留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金沙江乌东德水电站坝区高陡边坡地质灾害监测预警研究

李滨 张青 王文沛 赵其苏 王晨辉 贺凯 高杨 张晓飞

李滨, 张青, 王文沛, 等, 2020. 金沙江乌东德水电站坝区高陡边坡地质灾害监测预警研究. 地质力学学报, 26 (4): 556-564. DOI: 10.12090/j.issn.1006-6616.2020.26.04.048
引用本文: 李滨, 张青, 王文沛, 等, 2020. 金沙江乌东德水电站坝区高陡边坡地质灾害监测预警研究. 地质力学学报, 26 (4): 556-564. DOI: 10.12090/j.issn.1006-6616.2020.26.04.048
LI Bin, ZHANG Qing, WANG Wenpei, et al., 2020. Geohazard monitoring and risk management of high-steep slope in the Wudongde dam area. Journal of Geomechanics, 26 (4): 556-564. DOI: 10.12090/j.issn.1006-6616.2020.26.04.048
Citation: LI Bin, ZHANG Qing, WANG Wenpei, et al., 2020. Geohazard monitoring and risk management of high-steep slope in the Wudongde dam area. Journal of Geomechanics, 26 (4): 556-564. DOI: 10.12090/j.issn.1006-6616.2020.26.04.048

金沙江乌东德水电站坝区高陡边坡地质灾害监测预警研究

doi: 10.12090/j.issn.1006-6616.2020.26.04.048
基金项目: 

国家重点研发计划项目 2018YFC1504806

国家自然科学基金项目 41702342

详细信息
    作者简介:

    李滨(1980-), 男, 博士, 研究员, 主要从事地质灾害防治研究工作。E-mail:libin1102@163.com

  • 中图分类号: P694

Geohazard monitoring and risk management of high-steep slope in the Wudongde dam area

  • 摘要: 文章以金沙江下游乌东德水电站坝区右岸水垫塘高陡边坡为例,系统探索了高度超过500 m的高陡边坡地质灾害调查识别与监测预警技术。针对常规方法难以准确捕捉高陡边坡危岩体变形破坏特征这一问题,创新采用了"登山攀岩速降技术与地质调查、工程地质测绘相结合"的方法,在乌东德水电站坝区水垫塘高陡边坡共调查识别了178个危岩体。在此基础上,通过构建分布式光纤应变实时监测系统和具有明显裂缝的危岩体布设拉绳位移传感器,实现了高陡边坡危岩体形变的实时监测,监测结果与实际危岩体变形一致。此外,在高程580~1600 m的坡体上还布设了6个地震动监测台站,捕捉到了包括2016年12月8日乌东德地震和2017年3月12日的鲁甸地震在内的大量地震加速度数据,并以此分析了乌东德地震波作用下的岩体动力响应特征,结果显示该边坡处于基本稳定状态。上述研究思路和方法对西南水电站高陡边坡稳定性监测预警和风险评估具有借鉴意义。

     

  • 图  1  金沙江下游乌东德坝区右岸高陡边坡影像图

    Figure  1.  Images of the high-steep slope on the right bank of the Wudongde dam area in the Jinsha River area

    图  2  乌东德水电站坝区水垫塘高陡边坡危岩体调查识别方法

    Figure  2.  Investigation and identification methods for dangerous rock mass of the Shuidiantang high-steep slope in the Wudong dam area

    图  3  乌东德水电站坝区水垫塘高陡边坡危岩体分布立面图(白色圈曲线为危岩体)

    Figure  3.  Distribution and three types of failure of dangerous rock mass of the Shuidiantang high-steep slope in the Wudong dam area. White loops indicate the dangerous rock masses

    图  4  乌东德水电站坝区水垫塘高陡边坡危岩体物联网模式分布式光纤监测系统布设示意图

    Figure  4.  Layout of the distributed optical fiber sensor system based on the Internet of Things for dangerous rock masses of the Shuidiantang high-steep slope in the Wudong dam area

    图  5  乌东德水电站坝区水垫塘高陡边坡危岩体分布式光纤应变监测曲线图

    Figure  5.  Strains from the distributed optical fiber sensor system for dangerous rock masses of the Shuidiantang high-steep slope in the Wudong dam area

    图  6  乌东德坝址区鸡冠山梁子高陡边坡工程地质剖面及地震台站布设剖面

    1—会理群落雪组第八段中—厚层状灰岩;2—会理群落雪组第七段中—厚层状灰岩;3—震旦系观音崖组薄层白云岩夹薄层砂质泥岩、页岩;4—第四系崩坡积物;5—地层界线;6—地震动监测点

    Figure  6.  Geological section and layout of seismic stations of the Jiguanshanliangzi high-steep slope in the Wudong dam area

    图  7  乌东德坝址区鸡冠山梁子监测点4、5、6号台站实测地震加速度记录

    Figure  7.  Seismic accelerations from the NO. 4, 5, and 6 station in the Jiguanshanliangzi high-steep slope in the Wudong dam area

    图  8  乌东德坝址区鸡冠山梁子不同地震情况下边坡塑性变形

    Figure  8.  Plastic deformation of the Jiguanshanliangzi high-steep slope in the Wudong dam area under different seismic conditions

  • DING Y, SHI B, CUI H L, et al., 2005. A fiber optic sensing net applied in slope monitoring based on Brillouin scattering[J]. Chinese Journal of Geotechnical Engineering, 27(3):338-342. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC20050300J.htm
    DONG W W, ZHU H H, SUN Y J, et al., 2016. Current status and new progress on slope deformation monitoring technologies[J]. Journal of Engineering Geology, 24(6):1088-1095. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_journal-engineering-geology_thesis/0201253353929.html
    GHOSH S, VAN WESTEN C J, CARRANZA E J M, et al., 2012. Generating event-based landslide maps in a data-scarce Himalayan environment for estimating temporal and magnitude probabilities[J]. Engineering Geology, 128:49-62. doi: 10.1016/j.enggeo.2011.03.016
    GONG W J, WANG Y S, LUO Y H, et al., 2020. Numerical verification of seismic dynamic response of Dongshan Slope in Qingchuan County[J]. Water Resources and Hydropower Engineering, 51(3):152-159. (in Chinese with English abstract)
    HUANG R Q, 2005. Main characteristics of high rock slopes in southwestern China and their dynamic evolution[J]. Advances in Earth Science, 20(3):292-297. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DXJZ200503004.htm
    KANG Y, ZHAO C Y, ZHANG Q, et al., 2018. Research on the InSAR technique of landslide detection:A case study of Wudongde hydropower station section, Jinshajiang[J]. Journal of Geodesy and Geodynamics, 38(10):1053-1057. (in Chinese with English abstract) http://www.zhangqiaokeyan.com/academic-journal-cn_journal-geodesy-geodynamics_thesis/0201270238264.html
    LAWRENCE C M, NELSON D V, UDD E, et al., 1999. A fiber optic sensor for transverse strain measurement[J]. Experimental Mechanics, 39(3):202-209. doi: 10.1007/BF02323553
    LI H Z, LIU C P, HUANG X Q, et al., 2011. Study on block safety evaluation and treatment measures of high natural slope in key region of Wudongde hydropower station of Chin-sha River[J]. Resources Environment and Engineering, 25(5):468-473. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HBDK201105024.htm
    LI N, WANG B Q, MEN Y M, et al., 2018. Study on dynamic response of landslide supported by pressure-type anchor under earthquake[J]. Journal of Geomechanics, 24(4):490-497. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201804019.htm
    LIEBERMAN R A, BLYLER L L, COHEN L G, 1990. A distributed fiber optic sensor based on cladding fluorescence[J]. Journal of Lightwave Technology, 8(2):212-220. doi: 10.1109/50.47873
    LIU Z, LI B, HE K, et al., 2020. Research of dynamic response patterns of high steep rock slope under earthquake effects[J]. Journal of Geomechanics, 26(1):115-124. (in Chinese with English abstract)
    MCDOUGALL S, HUNGR O, 2004. A model for the analysis of rapid landslide motion across three-dimensional terrain[J]. Canadian Geotechnical Journal, 41(6):1084-1097. doi: 10.1139/t04-052
    PEREZ-HERRERA R A, LOPEZ-AMO M, 2013. Review:Fiber optic sensor networks[J]. Optical Fiber Technology, 19(6):689-699. doi: 10.1016/j.yofte.2013.07.014
    QIAN Q H, 2010. New progress of Chinese rock engineering[J]. Engineering Science, 12(8):37-48. (in Chinese with English abstract) http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=GCKX201008007&dbcode=CJFD&year=2010&dflag=pdfdown
    ROUYET L, KRISTENSEN L, DERRON M H, et al., 2017. Evidence of rock slope breathing using ground-based InSAR[J]. Geomorphology, 289:152-169. doi: 10.1016/j.geomorph.2016.07.005
    SHEN H, LUO X Q, LI Y, et al., 2012. Three-dimensional stability analysis of dam abutment of Wudongde arch dam[J]. Chinese Journal of Rock Mechanics and Engineering, 31(5):1026-1033. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-YSLX201205021.htm
    SHI B, ZHANG D, WANG B J, 2007. Distributed optical fiber monitoring technologies of geological and geotechnical engineering and its development[J]. Journal of Engineering Geology, 15(S2):109-116. (in Chinese with English abstract) http://www.gcdz.org/EN/abstract/abstract10134.shtml
    SHI Y X, ZHANG Q, MENG X W, 2008. The application of distributed optical fiber sensing technology in landslide monitoring[J]. Journal of Jilin University (Earth Science Edition), 38(5):820-824. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=55136ac3a3cd4fea3f5ad41c86bcfb32&encoded=0&v=paper_preview&mkt=zh-cn
    SONG S W, FENG X M, XIANG B Y, et al., 2011. Research on key technologies for high and steep rock slopes of hydropower engineering in southwest China[J]. Chinese Journal of Rock Mechanics and Engineering, 30(1):1-22. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201101002.htm
    SUI H B, SHI B, ZHANG D, et al., 2008. Study on distributed optical fiber sensor-based monitoring for slope engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 27(Z2):3725-3731. (in Chinese with English abstract) http://www.researchgate.net/publication/289977418_Study_on_distributed_optical_fiber_sensor-based_monitoring_for_slope_engineering
    WANG G J, XIE M W, CHAI X Q, et al., 2013. D-InSAR-based landslide location and monitoring at Wudongde hydropower reservoir in China[J]. Environmental Earth Sciences, 69(8):2763-2777. doi: 10.1007/s12665-012-2097-x
    WANG L Q, YIN Y P, HUANG B L, et al., 2020. Damage evolution and stability analysis of the Jianchuandong Dangerous Rock Mass in the Three Gorges Reservoir Area[J]. Engineering Geology, 265:105439. doi: 10.1016/j.enggeo.2019.105439
    WU S Z, YAN F Z, MEI Y T, 2005. Activities of the Reshuitang fault at the dam site region of the Wudongde hydropower station on the Jinshajiang river[J]. Journal of Engineering Geology, 13(4):455-460. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ200504004.htm
    XIAO W J, LIAO J M, ZHANG L L, 2018. Shaking table test on seismic dynamic responses of isolated mountains[J]. China Earthquake Engineering Journal, 40(3):582-590. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-ZBDZ201803026.htm
    XIE M W, HUANG J X, WANG L W, et al., 2016. Early landslide detection based on D-InSAR technique at the Wudongde hydropower reservoir[J]. Environmental Earth Sciences, 75(8):1-13. doi: 10.1007/s12665-016-5446-3
    XU Q M, YANG D Y, GE Z S, et al., 2006. Terraces along Sanduizi-Wudongde section of Jinsha River[J]. Scientia Geographica Sinica, 26(5):609-615. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKX200605015.htm
    YI X L, TANG H M, WU Y P, et al., 2016. Application of the PPP-BOTDA distributed optical fiber sensor technology in the monitoring of the Baishuihe landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 35(Z1):3084-3091. (in Chinese with English abstract) http://www.researchgate.net/publication/317028869_Research_on_displacement_conversion_for_real-time_slope_monitoring_based_on_fiber_optical_sensing_technology
    YIN Y P, 2009. Features of landslides triggered by the Wenchuan earthquake[J]. Journal of Engineering Geology, 17(1):29-38. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ200901005.htm
    YIN Y P, WANG H D, GAO Y L, et al., 2010a. Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China[J]. Landslides, 7(3):339-349. doi: 10.1007/s10346-010-0220-1
    YIN Y P, ZHENG W M, LIU Y P, et al., 2010b. Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China[J]. Landslides, 7(3):359-365. doi: 10.1007/s10346-010-0225-9
    丁勇, 施斌, 崔何亮, 等, 2005.光纤传感网络在边坡稳定监测中的应用研究[J].岩土工程学报, 27(3): 338-342. http://www.cqvip.com/qk/95758x/2005003/15090933.html
    董文文, 朱鸿鹄, 孙义杰, 等, 2016.边坡变形监测技术现状及新进展[J].工程地质学报, 24(6):1088-1095. http://www.cqvip.com/QK/98122X/201606/671080931.html
    龚文俊, 王运生, 罗永红, 等, 2020.青川县东山斜坡地震动力响应数值验证[J].水利水电技术, 51(3):152-159. http://www.cnki.com.cn/Article/CJFDTotal-SJWJ202003021.htm
    黄润秋, 2005.中国西南岩石高边坡的主要特征及其演化[J].地球科学进展, 20(3):292-297. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200503005
    康亚, 赵超英, 张勤, 等, 2018. InSAR滑坡探测技术研究:以金沙江乌东德水电站段为例[J].大地测量与地球动力学, 38(10):1053-1057. http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201810012
    李会中, 刘冲平, 黄孝泉, 等, 2011.金沙江乌东德水电站枢纽区高位自然边坡块体安全性评价与处理措施研究[J].资源环境与工程, 25(5):468-473. http://www.cqvip.com/QK/82916A/20115/39673284.html
    李楠, 汪班桥, 门玉明, 等, 2018.压力型锚杆支护滑坡的地震动力响应特性研究[J].地质力学学报, 24(4):490-497. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180406&journal_id=dzlxxb
    刘铮, 李滨, 贺凯, 等, 2020.地震作用下高陡岩质斜坡动力响应规律研究[J].地质力学学报, 26(1):115-124. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20200112&journal_id=dzlxxb
    钱七虎, 2010.中国岩石工程技术的新进展[J].中国工程科学, 12(8):37-48. http://www.cnki.com.cn/Article/CJFDTotal-GCKX201008007.htm
    沈辉, 罗先启, 李野, 等, 2012.乌东德拱坝坝肩三维抗滑稳定分析[J].岩石力学与工程学报, 31(5):1026-1033. http://www.cnki.com.cn/Article/CJFDTotal-YSLX201205021.htm
    施斌, 张丹, 王宝军, 2007.地质与岩土工程分布式光纤监测技术及其发展[J].工程地质学报, 15(S2):109-116. http://www.gcdz.org/CN/abstract/abstract10134.shtml
    史彦新, 张青, 孟宪玮, 2008.分布式光纤传感技术在滑坡监测中的应用[J].吉林大学学报(地球科学版), 38(5):820-824. http://d.wanfangdata.com.cn/Periodical/cckjdxxb200805016
    宋胜武, 冯学敏, 向柏宇, 等, 2011.西南水电高陡岩石边坡工程关键技术研究[J].岩石力学与工程学报, 30(1):1-22. http://www.cqvip.com/QK/96026X/20111/39146875.html
    隋海波, 施斌, 张丹, 等, 2008.边坡工程分布式光纤监测技术研究[J].岩石力学与工程学报, 27(Z2):3725-3731. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2008S2068.htm
    吴世泽, 严福章, 梅应堂, 2005.金沙江乌东德水电站区热水塘断层活动性研究[J].工程地质学报, 13(4):455-460. http://www.cqvip.com/Main/Detail.aspx?id=20793051
    肖文静, 廖佳名, 张亮亮, 2018.孤立山体地震动力响应的振动台试验研究[J].地震工程学报, 40(3):582-590. http://d.old.wanfangdata.com.cn/Periodical_xbdzxb201803026.aspx
    胥勤勉, 杨达源, 葛兆帅, 等, 2006.金沙江三堆子-乌东德河段阶地研究[J].地理科学, 26(5):609-615. http://www.cnki.com.cn/Article/CJFDTotal-DLKX200605015.htm
    易贤龙, 唐辉明, 吴益平, 等, 2016. PPP-BOTDA分布式光纤技术在白水河滑坡监测中的应用[J].岩石力学与工程学报, 35(Z1):3084-3091. http://www.cnki.com.cn/Article/CJFDTotal-YSLX2016S1056.htm
    殷跃平, 2009.汶川八级地震滑坡特征分析[J].工程地质学报, 17(1):29-38. http://d.wanfangdata.com.cn/Periodical/gcdzxb200901004
  • 加载中
图(8)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  5
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-20
  • 修回日期:  2020-07-10
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回