In-situ stress measurement in the shallow basement of the Shanghai area and its structural geological significance
-
摘要: 通过水压致裂法与超声波成像测井法相结合的方法,对上海地区浅部(180 m深度范围)原位地应力进行了测量。测量结果表明:最大水平主应力值在9.54~12.91 MPa之间,最小水平主应力值在5.41~6.96 MPa之间,最大水平主应力方向为北西42°-62°,优势方位为北西,地应力结构为SH > Sh > Sv,可以反映区域构造应力场特征。依据区域内断裂空间分布特征和现今实测地应力结果综合分析认为,北东向断裂易于发生压性或压扭性逆断活动,断裂相对稳定;而北西向断裂易于发生张性或张扭性正断活动,在现今相对较高的应力水平状态下仍值得关注。测量结果可能对于揭示区域构造界线(江山-绍兴断裂)的走向有一定启示。Abstract: By the hydraulic fracturing method and the ultrasonic imaging logging method, in-situ stress measurement was carried out in the shallow basement (180 m depth range) of the Shanghai area. The measurement results show that the maximum horizontal principal stress is between 9.54~12.91 MPa, and the minimum principal stress is between 5.41~6.96 MPa. The maximum horizontal principal stress direction is NW42°-62°, the dominant orientation is NW, and the stress structure is SH > Sh > Sv, which reflects the characteristics of the regional structural stress field. Based on the spatial distribution of the internal fractures in the area and the in-situ stress measurement results, the NE faults are prone to compressive or compression-torsional reverse faulting and the faults are relatively stable, while the NW faults are prone to tensile or tension-torsional positive faulting, which is still worthy of attention under the current relatively high stress level. At the same time, the in-situ stress measurement results may have guiding significance for the study of the structural boundary trend (the Jiangshan-Shaoxing fault) in this area.
-
图 3 水压致裂测量系统及标准曲线形态(Haimson and Cornet, 2003;张重远等,2012)
Figure 3. Hydraulic fracturing measurement system and the form of the standard curve (after Haimson and Cornet, 2003; Zhang, et al., 2012)
图 8 华南现代构造应力场图(中国地震局, 2018)
Figure 8. Compressive stress map in Southeast China (China Earthquake Administration, 2018)
表 1 SDJ-1钻孔结构面倾角类型统计
Table 1. Types of structure surface dip angles in the borehole SDJ-1
深度范围/m 倾角类型 结构面数/个 总结构面数/个 比例/% 138.22~176.81 缓倾角(0°—20°) 0 44 0 较缓倾角(20°—45°) 6 13.64 陡倾角(45°—70°) 19 43.18 极陡倾角(70°—90°) 19 43.18 表 2 SDJ-1钻孔地应力测量结果
Table 2. In-situ stress measurement results of the borehole SDJ-1
序号 压裂中心深度/m 岩性 压裂参数值/MPa 主应力值/MPa SH/Sh SH方向 PH P0 Pb Pr Ps T SH Sh SV 1 143.6 安山岩 1.44 1.38 10.81 5.31 5.41 5.50 9.54 5.41 2.85 1.76 NW42° 2 145.5 安山岩 1.46 1.40 11.24 5.47 5.88 5.77 10.77 5.88 2.90 1.83 NE80° 3 155.5 安山岩 1.56 1.50 12.04 5.13 5.75 6.91 10.62 5.75 3.17 1.85 NW56° 4 157.5 安山岩 1.58 1.52 13.55 5.21 5.61 8.34 10.10 5.61 3.22 1.80 NW62° 5 164.5 安山岩 1.65 1.59 13.33 5.74 6.38 7.59 11.81 6.38 3.40 1.85 6 170.0 安山岩 1.70 1.65 13.13 6.32 6.96 6.81 12.91 6.96 3.55 1.85 NW46° 7 176.3 安山岩 1.76 1.71 12.34 5.59 6.53 6.75 12.29 6.53 3.72 1.88 注:Pb—破裂压力;Pr—重张压力;Ps—闭合压力;PH—静水柱压力,钻孔静水位5.5 m;P0—孔隙压力;T—岩石抗拉强度;Sh—最小水平主应力;SH—最大水平主应力;SV—根据上覆岩石埋深计算的垂向主应力;不固结粘砂土密度按1.84 g/cm3计算;安山岩密度为2.65 g/cm3计算;基岩深度自118.3 m开始计算 -
AMADEI B, STEPHANSSON O, 1997. Rock stress and its measurement[M]. London:Chapman & Hall. ANDERSON E M, 1951. The dynamics of faulting and dyke formation with applications to Britain[M]. Edinburgh:Oliver and Boyd. BAO L H, DU Y, GUO Q L, et al., 2017. In-situ stress measurement and research on tectonic stress field distribution law of Chengdu-Lanzhou railway[J]. Journal of Geomechanics, 23(5):734-742. (in Chinese with English abstract) http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZLX201705032.htm BYERLEE J D, 1978. Friction of rocks[J]. Pure & Applied Geophysics, 116(4):615-626. doi: 10.1007/978-3-0348-7182-2_4 CAO H B, FAN T Y, 2016. Analysis on characteristics of tectonic stress field and the geodynamic environment in the Yangtze River economic belt[J]. Journal of Geomechanics, 22(3):610-619. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_journal-geomechanics_thesis/0201253295387.html CHEN Q C, FENG C J, MENG W, et al., 2012. Analysis of in situ stress measurements at the northeastern section of the Longmenshan fault zone after the 5.12 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 55(12):3923-3932. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=a7ac87a81274af7c716e79f1e334d71d&encoded=0&v=paper_preview&mkt=zh-cn CHEN Q C, SUN D S, CUI J J, et al., 2019. Hydraulic fracturing stress measurements in Xuefengshan deep borehole and its significance[J]. Journal of Geomechanics, 25(5):853-865. (in Chinese with English abstract) China Earthquake Administration, 2018. Basic Database of Crustal Stress Environment in Mainland China[DB/OL].[2018-06-25]. http://www.eq-icd.cn/Index/lists/catid/154.html. FENG C J, ZHANG P, MENG J, et al., 2017. In situ stress measurement at deep boreholes along the Tanlu fault zone and its seismological and geological significance[J]. Progress in Geophysics, 32(3):946-967. (in Chinese with English abstract) http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQWJ201703002.htm GU P T, WANG Y S, 1988. The characteristic of geologic structure in Shanghai[J]. Shanghai Geology(2):1-14. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SHAD198802000.htm GU P T, 2006. Thinking of getotectonic attribution on Jinshan Group in Shanghai area[J]. Shanghai Geology(4):10-13. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SHAD200604005.htm HAIMSON B C, 1980. Near-surface and deep hydrofracturing stress measurements in the Waterloo quartzite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 17(2):81-88. http://www.sciencedirect.com/science/article/pii/0148906280902600 HAIMSON B C, CORNET F H, 2003. ISRM suggested methods for rock stress estimation-Part3:Hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics & Mining Sciences, 40(7-8):1011-1020. http://www.sciencedirect.com/science/article/pii/S1365160903001254 HAYASHI K, HAIMSON B C, 1991. Characteristics of shut-in curves in hydraulic fracturing stress measurements and determination of in situ minimum compressive stress[J]. Journal of Geophysical Research, 96(B11):18311-18321. doi: 10.1029/91JB01867 HEIDBACH O, RAJABI M, CUI X F, et al., 2018. The World Stress Map database release 2016:Crustal stress pattern across scales[J]. Tectonophysics, 744:484-498. doi: 10.1016/j.tecto.2018.07.007 HU X P, ZANG A, HEIDBACH O, et al., 2017. Crustal stress pattern in China and its adjacent areas[J]. Journal of Asian Earth Sciences, 149:20-28. doi: 10.1016/j.jseaes.2017.07.005 LEE M Y, HAIMSON B C, 1989. Statistical evaluation of hydraulic fracturing stress measurement parameters[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 26(6):447-456. http://www.sciencedirect.com/science/article/pii/0148906289914204 LI S Z, CAO X Z, WANG G Z, et al., 2019. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific Plate[J]. Journal of Geomechanics, 25(5):642-677. (in Chinese with English abstract) https://www.researchgate.net/publication/337303786_Meso-Cenozoic_tectonic_evolution_and_plate_reconstruction_of_the_Pacific_Plate LIN M Z, 2000. Research on littoral seismology in Shanghai and its neighboring sea area[J]. Earthquake, 20(S1):233-237. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DIZN2000S1036.htm LIU C S, 1989. Discussion of stress field and earthquake rupture form in Shanghai and its neighbouring region[J]. Shanghai Geology(4):58-68. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHAD198904006.htm LIU L B, ZOBACK M D, 1992. The effect of topography on the state of stress in the crust:Application to the site of the Cajon Pass Scientific Drilling Project[J]. Journal of Geophysical Research, 97(B4):5095-5108. doi: 10.1029/91JB01355 LJUNGGREN C, CHANG Y T, JANSON T, et al., 2003. An overview of rock stress measurement methods[J]. International Journal of Rock Mechanics and Mining Sciences, 40(7-8):975-989. doi: 10.1016/j.ijrmms.2003.07.003 QIN J S, TAN C X, LIU C S, 2016. Key technology analysis on stress borehole operating[J]. Urban Geology, 11(4):54-58. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-CSDZ201604013.htm QIN J S, LIU C S, TAN C X, 2017. Quality evaluation on borehole geo-stress result[J]. Urban Geology, 12(1):5-10. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CSDZ201701003.htm QIN X H, ZHANG P, FENG C J, et al., 2014. In-situ stress measurements and slip stability of major faults in Beijing region, China[J]. Chinese Journal of Geophysics, 57(7):2165-2180. (in Chinese with English abstract) http://www.cqvip.com/main/zcps.aspx?c=1&id=662002541 Shanghai Bureau of Geology and Mineral Resources, 1988. Shanghai Regional Geology[M]. Beijing:Geological Publishing House. (in Chinese) SIBSON R H, 1974. Frictional constraints on thrust, wrench and normal faults[J]. Nature, 249(5457):542-544. doi: 10.1038/249542a0 TAN C X, SHI L, SUN W F, et al., 2004. Research on tectonic stress plane[J]. Chinese Journal of Rock Mechanics and Engineering, 23(23):3970-3978. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX200423009.htm TAN C X, SUN W F, SUN Y, et al., 2006. A consideration on in-situ crustal stress measuring and its underground engineering application[J]. Acta Geologica Sinica, 80(10):1627-1632. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200610032.htm TAN C X, SUN W F, ZHANG C S, et al., 2007. An analysis on variation of crustal stress states at the shallow part of upper crust in deep-cut valley region[J]. Progress in Geophysics, 22(4):1353-1359. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200704047.htm TAN C X, ZHANG P, LU S L, et al., 2019. Significance and role of in-situ crustal stress measuring and real-time monitoring in earthquake prediction research[J]. Journal of Geomechanics, 25(5):866-876. (in Chinese with English abstract) WANG S Y, XU Z H, 1985. Seismo-tectonic stress field in East China[J]. Acta Seismologica Sinica, 7(1):17-32. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB198501001.htm XIE F R, CUI X F, ZHAO J T, 2003. Analysis of global tectonic stress field[J]. Earth Science Frontiers (China University of Geoscience, Beijing), 10(S1):22-30. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY2003S1005.htm XIE F R, CUI X F, ZHAO J T, et al., 2004. Regional division of the recent tectonic stress field in China and adjacent areas[J]. Chinese Journal of Geophysics, 47(4):654-662. (in Chinese with English abstract) http://www.researchgate.net/publication/313436577_Regional_division_of_the_recent_tectonic_stress_field_in_China_and_adjacent_areas XIE F R, 2015. Recent tectonic stress map of China and its adjacent area[M]. Jiangsu:Sinomaps Press. (in Chinese) XU J R, ZHAO Z X, ISHIKAWA Y, 2008. Regional characteristics of crustal stress field and tectonic motions in and around Chinese mainland[J]. Chinese Journal of Geophysics, 51(3):770-781. (in Chinese with English abstract) http://www.researchgate.net/publication/279767915_Regional_characteristics_of_crustal_stress_field_and_tectonic_motions_in_and_around_Chinese_mainland XU J, ZHOU B G, JI F J, et al., 2012. The recent tectonic stress field of offshore of China mainland and adjacent areas[J]. Earth Science Frontiers, 19(4):1-7. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201204001.htm XU Z H, WANG S Y, HUANG Y R, et al., 1989. The tectonic stress field of Chinese continent deduced from a great number of earthquakes[J]. Acta Geophysica Sinica, 32(6):636-647. (in Chinese with English abstract) XU Z H, XU G Q, WU S W, 1999. Present-day tectonic stress in the East China Sea region and its possible origin[J]. Acta Seismologica Sinica, 21(5):495-501. (in Chinese with English abstract) doi: 10.1007/s11589-999-0054-x XU Z H, 2001. A present-day tectonic stress map for Eastern Asia Region[J]. Acta Seismologica Sinica, 23(5):492-501. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=12b107f4bf64bfc03db722639ad96bbb&encoded=0&v=paper_preview&mkt=zh-cn YANG S X, HUANG L Y, XIE F R, et al., 2014. Quantitative analysis of the shallow crustal tectonic stress field in China mainland based on in situ stress data[J]. Journal of Asian Earth Sciences, 85:154-162. doi: 10.1016/j.jseaes.2014.01.022 YIN Z M, RANALLI G, 1992. Critical stress difference, fault orientation and slip direction in anisotropic rocks under non-Andersonian stress systems[J]. Journal of Structural Geology, 14(2):237-244. doi: 10.1016/0191-8141(92)90060-A ZANG S X, LI C, WEI R Q, 2002. The determination of rheological mechanics of lithosphere and the influencing factors on the rheological strength of lithosphere[J]. Progress in Geophysics, 17(1):50-60. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_progress-in-geophysics_thesis/0201253088480.html ZHANG C Y, WU M L, CHEN Q C, et al., 2012. Review of in-situ stress measurement methods[J]. Journal of Henan Polytechnic University (Nature Science), 31(3):305-310. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGXB201203010.htm ZHANG H L, 1999. Shanghai geology and minerals[M]. Shanghai:Shanghai Academy of Social Sciences Press. (in Chinese) ZHANG Z Q, LIU C S, WANG F, 2004. Preliminary study on relation of fault activity and seismicity in the Shanghai region[J]. Earthquake Research in China, 20(2):143-151. (in Chinese with English abstract) http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=ZGZD200402003&dbcode=CJFD&year=2004&dflag=pdfdown ZHU L X, 1990. A preliminary study of the neotectonic stress field in Shanghai and its vicinity[J]. Shanghai Geology(1):45-55. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHAD199001003.htm ZOBACK M L, 1992. First- and second-order patterns of stress in the lithosphere:the world stress map project[J]. Journal of Geophysical Research, 97(B8):11703-11728. doi: 10.1029/92JB00132 包林海, 杜义, 郭啟良, 等, 2017.成兰铁路地应力测量与构造应力场分布规律研究[J].地质力学学报, 23(5):734-742. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20170510&journal_id=dzlxxb 曹海波, 范桃园, 2016.长江经济带构造应力场特征及动力学环境分析[J].地质力学学报, 22(3):610-619. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20160316&journal_id=dzlxxb 陈群策, 丰成君, 孟文, 等, 2012. 5.12汶川地震后龙门山断裂带东北段现今地应力测量结果分析[J].地球物理学报, 55(12):3923-3932. http://www.cnki.com.cn/Article/CJFDTotal-DQWX201212006.htm 陈群策, 孙东生, 崔建军, 等, 2019.雪峰山深孔水压致裂地应力测量及其意义[J].地质力学学报, 25(5):853-865. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190514&journal_id=dzlxxb 丰成君, 张鹏, 孟静, 等, 2017.郯庐断裂带及邻区深孔地应力测量与地震地质意义[J].地球物理学进展, 32(3):946-967. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201703002.htm 顾澎涛, 王尧舜, 1988.上海地区地质构造特征[J].上海地质(2):1-14. http://www.cqvip.com/QK/97895A/19882/83726568495756564850484848.html 顾澎涛, 2006.关于上海地区金山群大地构造属性的思考[J].上海地质(4):10-13. http://d.wanfangdata.com.cn/Periodical/shdz200604003 李三忠, 曹现志, 王光增, 等, 2019.太平洋板块中-新生代构造演化及板块重建[J].地质力学学报, 25(5):642-677. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190504&journal_id=dzlxxb 林命周, 2000.上海及其邻近海域"滨海地震学"研究简介[J].地震, 20(S1):233-237. http://www.cnki.com.cn/Article/CJFDTotal-DIZN2000S1036.htm 刘昌森, 1989.上海及邻近地区区域应力场和地震破裂方式的探讨[J].上海地质(4):58-68. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=SHAD198904006 秦俊生, 谭成轩, 刘春生, 2016.地应力钻孔施工关键技术探讨[J].城市地质, 11(4):54-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=csdz201604010 秦俊生, 刘春生, 谭成轩, 2017.地应力钻孔成果质量评价探讨[J].城市地质, 12(1):5-10. http://d.wanfangdata.com.cn/Periodical/csdz201701002 秦向辉, 张鹏, 丰成君, 等, 2014.北京地区地应力测量与主要断裂稳定性分析[J].地球物理学报, 57(7):2165-2180. http://www.cqvip.com/main/zcps.aspx?c=1&id=662002541 上海市地质矿产局, 1988.上海市区域地质志[M].北京:地质出版社. 谭成轩, 石玲, 孙炜锋, 等, 2004.构造应力面研究[J].岩石力学与工程学报, 23(23):3970-3978. http://d.wanfangdata.com.cn/Periodical/yslxygcxb200423010 谭成轩, 孙炜锋, 孙叶, 等, 2006.地应力测量及其地下工程应用的思考[J].地质学报, 80(10):1627-1632. http://www.ixueshu.com/document/ee3f5d1acb12b91ab84592401169102d318947a18e7f9386.html 谭成轩, 孙炜锋, 张春山, 等, 2007.深切峡谷地区地壳浅表层地应力状态变化分析[J].地球物理学进展, 22(4):1353-1359. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz200704048 谭成轩, 张鹏, 路士龙, 等, 2019.原位地应力测量与实时监测在地震预报研究中的作用和意义[J].地质力学学报, 25(5):866-876. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190515&journal_id=dzlxxb 汪素云, 许忠淮, 1985.中国东部大陆的地震构造应力场[J].地震学报, 7(1):17-32. http://www.cnki.com.cn/Article/CJFDTotal-DZXB198501001.htm 谢富仁, 崔效锋, 赵建涛, 2003.全球应力场与构造分析[J].地学前缘, 10(S1):22-30. http://d.wanfangdata.com.cn/Periodical/dxqy2003z1006 谢富仁, 崔效锋, 赵建涛, 等, 2004.中国大陆及邻区现代构造应力场分区[J].地球物理学报, 47(4):654-662. http://d.wanfangdata.com.cn/Periodical/dqwlxb200404016 谢富仁, 2015.中国及邻区现代构造应力场图[M].江苏:中国地图出版社. 徐纪人, 赵志新, 石川有三, 2008.中国大陆地壳应力场与构造运动区域特征研究[J].地球物理学报, 51(3):770-781. http://www.cqvip.com/QK/94718X/20083/27237795.html 徐杰, 周本刚, 计凤桔, 等, 2012.中国东部海域及其邻区现代构造应力场研究[J].地学前缘, 19(4):1-7. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201204001.htm 许忠淮, 汪素云, 黄雨蕊, 等, 1989.由大量的地震资料推断的我国大陆构造应力场[J].地球物理学报, 32(6):636-647. http://www.ixueshu.com/document/4eb12ee3a8f9232fd928bd6f1fe9ccc2318947a18e7f9386.html 许忠淮, 徐国庆, 吴少武, 1999.东海地区现代构造应力场及其成因探讨[J].地震学报, 21(5):495-501. 许忠淮, 2001.东亚地区现今构造应力图的编制[J].地震学报, 23(5):492-501. http://www.cqvip.com/QK/93548X/20015/5639447.html 臧绍先, 李昶, 魏荣强, 2002.岩石圈流变机制的确定及影响岩石圈流变强度的因素[J].地球物理学进展, 17(1):50-60. http://www.cnki.com.cn/Article/CJFDTotal-DQWJ200201007.htm 张重远, 吴满路, 陈群策, 等, 2012.地应力测量方法综述[J].河南理工大学学报(自然科学版), 31(3):305-310. http://www.cnki.com.cn/Article/CJFDTotal-JGXB201203010.htm 张宏良, 1999.上海地质矿产志[M].上海:上海社会科学院出版社. 中国地震局, 2018.中国大陆地壳应力环境基础数据库[DB/OL].[2018-06-25]. http://www.eq-icd.cn/Index/lists/catid/154.html. 章振铨, 刘昌森, 王锋, 2004.上海地区断裂活动性与地震关系初析[J].中国地震, 20(2):143-151. http://d.wanfangdata.com.cn/Periodical/zgdz200402004 朱履熹, 1990.上海及邻区新构造应力场初步探讨[J].上海地质(1):45-55. http://www.cnki.com.cn/Article/CJFDTotal-SHAD199001003.htm