S, 2012. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 31(7):1035-1053. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201207003 SIMON N S C, CARLSON R W, PEARSON D G, et al., 2007. The origin and evolution of the Kaapvaal cratonic lithospheric mantle[J]. Journal of Petrology, 48(3):589-625. doi: 10.1093/petrology/egl074 SUN J, LIU C Z, WU F Y, et al., 2012. Metasomatic origin of clinopyroxene in Archean mantle xenoliths from Hebi, North China Craton:Trace-element and Sr-isotope constraints[J]. Chemical Geology, 328:123-136. doi: 10.1016/j.chemgeo.2012.03.014 SUN M D, XU Y G, WILDE S A, et al., 2015. The Permian Dongfanghong island-arc gabbro of the Wandashan Orogen, NE China:Implications for Paleo-Pacific subduction[J]. Tectonophysics, 659:122-136. doi: 10.1016/j.tecto.2015.07.034 SUN W D, DING X, HU Y H, et al., 2017. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 26(3-4):533-542. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1aee9e14fa7783e2139e98e70415a4b0 TANG Y C, OBAYASHI M, NIU F L, et al., 2014. Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling[J]. Nature Geoscience, 7(6):470-475. doi: 10.1038/ngeo2166 TANG Y J, ZHANG H F, YING J F, et al., 2013. Widespread refertilization of cratonic and circum-cratonic lithospheric mantle[J]. Earth-Science Reviews, 118:45-68. doi: 10.1016/j.earscirev.2013.01.004 TAPPONNIER P, MOLNAR P, 1976. Slip-line field theory and large-scale continental tectonics[J]. Nature, 1976, 264(5584):319-324. doi: 10.1038/264319a0 TOMURTOGOO O, WINDLEY B F, KRÖNER A, et al., 2005. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia:constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen[J]. Journal of the Geological Society, 162(1):125-134. doi: 10.1144/0016-764903-146 WAN Y S, LIU D Y, WANG W, et al., 2011. Provenance of Meso-to Neoproterozoic cover sediments at the Ming Tombs, Beijing, North China Craton:An integrated study of U-Pb dating and Hf isotopic measurement of detrital zircons and whole-rock geochemistry[J]. Gondwana Research, 20(1):219-242. doi: 10.1016/j.gr.2011.02.009 WANG C M, DENG J, SANTOSH M, et al., 2015. Timing, tectonic implications and genesis of gold mineralization in the Xincheng gold deposit, China:C-H-O isotopes, pyrite Rb-Sr and zircon fission track thermochronometry[J]. Ore Geology Reviews, 65:659-673. doi: 10.1016/j.oregeorev.2014.04.022 WANG Q C, LIU J S, DU Z L, et al., 2009a. Tectonic framework and deep structure of South China and their constraint to oil-gas field distribution[J]. Acta Geologica Sinica, 83(1):170-178. doi: 10.1111/j.1755-6724.2009.00019.x WANG T, ZHENG Y D, ZHANG J J, et al., 2011. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia:Perspectives from metamorphic core complexes[J]. Tectonics, 30(6):TC6007. WANG W, ZHOU M F, YAN D P, et al., 2012. Depositional age, provenance, and tectonic setting of the Neoproterozoic Sibao Group, southeastern Yangtze Block, South China[J]. Precambrian Research, 192-195:107-124. doi: 10.1016/j.precamres.2011.10.010 WANG W, ZHOU M F, YAN D P, et al., 2013. Detrital zircon record of Neoproterozoic active-margin sedimentation in the eastern Jiangnan Orogen, South China[J]. Precambrian Research, 235:1-19. doi: 10.1016/j.precamres.2013.05.013 WANG X C, LI X H, LI W X, et al., 2007. Ca.825 Ma komatiitic basalts in South China:First evidence for > 1500℃ mantle melts by a Rodinian mantle plume[J]. Geology, 35(12):1103-1106. doi: 10.1130/G23878A.1 WANG X C, LI X H, LI W X, et al., 2009b. Variable involvements of mantle plumes in the genesis of mid-Neoproterozoic basaltic rocks in South China:A review[J]. Gondwana Research, 15(3-4):381-395. doi: 10.1016/j.gr.2008.08.003 WANG Y C, DONG S W, SHI W, et al., 2016. An analysis of late mesozoic tectonic evolution process in Northern China:based on basin sedimentary records in northern Taihang mountains[J]. Acta Geoscientica Sinica, 37(1):35-45. (in Chinese with English abstract) WINDLEY B F, ALEXEIEV D, XIAO W J, et al., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164(1):31-47. doi: 10.1144/0016-76492006-022 WU F Y, WALKER R J, REN X W, et al., 2003. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China[J]. Chemical Geology, 196(1-4):107-129. doi: 10.1016/S0009-2541(02)00409-6 WU Y B, HANCHAR J M, GAO S, et al., 2009. Age and nature of eclogites in the Huwan shear zone, and the multi-stage evolution of the Qinling-Dabie-Sulu orogen, central China[J]. Earth and Planetary Science Letters, 277(3-4):345-354. doi: 10.1016/j.epsl.2008.10.031 WU Y B, ZHENG Y F, 2013. Tectonic evolution of a composite collision orogen:An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China[J]. Gondwana Research, 23(4):1402-1428. doi: 10.1016/j.gr.2012.09.007 XIA Q K, XING L B, FENG M, et al., 2010. Water content and element geochemistry of peridotite xenoliths hosted by Early-Jurassic basalt in Ningyuan, Hunan Province[J]. Acta Petrologica et Mineralogica, 29(2):113-124. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201002001 XIANG L, ZHENG J P, SIEBEL W, et al., 2018. Unexposed Archean components and complex post-Archean accretion/reworking processes beneath the southern Yangtze Block revealed by zircon xenocrysts from the Paleozoic lamproites, South China[J]. Precambrian Research, 316:174-196. doi: 10.1016/j.precamres.2018.08.003 XIAO W J, WINDLEY B F, SUN S, et al., 2015. A tale of amalgamation of three permo-triassic collage systems in central Asia:oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 43:477-507. doi: 10.1146/annurev-earth-060614-105254 XU G, ZHAO Y, GAO R, et al., 2006. Mesozoic basin deformation of Yanshan folded fault belt-records of the intraplate deformation process:a case study of Xiabancheng, Chengde-Shangbancheng and Beitai basins[J]. Acta Geoscientica Sinica, 27(1):1-12. (in Chinese with English abstract) XU R, LIU Y S, TONG X R, et al., 2013. In-situ trace elements and Li and Sr isotopes in peridotite xenoliths from Kuandian, North China Craton:Insights into Pacific slab subduction-related mantle modification[J]. Chemical Geology, 354:107-123. doi: 10.1016/j.chemgeo.2013.06.022 XU X S, GRIFFIN W L, O'REILLY S Y, et al., 2008b. Re-Os isotopes of sulfides in mantle xenoliths from eastern China:progressive modification of lithospheric mantle[J]. Lithos, 102(1-2):43-64. doi: 10.1016/j.lithos.2007.06.010 XU X S, O'REILLY S Y, GRIFFIN W L, et al., 2007. The crust of Cathaysia:Age, assembly and reworking of two terranes[J]. Precambrian Research, 158(1-2):51-78. doi: 10.1016/j.precamres.2007.04.010 XU Y G, 2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china:evidence, timing and mechanism[J]. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy, 26(9-10):747-757. doi: 10.1016/S1464-1895(01)00124-7 XU Y G, BLUSZTAJN J, MA J L, et al., 2006. In searching for old lithospheric relict beneath North China craton:Sr-Nd-Os isotopic composition of peridotite xenoliths from Yangyuan[J]. Geochimica et Cosmochimica Acta, 70(S18):A714. XU Y G, BLUSZTAJN J, MA J L, et al., 2008a. Late Archean to Early Proterozoic lithospheric mantle beneath the western North China craton:Sr-Nd-Os isotopes of peridotite xenoliths from Yangyuan and Fansi[J]. Lithos, 102(1-2):25-42. doi: 10.1016/j.lithos.2007.04.005 XU Y G, LIN C Y, SHI L B, et al., 1995. Upper mantle geotherm for eastern China and its geological implications[J]. Science in China (Series B), 38(12):1482-1492. XU Y G, MENZIES M A, THIRLWALL M F, et al., 2003. "Reactive" harzburgites from Huinan, NE China:products of the lithosphere-asthenosphere interaction during lithospheric thinning?[J]. Geochimica et Cosmochimica Acta, 67(3):487-505. doi: 10.1016/S0016-7037(02)01089-X YANG J H, O'REILLY S Y, WALKER R J, et al., 2010. Diachronous decratonization of the Sino-Korean craton:Geochemistry of mantle xenoliths from North Korea[J]. Geology, 38(9):799-802. doi: 10.1130/G30944.1 YANG Z Y, MA X H, HUANG B C, et al., 1998. Apparent polar wander path and tectonic movement of the North China Block in Phanerozoic[J]. Science in China Series D:Earth Sciences, 41(S2):51-65. doi: 10.1007/BF02984513 YIN A, NIE S Y, 1996. A Phanerozoic palinspastic reconstruction of China and its neighboring regions[M]//YIN A, HARRISON T M. The tectonic evolution of Asia. New York: Cambridge University Press: 442-485. YU J H, O'REILLY S Y, WANG L J, et al., 2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China:evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments[J]. Precambrian Research, 181(1-4):97-114. doi: 10.1016/j.precamres.2010.05.016 YU J H, O'REILLY S Y, ZHOU M F, et al., 2012. U-Pb geochronology and Hf-Nd isotopic geochemistry of the Badu Complex, Southeastern China:implications for the Precambrian crustal evolution and paleogeography of the Cathaysia Block[J]. Precambrian Research, 222-223:424-449. doi: 10.1016/j.precamres.2011.07.014 YU Y, XU X S, GRIFFIN W L, et al., 2011. H2O contents and their modification in the Cenozoic subcontinental lithospheric mantle beneath the Cathaysia block, SE China[J]. Lithos, 126(3-4):182-197. doi: 10.1016/j.lithos.2011.07.009 ZHAI G W, GUO A L, WANG Y J, et al., 2013. Tectonics of South China continent and its implication[J]. Science China Earth Sciences, 56(11):1804-1828. doi: 10.1007/s11430-013-4679-1 ZHAI M G, 2008. Lower crust and lithospheric mantle beneath the North China Craton before the Mesozoic lithospheric disruption[J]. Acta Petrologica Sinica, 24(10):2185-2204. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200810001 ZHAI M G, 2011. Cratonization and the ancient North China continent:a summary and review[J]. Science China Earth Sciences, 54(8):1110-1120. doi: 10.1007/s11430-011-4250-x ZHAI M G, 2019. Tectonic evolution of the North China craton[J]. Journal of Geomechanics, 25(5):722-745. (in Chinese with English abstract) ZHAI M G, SANTOSH M, 2011. The early Precambrian odyssey of the North China Craton:A synoptic overview[J]. Gondwana Research, 20(1):6-25. doi: 10.1016/j.gr.2011.02.005 ZHANG H F, 2009. Peridotite-melt interaction:a key point for the destruction of cratonic lithospheric mantle[J]. Chinese Science Bulletin, 54(19):3417-3437. ZHANG H F, GOLDSTEIN S L, ZHOU X H, et al., 2008. Evolution of subcontinental lithospheric mantle beneath eastern China:Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts[J]. Contributions to Mineralogy and Petrology, 155(3):271-293. doi: 10.1007/s00410-007-0241-5 ZHANG H F, SUN M, LU F X, et al., 2001. Geochemical significance of a garnet lherzolite from the Dahongshan kimberlite, Yangtze Craton, southern China[J]. Geochemical Journal, 35(5):315-331. doi: 10.2343/geochemj.35.315 ZHANG H F, SUN M, ZHOU M F, et al., 2004. Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton:evidence from Sr-Nd-Pb isotopic systematics of mafic igneous rocks[J]. Geological Magazine, 141(1):55-62. doi: 10.1017/S0016756803008331 ZHANG H F, SUN Y L, TANG Y J, et al., 2012. Melt-peridotite interaction in the Pre-Cambrian mantle beneath the western North China Craton:Petrology, geochemistry and Sr, Nd and Re isotopes[J]. Lithos, 149:100-114. doi: 10.1016/j.lithos.2012.01.027 ZHANG S H, ZHAO Y, DAVIS G A, et al., 2014. Temporal and spatial variations of Mesozoic magmatism and deformation in the North China Craton:Implications for lithospheric thinning and decratonization[J]. Earth-Science Reviews, 131:49-87. doi: 10.1016/j.earscirev.2013.12.004 ZHANG Y Q, DONG S W, 2008. Mesozoic tectonic evolution history of the Tan-Lu fault zone, China:Advances and new under standing[J]. Geological Bulletin of China, 27(9):1371-1390. (in Chinese with English abstract) ZHANG Y Q, DONG S W, 2019. East Asia multi-plate convergence in Late Mesozoic and the development of continental tectonic systems[J]. Journal of Geomechanics, 25(5):613-641. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201905004 ZHANG Y Q, LIAO C Z, 2006. Transition of the Late Mesozoic-Cenozoic tectonic regimes and modification of the Ordos basin[J]. Geology in China, 33(1):28-40. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200601003 ZHAO D P, TIAN Y, LEI J S, et al., 2009. Seismic image and origin of the Changbai intraplate volcano in East Asia:Role of big mantle wedge above the stagnant Pacific slab[J]. Physics of the Earth and Planetary Interiors, 173(3-4):197-206. doi: 10.1016/j.pepi.2008.11.009 ZHAO D P, YU S, OHTANI E, 2011. East Asia:seismotectonics, magmatism and mantle dynamics[J]. Journal of Asian Earth Sciences, 40(3):689-709. doi: 10.1016/j.jseaes.2010.11.013 ZHAO G C, CAWOOD P A, 1999. Tectonothermal evolution of the Mayuan assemblage in the Cathaysia block; implications for Neoproterozoic collision-related assembly of the South China Craton[J]. American Journal of Science, 299(4):309-339. ZHAO G C, CAWOOD P A, 2012. Precambrian geology of China[J]. Precambrian Research, 222-223:13-54. doi: 10.1016/j.precamres.2012.09.017 ZHAO G C, SUN M, WILDE S A, et al., 2005. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited[J]. Precambrian Research, 136(2):177-202. doi: 10.1016/j.precamres.2004.10.002 ZHAO G C, WILDE S A, CAWOOD P A, et al., 2001. Archean blocks and their boundaries in the North China Craton:lithological, geochemical, structural and P-T path constraints and tectonic evolution[J]. Precambrian Research, 107(1-2):45-73. doi: 10.1016/S0301-9268(00)00154-6 ZHAO Y, ZHENG J P, XIONG Q, et al., 2018. Destruction of the North China Craton triggered by the Triassic Yangtze continental subduction/collision:a review[J]. Journal of Asian Earth Science, 164:72-82. doi: 10.1016/j.jseaes.2018.05.029 ZHENG J P, 1999. Mesozoic-cenozoic mantle replacement and lithospheric thinning beneath the eastern China[M]. Wuhan:China University of Geosciences Press. (in Chinese) ZHENG J P, 2009. Comparison of mantle-derived matierals from different spatiotemporal settings:Implications for destructive and accretional processes of the North China Craton[J]. Chinese Science Bulletin, 54(19):3397-3416. ZHENG J P, DAI H K, 2018. Subduction and retreating of the western Pacific plate resulted in lithospheric mantle replacement and coupled basin-mountain respond in the North China Craton[J]. Science China Earth Sciences, 61(4):406-424. doi: 10.1007/s11430-017-9166-8 ZHENG J P, DAI H K, ZHANG H, 2019. Refertilization and replacement of lithospheric mantle beneath the eastern China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 38(2):201-216. (in Chinese with English abstract) ZHENG J P, GRIFFIN W L, LI L S, et al., 2011. Highly evolved Archean basement beneath the western Cathaysia Block, South China[J]. Geochimica et Cosmochimica Acta, 75(1):242-255. doi: 10.1016/j.gca.2010.09.035 ZHENG J P, GRIFFIN W L, O'REILLY S Y, et al., 2006d. A refractory mantle protolith in younger continental crust, east-central China:Age and composition of zircon in the Sulu ultrahigh-pressure peridotite[J]. Geology, 34(9):705-708. doi: 10.1130/G22569.1 ZHENG J P, GRIFFIN W L, O'REILLY S Y, et al., 2006c. Mineral chemistry of Peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere:constraints on mantle evolution beneath eastern China[J]. Journal of Petrology, 47(1):2233-2256. ZHENG J P, GRIFFIN W L, O'REILLY S Y, et al., 2004a. 3.6 Ga lower crust in central China:New evidence on the assembly of the North China craton[J]. Geology, 32(3):229-232. ZHENG J P, GRIFFIN W L, O'REILLY S Y, et al., 2006a. Widespread Archean basement beneath the Yangtze craton[J]. Geology, 34(6):417-420. doi: 10.1130/G22282.1 ZHENG J P, GRIFFIN W L, O'REILLY S Y, et al., 2006b. Zircons in mantle xenoliths record the Triassic Yangtze-North China continental collision[J]. Earth and Planetary Science Letters, 247(1-2):130-142. doi: 10.1016/j.epsl.2006.05.011 ZHENG J P, GRIFFIN W L, O'REILLY S Y, et al., 2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton:Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis[J]. Geochimica et Cosmochimica Acta, 71(21):5203-5225. doi: 10.1016/j.gca.2007.07.028 ZHENG J P, GRIFFIN W L, O'REILLY S Y, et al., 2008a. Continental collision and accretion recorded in the deep lithosphere of central China[J]. Earth and Planetary Science Letters, 269(3-4):497-507. doi: 10.1016/j.epsl.2008.03.003 ZHENG J P, LEE C T A, LU J G, et al., 2015. Refertilization-driven destabilization of subcontinental mantle and the importance of initial lithospheric thickness for the fate of continents[J]. Earth and Planetary Science Letters, 409:225-231. doi: 10.1016/j.epsl.2014.10.042 ZHENG J P, O'REILLY S Y, GRIFFIN W L, et al., 1998. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong Peninsula, Sino-Korean Craton, Eastern China[J]. International Geology Review, 40(6):471-499. doi: 10.1080/00206819809465220 ZHENG J P, O'REILLY S Y, GRIFFIN W L, et al., 2001. Relict refractory mantle beneath the eastern North China block:significance for lithosphere evolution[J]. Lithos, 57(1):43-66. doi: 10.1016/S0024-4937(00)00073-6 ZHENG J P, O'REILLY S Y, GRIFFIN W L, et al., 2004b. Nature and evolution of mesozoic-cenozoic lithospheric mantle beneath the cathaysia block, SE china[J]. Lithos, 74(1-2):41-65. doi: 10.1016/j.lithos.2003.12.008 ZHENG J P, SUN M, GRIFFIN W L, et al., 2008b. Age and geochemistry of contrasting peridotite types in the Dabie UHP belt, eastern China:Petrogenetic and geodynamic implications[J]. Chemical Geology, 247(1-2):282-304. doi: 10.1016/j.chemgeo.2007.10.023 ZHENG J P, TANG H Y, XIONG Q, et al., 2014. Linking continental deep subduction with destruction of a cratonic margin:strongly reworked North China SCLM intruded in the Triassic Sulu UHP belt[J]. Contributions to Mineralogy and Petrology, 168(1):1-21. ZHENG Y F, 2008. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt[J]. Chinese Science Bulletin, 53(20):3081-3104. ZHENG Y F, FU B, GONG B, et al., 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:implications for geodynamics and fluid regime[J]. Earth-Science Reviews, 62(1-2):105-161. doi: 10.1016/S0012-8252(02)00133-2 ZHOU X M, SUN T, SHEN W Z, et al., 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:a response to tectonic evolution[J]. Episodes, 29(1):26-33. doi: 10.18814/epiiugs/2006/v29i1/004 ZHU B Q, WANG H F, CHEN Y W, et al., 2004. Geochronological and geochemical constraint on the Cenozoic extension of Cathaysian lithosphere and tectonic evolution of the border sea basins in East Asia[J]. Journal of Asian Earth Sciences, 24(2):163-175. doi: 10.1016/j.jseaes.2003.10.006 ZHU G, NIU M L, XIE C L, et al., 2010. Sinistral to normal faulting along the Tan-Lu fault zone:evidence for geodynamic switching of the East China continental margin[J]. The Journal of Geology, 118(3):277-293. ZHU G, WANG Y S, LIU G S, et al., 2005. 40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China[J]. Journal of Structural Geology, 27(8):1379-1398. doi: 10.1016/j.jsg.2005.04.007 ZHU J S, CAI X L, CAO J M, et al., 2005. Three-dimensional structure and evolution of the lithosphere in South China and East China Sea[M]. Beijing:Geological Publishing House. (in Chinese) ZHU R X, ZHU G, LI J W, et al., 2020. North China Craton destruction[M]. Beijing:Science Press. (in Chinese) ZOU D Y, ZHANG H F, HU Z C, et al., 2019. Complex metasomatism of lithospheric mantle by asthenosphere-derived melts:Evidence from peridotite xenoliths in Weichang at the northern margin of the North China Craton[J]. Lithos, 264:210-223. 邓晋福, 莫宣学, 赵海玲, 等, 1994.中国东部岩石圈根/去根作用与大陆"活化":东亚型大陆动力学模式研究计划[J].现代地质, 8(3):349-356. 邓晋福, 赵国春, 苏尚国, 等, 2005.燕山造山带燕山期构造叠加及其大地构造背景[J].大地构造与成矿学, 29(2):157-165. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200502001 黄始琪, 董树文, 胡健民, 等, 2016.蒙古-鄂霍次克构造带的形成与演化[J].地质学报, 90(9):2192-2205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201609008 李锦轶, 张进, 刘建峰, 等, 2019.中国地壳结构构造与形成过程:来自构造变形的约束[J].地质力学学报, 25(5):678-698. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190505&journal_id=dzlxxb 李延栋, 2010.中国岩石圈的基本特征[J].地学前缘, 17(3):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201003001 李忠, 刘少峰, 张金芳, 等, 2003.燕山典型盆地充填序列及迁移特征:对中生代构造转折的响应[J].中国科学(D辑), 33(10):931-940. 林阿兵, 郑建平, 潘少逵, 2018.微陆块属性及过程:我国东北地区岩石圈地幔性质差异之根本[J].岩石学报, 34(1):143-156. 刘少峰, 李忠, 张金芳, 2004.燕山地区中生代盆地演化及构造体制[J].中国科学D辑:地球科学, 34(S1):19-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd2004z1003 毛景文, 谢桂青, 张作衡, 等, 2005.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报, 21(1):169-188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200501017 舒良树, 2012.华南构造演化的基本特征.地质通报, 31(7):1035-1053. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201207003 王永超, 董树文, 施炜, 等, 2016.华北晚中生代构造演化过程:根据太行山北部盆地沉积记录[J].地球学报, 37(1):35-45. 夏群科, 邢凌波, 冯敏, 等, 2010.湖南宁远早侏罗世玄武岩中橄榄岩包体的含水性和元素地球化学特征[J].岩石矿物学杂志, 29(2):113-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201002001 徐刚, 赵越, 高锐, 等, 2006.燕山褶断带中生代盆地变形-板内变形过程的记录:以下板城、承德-上板城、北台盆地为例[J].地球学报, 27(1):1-12. 翟明国, 2008.华北克拉通中生代破坏前的岩石圈地幔与下地壳[J].岩石学报, 24(10):2185-2204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200810001 翟明国, 2011.克拉通化与华北陆块的形成[J].中国科学:地球科学, 41(8):1037-1046. 翟明国, 2019.华北克拉通构造演化[J].地质力学学报, 25(5):722-745. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190507&journal_id=dzlxxb 张国伟, 郭安林, 王岳军等, 2013.中国华南大陆构造与问题[J].中国科学:地球科学, 43(10):1553-1582. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201310003 张宏福, 2009.橄榄岩-熔体相互作用:克拉通型岩石圈地幔能够被破坏之关键[J].科学通报, 54(14):2008-2026. 张岳桥, 廖昌珍, 2006.晚中生代-新生代构造体制转换与鄂尔多斯盆地改造[J].中国地质, 33(1):28-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200601003 张岳桥, 董树文, 2008.郯庐断裂带中生代构造演化史:进展与新认识[J].地质通报, 27(9):1371-1390. 张岳桥, 董树文, 2019.晚中生代东亚多板块汇聚与大陆构造体系的发展[J].地质力学学报, 25(5):613-641. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190503&journal_id=dzlxxb 郑建平, 1999.中国东部地幔置换作用与中新生代岩石圈减薄[M].武汉:中国地质大学出版社. 郑建平, 2009.不同时空背景幔源物质对比与华北深部岩石圈破坏和增生置换过程[J].科学通报, 54(14):1990-2007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200914006 郑建平, 戴宏坤, 2018.西太平洋板片俯冲与后撤引起华北东部地幔置换并导致陆内盆-山耦合[J].中国科学:地球科学, 48(6):436-456. 郑建平, 戴宏坤, 张卉, 2019.中国东部岩石圈地幔的富化和置换过程[J].矿物岩石地球化学通报, 38(2):201-216. 郑永飞, 2008.超高压变质与大陆碰撞研究进展:以大别-苏鲁造山带为例[J].科学通报, 53(18):2129-2152. 朱介寿, 蔡学林, 曹家敏, 等, 2005.中国华南及东海地区岩石圈三维结构及演化[M].北京:地质出版社. 朱日祥, 朱光, 李建威, 等, 2020. 华北克拉通破坏[M]. 北京:科学出版社.