留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贵州省六盘水水城高位远程滑坡流态化运动过程分析

李壮 高杨 贺凯 高浩源 卫童瑶 刘铮 赵志男

李壮, 高杨, 贺凯, 等, 2020. 贵州省六盘水水城高位远程滑坡流态化运动过程分析. 地质力学学报, 26 (4): 520-532. DOI: 10.12090/j.issn.1006-6616.2020.26.04.045
引用本文: 李壮, 高杨, 贺凯, 等, 2020. 贵州省六盘水水城高位远程滑坡流态化运动过程分析. 地质力学学报, 26 (4): 520-532. DOI: 10.12090/j.issn.1006-6616.2020.26.04.045
LI Zhuang, GAO Yang, HE Kai, et al., 2020. Analysis of the fluidization process of the high-position and long-runout landslide in Shuicheng, Liupanshui, Guizhou Province. Journal of Geomechanics, 26 (4): 520-532. DOI: 10.12090/j.issn.1006-6616.2020.26.04.045
Citation: LI Zhuang, GAO Yang, HE Kai, et al., 2020. Analysis of the fluidization process of the high-position and long-runout landslide in Shuicheng, Liupanshui, Guizhou Province. Journal of Geomechanics, 26 (4): 520-532. DOI: 10.12090/j.issn.1006-6616.2020.26.04.045

贵州省六盘水水城高位远程滑坡流态化运动过程分析

doi: 10.12090/j.issn.1006-6616.2020.26.04.045
基金项目: 

国家重点研发计划项目 2018YFC1504806

国家重点研发计划项目 2018YFC1504804

国家自然科学青年基金项目 41907257

中国地质科学院地质力学研究所基本科研业务费项目 DZLXJK201901

重庆市地质灾害自动化监测工程技术研究中心开放课题 KF2019-8

详细信息
    作者简介:

    李壮(1995-), 男, 在读硕士, 从事高位远程滑坡动力解体研究。E-mail:1346871141@qq.com

    通讯作者:

    高杨(1989-), 男, 助理研究员, 从事高速远程滑坡机理研究。E-mail:737263992@qq.com

  • 中图分类号: P642.22

Analysis of the fluidization process of the high-position and long-runout landslide in Shuicheng, Liupanshui, Guizhou Province

  • 摘要: 高位远程滑坡是中国西南山区常见的一类灾难性地质灾害,其发生往往伴随有碰撞解体效应,导致滑体碎裂化,转化为碎屑流或泥石流,具有流化运动堆积的特征。2019年7月23日发生于中国贵州省六盘水市水城县的鸡场镇滑坡是典型的高位远程流态化滑坡,滑坡前后缘高差430 m,水平运动距离1340 m,堆积体体积200×104 m3,导致21幢房屋被掩埋,51人遇难。基于野外详细调查和滑前滑后地形对比,采用DAN-W软件对水城滑坡的整个运动堆积过程进行了模拟,结果显示:水城滑坡在滑源区残留堆积体厚度最大为27 m,堆积区最大堆积厚度为15 m,滑坡碎屑流前缘最大运动速度为27 m/s,最大动能为6.57×106 J;滑坡高位剪出,由于势能转化为动能,滑坡快速达到速度峰值,并铲刮地表松散土层;由于强降雨,滑体高速运动使基底孔隙水来不及排出,导致基底摩擦力下降,降低能量损耗,滑体解体促进颗粒流化运动,减少了摩擦,也是滑坡远程运动的重要原因。

     

  • 图  1  贵州六盘水水城滑坡地质简图

    Figure  1.  Geological map of the Shuicheng landslide in Liupanshui, Guizhou

    图  2  研究区峨眉山玄武岩岩体结构特征

    Figure  2.  Structural characteristics of Emeishan basalt in the study area

    图  3  贵州六盘水水城滑坡滑前滑后影像对比图

    Figure  3.  Image comparison before and after the Shuicheng landslide in Liupanshui, Guizhou Province

    图  4  贵州六盘水水城滑坡工程地质剖面示意图

    Figure  4.  Engineering geological profile of the Shuicheng landslide in Liupanshui, Guizhou

    图  5  贵州六盘水水城滑坡滑源区现场

    Figure  5.  Site photos of the source area of the Shuicheng landslide in Liupanshui, Guizhou

    图  6  贵州六盘水水城滑坡滑源区a-a′工程地质剖面图(剖面位置见图 1)

    Figure  6.  Engineering geological profile a-a′ of the source area of the Shuicheng landslide in Liupanshui, Guizhou (The position of the profile is shown in Fig. 1)

    图  7  贵州六盘水水城滑坡铲刮区现场

    Figure  7.  Site photos of the erosion area of the Shuicheng landslide in Liupanshui, Guizhou

    图  8  贵州六盘水水城滑坡铲刮区b-b′工程地质剖面图(剖面位置见图 1)

    Figure  8.  Engineering geological profile b-b′ of the erosion area of the Shuicheng landslide in Liupanshui, Guizhou (The position of the profile is shown in Fig. 1)

    图  9  贵州六盘水水城滑坡流通堆积区现场

    Figure  9.  Site photos of the propagation & accumulation area of the Shuicheng landslide in Liupanshui, Guizhou

    图  10  贵州六盘水水城滑坡堆积区c-c′工程地质剖面图(剖面位置见图 1)

    Figure  10.  Engineering geological profile c-c′ of the propagation & accumulation area of the Shuicheng landslide in Liupanshui, Guizhou (The position of the profile is shown in Fig. 1)

    图  11  贵州六盘水水城滑坡DAN模型

    Figure  11.  DAN model of the Shuicheng landslide in Liupanshui, Guizhou

    图  12  Frictional模型摩擦系数、Voellmy模型湍流系数与滑坡运动距离关系三维趋势图(优势参数组合对应运动距离为1355 m)

    Figure  12.  Three-dimensional trend diagram of the relationship between friction coefficient of the Frictional model, turbulence coefficient of the Voellmy model and landslide movement distance (The motion distance corresponding to the dominant parameters combination is 1355 m)

    图  13  Frictional模型摩擦系数、Voellmy模型湍流系数与滑源区堆积体厚度关系三维趋势图(优势参数组合对应堆积体厚度为27 m)

    Figure  13.  Three-dimensional trend diagram of the relationship between friction coefficient of the Frictional model, turbulence coefficient of the Voellmy model and thickness of accumulation body in the slip source area (The thickness of the accumulation body corresponding to the dominant parameters combination is 27 m)

    图  14  Frictional模型摩擦系数、Voellmy模型湍流系数与堆积区堆积体厚度关系三维趋势图(优势参数组合对应堆积厚度为15 m)

    Figure  14.  Three-dimensional trend diagram of the relationship between friction coefficient of the Frictional model, turbulent coefficient of the Voellmy model and thickness of accumulation body in the accumulation area (The accumulation thickness corresponding to the dominant parameters combination is 15 m)

    图  15  贵州六盘水水城滑坡滑坡体内速度分布图(时间间隔为20 s)

    Figure  15.  Velocity distribution map of the Shuicheng landslide in Liupanshui, Guizhou (20 s interval)

    图  16  贵州六盘水水城滑坡前后缘速度随时间变化图

    Figure  16.  Velocity diagram of the front and rear of the Shuicheng landslide with time

    图  17  贵州六盘水水城滑坡前后缘速度随滑程变化图

    Figure  17.  Velocity diagram of the front and rear of the Shuicheng landslide with slip distance

    图  18  贵州六盘水水城滑坡动能变化图(时间间隔为20 s)

    Figure  18.  Kinetic energy variation diagram of the Shuicheng landslide (20 s interval)

    图  19  贵州六盘水水城滑坡滑体运动过程中形态变化图(时间间隔为20 s)

    Figure  19.  Shape variation diagram of the Shuicheng landslide in movement (20 s interval)

    表  1  贵州六盘水水城滑坡数值计算控制参数表

    Table  1.   Table of numerical calculation control parameters of the Shuicheng landslide in Liupanshui, Guizhou

    参数 光滑系数 Tip Ratio 刚度系数 离心力 块体几何形状 压力关系
    默认值 0.02 0.5 0.05 On Normal Modified
    下载: 导出CSV

    表  2  贵州六盘水水城滑坡模型参数表

    Table  2.   Table of model parameters of the Shuicheng landslide in Liupanshui, Guizhou

    滑坡区域 模型 孔隙水压力系数ru 摩擦角φ/(°) 铲刮深度/m 摩擦系数f 湍流系数ξ/(m·s-2)
    滑源区 Frictional模型 0.39 30 - - -
    铲刮区 Voellmy模型 - - 10 0.21 400
    堆积区 Voellmy模型 - - - 0.21 400
    下载: 导出CSV
  • BUSS E, HEIM A, 1881. Der Bergsturz von Elm[J]. Zurich, Wurster & Cie, 163.
    DAVIES T R, MCSAVENEY M J, HODGSON K A, 1999. A fragmentation-spreading model for long-runout rock avalanches[J]. Canadian Geotechnical Journal, 36(6):1096-1110. doi: 10.1139/t99-067
    EVANS S G, HUNGR O, CLAGUE J J, 2001. Dynamics of the 1984 rock avalanche and associated distal debris flow on Mount Cayley, British Columbia, Canada; implications for landslide hazard assessment on dissected volcanoes[J]. Engineering Geology, 61(1):29-51. doi: 10.1016/S0013-7952(00)00118-6
    FAN X M, XU Q, SCARINGI G, et al., 2019. The "long" runout rock avalanche in Pusa, China, on August 28, 2017:a preliminary report[J]. Landslides, 16(1):139-154. doi: 10.1007/s10346-018-1084-z
    FENG Z, YIN Y P, LI B, et al., 2012. Mechanism analysis of apparent dip landslide of Jiweishan in Wulong, Chongqing[J]. Rock and Soil Mechanics, 33(9):2704-2712. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201209023
    GAO Y, HE K, LI Z, et al., 2020. Analysis on disaster types and dynamics of landslide in southwest karstmountain area[J]. Hydrogeology & Engineering Geology(4):1-11. (in Chinese with English abstract)
    GAO Y, LI B, FENG Z, et al., 2017. Global climate change and geological disaster response analysis[J]. Journal of Geomechanics, 23(1):65-77. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201701002
    GAO Y, LI B, GAO H Y, et al., 2020. Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area:a case study of the Shuicheng "7·23" landslide in Guizhou, China[J]. Landslides, 17(7):1663-1677. doi: 10.1007/s10346-020-01377-8
    GAO Y, WEI T Y, LI B, et al., 2019. Dynamics process simulation of long run-out catastrophic landfill flowslide on December 20th, 2015 in Shenzhen, China[J]. Hydrogeology and Engineering Geology, 46(1):129-138, 147. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz201901018
    GAO Y, YIN Y P, LI B, et al., 2017. Investigation and dynamic analysis of the long runout catastrophic landslide at the Shenzhen landfill on December 20, 2015, in Guangdong, China[J]. Environmental Earth Sciences, 76(1):13. doi: 10.1007/s12665-016-6332-8
    GAO Y, YIN Y P, LI B, et al., 2019. Post-failure behavior analysis of the Shenzhen "12·20" CDW landfill landslide[J]. Waste Management, 83:171-183. doi: 10.1016/j.wasman.2018.11.015
    GAO Y, YIN Y P, XING A G, et al., 2013. Jiweishan rapid and long run-out landslide-debris flow dynamic characteristics analysis[J]. The Chinese Journal of Geological Hazard and Control, 24(4):46-51. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzzhyfzxb201304008
    HU X B, FAN X Y, TANG J J, 2019. Accumulation characteristics and energy conversion of high-speed and long-distance landslide on the basis of DEM:a case study of Sanxicun landslide[J]. Journal of Geomechanics, 25(4):527-535. (in Chinese with English abstract)
    HUNGR O, 1995. A model for the runout analysis of rapid flow slides, debris flows, and avalanches[J]. Canadian Geotechnical Journal, 32(4):610-623. doi: 10.1139/t95-063
    HUNGR O, EVANS S G, 1996. Rock avalanche run out prediction using a dynamic model[C]//Proceedings of the 7th International Symposium on Landslides. Trondheim: 233-238.
    HUNGR O, EVANS S G, 2004. Entrainment of debris in rock avalanches:an analysis of a long run-out mechanism[J]. GSA Bulletin, 116(9-10):1240-1252.
    HUNGR O, MCDOUGALL S, 2009. Two numerical models for landslide dynamic analysis[J]. Computers & Geosciences, 35(5):978-992. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e5c63aab06726b52ea56382e2eacdc0c
    HUNGR O, MCDOUGALL S, BOVIS M, 2005. Entrainment of material by debris flows[M]//JAKOB M, HUNGR O. Debris-flow hazards and related phenomena. Berlin Heidelberg: Springer: 135-158.
    KENT P E, 1966. The Transport Mechanism in Catastrophic Rock Falls[J]. The Journal of Geology, 74(1):79-83. http://www.onacademic.com/detail/journal_1000038470286910_e573.html
    MCDOUGALL S, 2006. A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain[D]. Vancouver: University of British Columbia.
    QIN Y, LIU C, ZHANG X Y, et al., 2018. Discrete element simulation of sand confined compression test based on MatDEM[J]. Journal of Geomechanics, 24(5):676-681. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201805010
    SASSA K, 1988. Geotechnical model for the motion of landslides[C]//Proceedings of the 5th International Symposium on landslides. Rotterdam: A.A. Balkema: 37-56.
    SOSIO R, CROSTA G B, HUNGR O, 2008. Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps)[J]. Engineering Geology, 100(1-2):11-26. doi: 10.1016/j.enggeo.2008.02.012
    WANG Y H, GU S L, ZHAO J, 2017. Study on numerical simulation of process of landslide accumulation landslide dam based on DEM[J]. Structural Engineers, 33(4):105-110. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jggcs201704016
    XING A G, WANG G H, YIN Y P, et al., 2016. Investigation and dynamic analysis of a catastrophic rock avalanche on September 23, 1991, Zhaotong, China[J]. Landslides, 13(5):1035-1047. doi: 10.1007/s10346-015-0617-y
    XING A G, YUAN X Y, XU Q, et al., 2017. Characteristics and numerical runout modelling of a catastrophic rock avalanche triggered by the Wenchuan earthquake in the Wenjia valley, Mianzhu, Sichuan, China[J]. Landslides, 14(1):83-98. doi: 10.1007/s10346-016-0707-5
    XU Z M, HUANG R Q, TANG Z G, 2007. Engineering geological characteristics of the Touzhai landslide and its occurrence mechanisms[J]. Geological Review, 53(5):691-698. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200705014
    YANG L W, WEI Y J, WANG W P, et al., 2018. Research on dynamic characteristics of the Kalayagaqi landslide in Yining country, Xinjiang[J]. Journal of Geomechanics, 24(5):699-705. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201805013
    YANG S H, LI Z H, 2018. A numerical calculation approach based on FEM for long-term deformation of lithosphere[J]. Journal of Geomechanics, 24(6):768-775. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201806004
    YIN Y P, 2010. Mechanism of apparent dip slide of inclined bedding rockslide-a case study of Jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 29(2):217-226. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201002001
    YIN Y P, CHENG Y L, LIANG J T, et al., 2016. Heavy-rainfall-induced catastrophic rockslide-debris flow at Sanxicun, Dujiangyan, after the Wenchuan Ms 8.0 earthquake[J]. Landslides, 13(1):9-23. doi: 10.1007/s10346-015-0554-9
    YIN Y P, LIU C Z, CHEN H Q, et al., 2013. Investigation on catastrophic landslide of January 11, 2013 at Zhaojiagou, Zhenxiong County, Yunnan Province[J]. Journal of Engineering Geology, 21(1):6-15. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201301002
    YIN Y P, WANG W P, ZHANG N, et al., 2017. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area:a case study of the Xinmo landslide in Maoxian County, Sichuan Province[J]. Geology in China, 44(5):827-841. (in Chinese with English abstract) http://www.researchgate.net/publication/324132124_Long_runout_geological_disaster_initiated_by_the_ridge-top_rockslide_in_a_strong_earthquake_area_A_case_study_of_the_Xinmo_landslide_in_Maoxian_County_Sichuan_Province
    ZHOU Q, XU Q, ZHOU S, et al., 2019. Movement process of abrupt loess flowslide based on numerical simulation-a case study of Chenjia 8# on the Heifangtai terrace[J]. Mountain Research, 37(4):528-537. (in Chinese with English abstract)
    冯振, 殷跃平, 李滨, 等, 2012.重庆武隆鸡尾山滑坡视向滑动机制分析[J].岩土力学, 33(9):2704-2712. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201209023
    高杨, 殷跃平, 邢爱国, 等, 2013.鸡尾山高速远程滑坡-碎屑流动力学特征分析[J].中国地质灾害与防治学报, 24(4):46-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8255116
    高杨, 李滨, 冯振, 等, 2017.全球气候变化与地质灾害响应分析[J].地质力学学报, 23(1):65-77. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20170102&journal_id=dzlxxb
    高杨, 卫童瑶, 李滨, 等, 2019.深圳"12·20"渣土场远程流化滑坡动力过程分析[J].水文地质工程地质, 46(1):129-138, 147.
    高杨, 贺凯, 李壮, 等, 2020.西南岩溶山区特大滑坡成灾类型及动力学分析[J].水文地质工程地质(4):1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz202004003
    胡晓波, 樊晓一, 唐俊杰, 2019.基于离散元的高速远程滑坡运动堆积特征及能量转化研究:以三溪村滑坡为例[J].地质力学学报, 25(4):527-535. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190410&journal_id=dzlxxb
    秦岩, 刘春, 张晓宇, 等, 2018.基于MatDEM的砂土侧限压缩试验离散元模拟研究[J].地质力学学报, 24(5):676-681. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180510&journal_id=dzlxxb
    胡晓波, 樊晓一, 唐俊杰, 2019.基于离散元的高速远程滑坡运动堆积特征及能量转化研究:以三溪村滑坡为例[J].地质力学学报, 25(4):527-535. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190410&journal_id=dzlxxb
    王洋海, 顾声龙, 赵杰, 2017.基于DEM的滑坡堆积堰塞湖过程数值研究[J].结构工程师, 33(4):105-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jggcs201704016
    徐则民, 黄润秋, 唐正光, 2007.头寨滑坡的工程地质特征及其发生机制[J].地质论评, 53(5):691-698. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200705014
    杨龙伟, 魏云杰, 王文沛, 等, 2018.新疆伊宁县喀拉亚尕奇滑坡动力学特征研究[J].地质力学学报, 24(5):699-705. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180513&journal_id=dzlxxb
    杨少华, 李忠海, 2018.一种基于有限元的岩石圈长期变形数值计算方法[J].地质力学学报, 24(6):768-775. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180604&journal_id=dzlxxb
    殷跃平, 2010.斜倾厚层山体滑坡视向滑动机制研究:以重庆武隆鸡尾山滑坡为例[J].岩石力学与工程学报, 29(2):217-226.
    殷跃平, 刘传正, 陈红旗, 等, 2013. 2013年1月11日云南镇雄赵家沟特大滑坡灾害研究[J].工程地质学报, 21(1):6-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201301002
    殷跃平, 王文沛, 张楠, 等, 2017.强震区高位滑坡远程灾害特征研究:以四川茂县新磨滑坡为例[J].中国地质, 44(5):827-841.
    周琪, 许强, 周书, 等, 2019.基于数值模拟的突发型黄土滑坡运动过程研究:以黑方台陈家8#滑坡为例[J].山地学报, 37(4):528-537.
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  114
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-10
  • 修回日期:  2020-07-02
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回