留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高位远程滑坡冲击铲刮效应研究进展及问题

高杨 李滨 高浩源 贺凯 刘朋飞

高杨, 李滨, 高浩源, 等, 2020. 高位远程滑坡冲击铲刮效应研究进展及问题. 地质力学学报, 26 (4): 510-519. DOI: 10.12090/j.issn.1006-6616.2020.26.04.044
引用本文: 高杨, 李滨, 高浩源, 等, 2020. 高位远程滑坡冲击铲刮效应研究进展及问题. 地质力学学报, 26 (4): 510-519. DOI: 10.12090/j.issn.1006-6616.2020.26.04.044
GAO Yang, LI Bin, GAO Haoyuan, et al., 2020. Progress and issues in the research of impact and scraping effect of high-elevation and long-runout landslide. Journal of Geomechanics, 26 (4): 510-519. DOI: 10.12090/j.issn.1006-6616.2020.26.04.044
Citation: GAO Yang, LI Bin, GAO Haoyuan, et al., 2020. Progress and issues in the research of impact and scraping effect of high-elevation and long-runout landslide. Journal of Geomechanics, 26 (4): 510-519. DOI: 10.12090/j.issn.1006-6616.2020.26.04.044

高位远程滑坡冲击铲刮效应研究进展及问题

doi: 10.12090/j.issn.1006-6616.2020.26.04.044
基金项目: 

国家重点研发计划项目 2018YFC1504806

国家重点研发计划项目 2018YFC1504804

国家自然科学青年基金项目 41907257

中国地质科学院地质力学研究所基本科研业务费项目 DZLXJK201901

重庆市地质灾害自动化监测工程技术研究中心开放课题 KF2019-8

详细信息
    作者简介:

    高杨(1989-), 男, 助理研究员, 从事高速远程滑坡机理研究。E-mail:737263992@qq.com

  • 中图分类号: P642.22

Progress and issues in the research of impact and scraping effect of high-elevation and long-runout landslide

  • 摘要: 冲击铲刮效应一直是中国西南山区高位岩质滑坡动力学研究的热点问题。文章在开展大量的野外调查基础上,结合目前国内外的研究现状,对目前的基础理论和研究方法进行了归纳总结;从国内外高位远程铲刮型滑坡的典型案例入手,总结了高位远程滑坡的冲击铲刮模式主要有嵌入铲起模式、裹挟刮带模式、冲击滑移模式和冲击飞溅模式;提出了在高位滑坡冲击铲刮研究中的难点和重点问题;并在理论解析、数值计算、人工智能和风险预测方面对今后的冲击铲刮研究思路进行了展望。目的是为冲击铲刮效应响应下的高位滑坡成灾模式和动力学特征分析提供重要的研究基础,为高位远程滑坡动力研究、科学防灾减灾和科学救援工作提供技术支撑。

     

  • 图  1  三层式铲刮分析模型(Iverson,2012)

    Figure  1.  Analysis model of the three-layer scraping (Iverson, 2012)

    图  2  理想弹塑性体接触压应力分布(何思明等,2008)

    a为接触区半径;ap为塑性区半径

    Figure  2.  Distribution of the contact compressive stress of the ideal elastoplastic body (a is the radius of the contact zone; ap is the radius of the plastic zone) (He et al. , 2008)

    图  3  西藏易贡高位远程滑坡(镜向45°,2000年)

    Figure  3.  High-elevation and long-runout landslide in Yigong, Tibet (view towards 45°, 2000)

    图  4  西藏易贡高位远程滑坡剖面

    Figure  4.  Profile of the high-elevation and long-runout landslide in Yigong, Tibet

    图  5  四川都江堰三溪村高位远程滑坡(2013年)

    Figure  5.  High-elevation and long-runout landslide in Sanxi Village, Dujiangyan, Sichuan (2013)

    图  6  三溪村高位远程滑坡剖面

    Figure  6.  Profile of high-elevation and long-runout landslide in Sanxi Village, Dujiangyan, Sichuan

    图  7  嵌入铲起铲刮模式概化图

    Figure  7.  Schematic diagram of the embedded and plowing pattern

    图  8  裹挟夹带铲刮模式概化图

    Figure  8.  Schematic diagram of the scraping and entrainment pattern

    图  9  冲击滑移铲刮模式概化图

    Figure  9.  Schematic diagram of the pushing and slip pattern

    图  10  冲击飞溅铲刮模式概化图

    Figure  10.  Schematic diagram of the impact and splash pattern

  • BOUCHUT F, FERNÁNDEZ-NIETO E D, MANGENEY A, et al., 2008. On new erosion models of Savage-Hutter type for avalanches[J]. Acta Mechanica, 199(1-4):181-208. doi: 10.1007/s00707-007-0534-9
    CHENG Q G.1999. The study of dynamic mechanism of rocky landslide with violent starting and high moving speed during full course movements[J]. Chinese Journal of Rock Mechanics and Engineering, 18(1):116. (in Chinese with English abstract)
    CHENG Q G, PENG J B, Hu G T, et al., 1999. High speed rockslide dynamics[M]. Chengdu:Southwest Jiaotong University Press. (in Chinese)
    CROSTA G B, IMPOSIMATO S, RODDEMAN D.2009. Numerical modelling of entrainment/deposition in rock and debris-avalanches[J]. Engineering Geology, 109(1-2):135-145. doi: 10.1016/j.enggeo.2008.10.004
    DUFRESNE A.2012. Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events[J]. Earth Surface Processes and Landforms, 37(14):1527-1541. doi: 10.1002/esp.3296
    ENDO K, SUMITA M, MACHIDA M, et al., 1989. The 1984 collapse and debris avalanche deposits of Ontake Volcano, Central Japan[M]//LATTER J H. Volcanic Hazards. Berlin:Springer-Verlag:210-229.
    EVANS S G, GUTHRIE R H, ROBERTS N J, et al., 2007. The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island, Philippines:a catastrophic landslide in tropical mountain terrain. Natural Hazards and Earth System Sciences, 7(1):89-101. doi: 10.5194/nhess-7-89-2007
    GAO Y, LI B, WANG G Z.2016. Motion feature and numerical simulation analysis of Jiweishan landslide with rapid and long run-out[J]. Journal of Engineering Geology, 24(3):425-434. (in Chinese with English abstract)
    GAO Y, YIN Y P, Li B, et al., 2017. Characteristics and numerical runout modeling of the heavy rainfall-induced catastrophic landslide-debris flow at Sanxicun, Dujiangyan, China, following the Wenchuan Ms 8.0 earthquake[J]. Landslides, 14(4):1361-1374. doi: 10.1007/s10346-016-0793-4
    GAO Y, LI B, GAO H Y, et al., 2020. Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area:a case study of the Shuicheng "7·23" landslide in Guizhou, China[J]. Landslides, 17(7):1663-1677. doi: 10.1007/s10346-020-01377-8
    GAO Y, HE K, LI Z, et al., 2020. Catastrophic types and dynamics analysis of super-large landslides in karst mountainous areas in southwestern China[J/OL]. Hydrogeological Engineering Geology. doi: 10.16030/j.cnki.issn.1000-3665.202003041.(in Chinese with English abstract)
    HE K, GAO Y, WANG W P, et al., 2018. Physical model experimental study on deformation and failure of overlying rock slope under the condition of steep coal seam mining[J]. Journal of Geomechanics, 24(3):399-406. (in Chinese with English abstract)
    HE S M, LI X P, WU Y.2008. Research on yield property of soil under rock-fall impact[J]. Chinese Journal of Rock Mechanics and Engineering, 27(S1):2973-2977. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=250abc2916ec3d35412797132209fdd6&encoded=0&v=paper_preview&mkt=zh-cn
    HEIM A.1932. Bergsturz und Menschenleben[M], Naurforschenden Gesellschaft, Zurich, Switzerland.
    HU G T, ZHANG K, MAO Y L.1995. Landslide dynamics[M]. Beijing:Geological Publishing House. (in Chinese)
    HUANG Y, ZHU C Q.2014. Simulation of flow slides in municipal solid waste dumps using a modified MPS method[J]. Natural Hazards, 74(2):491-508. doi: 10.1007/s11069-014-1194-4
    HUNGR O, EVANS S G.2004. Entrainment of debris in rock avalanches:an analysis of a long run-out mechanism[J]. Geological Society of America Bulletin, 116(9-10):1240-1252. https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/116/9-10/1240/2122/Entrainment-of-debris-in-rock-avalanches-An
    HUTTER K, SAVAGE S B, NOHGUCHI Y.1989. Numerical, analytical, and laboratory experimental studies of granular avalanche flows[J]. Annals of Glaciology, 13:109-116. doi: 10.3189/S0260305500007722
    HU X B, FAN X Y, TANG J J.2019.Accumulation characteristics and energy conversion of high-speed and long-distance landslide on the basis of dem:a case study of Sanxicun landslide[J]. Journal of Geomechanics, 25(4):527-535. (in Chinese with English abstract)
    IVERSON R M, REID M E, LOGAN M, et al., 2011. Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment[J]. Nature Geoscience, 4(2):116-121. doi: 10.1038/ngeo1040
    IVERSON R M.2012. Elementary theory of bed-sediment entrainment by debris flows and avalanches[J]. Journal of Geophysical Research:Earth Surface, 117(F3):F03006. http://cn.bing.com/academic/profile?id=da8993a722b823d41534f7899870dff3&encoded=0&v=paper_preview&mkt=zh-cn
    KOLDERUP N H.1955. Raset I Modalen 14. August 1953. Norsk Geologisk Tidsskrift, 34:211-217.
    LI B, XIAO W, WANG H W.2018.Analysis of Damage Modulus of Rock[J].China Earthquake Engineering Journal, 40(2):384-388. (in Chinese with English abstract)
    LI T H, FAN X Y, JIANG Y J.2018. Study on equivalent impact force and impact distribution range of landslide debris flow with different gradation[J]. Mountain Research, 36(5):740-749. (in Chinese with English abstract)
    LI X L, TANG H M, XIONG C R, et al., 2012. Influence of substrate ploughing and erosion effect on process of rock avalanche[J]. Rock and Soil Mechanics, 33(5):1527-1534.1541. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=24142d05eead2901ef65071fd2f8a78e&encoded=0&v=paper_preview&mkt=zh-cn
    LIU C, ZHANG X Y, XU Q, et al., 2017. Research on energy conservation simulation of three dimensional discrete element model[J]. Chinese Journal of Underground Space and Engineering, 13(S2):698-704. (in Chinese with English abstract)
    LIU Y J.2002. Study on fluidifying theory of large high-speed rockslide[D]. Chengdu: Southwest Jiaotong University. (in Chinese)
    LU P Y, HOU T X, YANG X G, et al., 2016. Physical modeling test for entrainment effect of landslides and the related mechanism discussion[J]. Chinese Journal of Rock Mechanics and Engineering, 35(6):1225-1232. (in Chinese with English abstract)
    LU P Y, YANG X G, SHAO S, et al., 2018. Particle discrete element simulation on punching-shear and scraping effect of landslide-debris flow[J]. Water Resources and Hydropower Engineering, 49(7):19-27. (in Chinese with English abstract).
    MANGENEY A, ROCHE O, HUNGR O, et al., 2010. Erosion and mobility in granular collapse over sloping beds[J]. Journal of Geophysical Research:Earth Surface, 115(F3):F03040. http://cn.bing.com/academic/profile?id=9e2ecd5d55905f6168e702aa27741d76&encoded=0&v=paper_preview&mkt=zh-cn
    MCDOUGALL S, HUNGR O.2005. Dynamic modelling of entrainment in rapid landslides[J]. Canadian Geotechnical Journal, 42(5):1437-1448. doi: 10.1139/t05-064
    NIEDERER J.1941. Der felssturz am flimserstein:jahresbericht der naturforschenden gesellschaft graubündens[R]. Chur, 77:3-27
    SAVAGE S B, HUTTER K.1991. The dynamics of avalanches of granular materials from initiation to runout. Part I:Analysis[J]. Acta Mechanica, 86(1-4):201-223. doi: 10.1007/BF01175958
    SOVILLA B, BURLANDO P, BARTELT P.2006. Field experiments and numerical modeling of mass entrainment in snow avalanches[J]. Journal of Geophysical Research:Earth Surface, 111(F3):F03007. http://cn.bing.com/academic/profile?id=029b0247803ce07bbb1d746c9add0f89&encoded=0&v=paper_preview&mkt=zh-cn
    STINY J.1910. Die Muren[M], Wagnerschen Univ., Buchhandlung, Innsbruck, Austria.
    TAKAHASHI T.1978. Mechanical characteristics of debris flow[J]. Journal of the Hydraulics Division, 104(8):1153-1169. http://cn.bing.com/academic/profile?id=66e37603969a3e1cd76c4df9e5ef2fd6&encoded=0&v=paper_preview&mkt=zh-cn
    WANG G Z, LI B, FENG Z, et al., 2019. Simulation of the process of the Jiguanling rock avalanche in Wulong of Chongqing[J]. Hydrogeology & Engineering Geology, 41(5):101-106. (in Chinese with English abstract)
    WANG H Y, GU S L, ZHAO J.2017. Study on numerical simulation of process of landslide accumulation landslide dam based on DEM[J]. Structural Engineers, 33(4):105-110. (in Chinese with English abstract)
    WANG L Z.2019. "7·23" landslide in Shuicheng, Guizhou[J]. The Chinese Journal of Geological Hazard and Control, 30(4):8. (in Chinese)
    WANG Q, YAO L K.2007. Lattice Boltzmann method and its application in the study on deposition of debris flow[J]. Journal of Catastrophology, 22(3):1-5. (in Chinese with English abstract) https://www.sciencedirect.com/science/article/pii/S0360128515300162
    XING A G, WANG G H, LI B, et al., 2015. Long-runout mechanism and landsliding behaviour of large catastrophic landslide triggered by heavy rainfall in Guanling, Guizhou, China[J]. Canadian Geotechnical Journal, 52(7):971-981. doi: 10.1139/cgj-2014-0122
    XU Q, HUANG R Q, YIN Y P, et al., 2009. The Jiweishan landslide of June 5.2009 in Wulong, Chongqing:characteristics and failure mechanism[J]. Journal of Engineering Geology, 17(4):433-444. (in Chinese with English abstract)
    XU Q, LI W L, DONG X J, et al., 2017. The Xinmocun landslide on June 24.2017 in Maoxian, Sichuan:characteristics and failure mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 36(11):2612-2628. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX201711002.htm
    XU Q, ZHENG G, LI W L, et al., 2018. Study on successive landslide damming events of Jinsha river in Baige village on Octorber 11 and November 3.2018[J]. Journal of Engineering Geology, 26(6):1534-1551. (in Chinese with English abstract)
    YAN C, YU J, XU J L, et al., 2011. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 41(5):562-589. (in Chinese) http://cn.bing.com/academic/profile?id=a8c91704890ea20f4c8b4a631092fa2d&encoded=0&v=paper_preview&mkt=zh-cn
    YIN Y P.2000. Rapid huge landslide and hazard reduction of Yigong River in the Bomi, Tibet[J]. Hydrogeology and Engineering Geology, 27(4):8-11. (in Chinese with English abstract)
    YIN Y P.2009. Rapid and long run-out features of landslides triggered by the Wenchuan earthquake[J]. Journal of Engineering Geology, 17(2):153-166. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=e45710aa7df3df0728120fe026fa75ae&encoded=0&v=paper_preview&mkt=zh-cn
    YIN Y P.2010. Mechanism of apparent dip slide of inclined bedding rockslide-a case study of Jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering, 29(2):217-226. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=16a751a39dbe150c1d61125bdf97ed7a&encoded=0&v=paper_preview&mkt=zh-cn
    YIN Y P, XING A G, WANG G H, et al., 2017. Experimental and numerical investigations of a catastrophic long-runout landslide in Zhenxiong, Yunnan, southwestern China[J]. Landslides, 14(2):649-659. doi: 10.1007/s10346-016-0729-z
    ZHANG L, TANG H M, XIONG C R, et al., 2012. Movement process simulation of high-speed long-distance Jiweishan landslide with PFC3D[J]. Chinese Journal of Rock Mechanics and Engineering, 31(S1):2601-2611. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX2012S1001.htm
    ZHANG M, YIN Y P, WU S R, et al., 2010. Development status and prospects of studies on kinematics of long runout rock avalanches[J]. Journal of Engineering Geology, 18(6):805-817. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=53b71c28e4036c614bf1e758f71ea9cd&encoded=0&v=paper_preview&mkt=zh-cn
    ZHANG M, MCSAVENEY M, SHAO H, et al., 2018. The 2009 Jiweishan rock avalanche, Wulong, China:Precursor conditions and factors leading to failure[J]. Engineering Geology, 233:225-230. doi: 10.1016/j.enggeo.2017.12.010
    ZHENG G, XU Q, JU Y Z, et al., 2018. The Pusacun rockavalanche on August 28.2017 in Zhangjia-wan nayongxian, Guizhou:characteristics and failure mechanism[J]. Journal of Engineering Geology, 26(1):223-240. (in Chinese with English abstract)
    ZHOU J W, CUI P, HAO M H.2016. Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China[J]. Landslides, 13(1):39-54. doi: 10.1007/s10346-014-0553-2
    程谦恭.1999.剧冲式高速岩质滑坡运动全过程动力学机制研究[J].岩石力学与工程学报, 18(1):116.
    程谦恭, 彭建兵, 胡广韬, 等.1999.高速岩质滑坡动力学[M].成都:西南交通大学出版社.
    高杨, 李滨, 王国章.2016.鸡尾山高速远程滑坡运动特征及数值模拟分析[J].工程地质学报, 24(3):425-434. doi: 10.13544/j.cnki.jeg.2016.03.012
    高杨, 贺凯, 李壮, 等.2020.西南岩溶山区特大滑坡成灾类型及动力学分析[J/OL].水文地质工程地质. doi: 10.16030/j.cnki.issn.1000-3665.202003041.
    贺凯, 高杨, 王文沛, 等.2018.陡倾煤层开采条件下上覆山体变形破坏物理模型试验研究[J].地质力学学报, 24(3):399-406.
    何思明, 李新坡, 吴永.2008.滚石冲击荷载作用下土体屈服特性研究[J].岩石力学与工程学报, 27(S1):2973-2977.
    胡广韬, 张珂, 毛延龙.1995.滑坡动力学[M].北京:地质出版社.
    胡晓波, 樊晓一, 唐俊杰.2019.基于离散元的高速远程滑坡运动堆积特征及能量转化研究:以三溪村滑坡为例[J].地质力学学报, 25(4):527-535.
    李天话, 樊晓一, 姜元俊.2018.不同颗粒级配滑坡碎屑流等效冲击力及作用位置分布研究[J].山地学报, 36(5):740-749.
    李祥龙, 唐辉明, 熊承仁, 等.2012.基底刮铲效应对岩石碎屑流停积过程的影响[J].岩土力学, 33(5):1527-1534.1541. doi: 10.3969/j.issn.1000-7598.2012.05.039
    刘春, 张晓宇, 许强, 等.2017.三维离散元模型的滑坡能量守恒模拟研究[J].地下空间与工程学报, 13(S2):698-704.
    刘涌江.2002.大型高速岩质滑坡流体化理论研究[D].成都: 西南交通大学.
    陆鹏源, 侯天兴, 杨兴国, 等.2016.滑坡冲击铲刮效应物理模型试验及机制探讨[J].岩石力学与工程学报, 35(6):1225-1232.
    陆鹏源, 杨兴国, 邵帅, 等.2018.滑坡-碎屑流冲切铲刮效应的颗粒离散元模拟[J].水利水电技术, 49(7):19-27. doi: 10.13928/j.cnki.wrahe.2018.07.003
    李博, 肖威, 王华伟.2018.岩石损伤模量分析[J].地震工程学报, 40(2):384-388. doi: 10.3969/j.issn.1000-0844.2018.02.384
    王国章, 李滨, 冯振, 等.2014.重庆武隆鸡冠岭岩质崩滑-碎屑流过程模拟[J].水文地质工程地质, 41(5):101-106.
    王洋海, 顾声龙, 赵杰.2017.基于DEM的滑坡堆积堰塞湖过程数值研究[J].结构工程师, 33(4):105-110.
    王立朝.2019.贵州水城"7·23"特大山体滑坡[J].中国地质灾害与防治学报, 30(4):8.
    王沁, 姚令侃.2007.格子Boltzmann方法及其在泥石流堆积研究中的应用[J].灾害学, 22(3):1-5. doi: 10.3969/j.issn.1000-811X.2007.03.001
    许强, 黄润秋, 殷跃平, 等.2009. 2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究[J].工程地质学报, 17(4):433-444.
    许强, 李为乐, 董秀军, 等.2017.四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究[J].岩石力学与工程学报, 36(11):2612-2628. doi: 10.13722/j.cnki.jrme.2017.0855
    许强, 郑光, 李为乐, 等.2018. 2018年10月和11月金沙江白格两次滑坡-堰塞堵江事件分析研究[J].工程地质学报, 26(6):1534-1551. doi: 10.13544/j.cnki.jeg.2018-406
    阎超, 于剑, 徐晶磊, 等.2011. CFD模拟方法的发展成就与展望[J].力学进展, 41(5):562-589. doi: 10.6052/1000-0992-2011-5-lxjzj2010-082
    殷跃平.2000.西藏波密易贡高速巨型滑坡特征及减灾研究[J].水文地质工程地质, 27(4):8-11. doi: 10.3969/j.issn.1000-3665.2000.04.003
    殷跃平.2009.汶川八级地震滑坡高速远程特征分析[J].工程地质学报, 17(2):153-166.
    殷跃平.2010.斜倾厚层山体滑坡视向滑动机制研究:以重庆武隆鸡尾山滑坡为例[J].岩石力学与工程学报, 29(2):217-226.
    张龙, 唐辉明, 熊承仁, 等.2012.鸡尾山高速远程滑坡运动过程PFC3D模拟[J].岩石力学与工程学报, 31(S1):2601-2611. doi: 10.3969/j.issn.1000-6915.2012.z1.002
    张明, 殷跃平, 吴树仁, 等.2010.高速远程滑坡-碎屑流运动机理研究发展现状与展望[J].工程地质学报, 18(6):805-817. doi: 10.3969/j.issn.1004-9665.2010.06.001
    郑光, 许强, 巨袁臻, 等.2018. 2017年8月28日贵州纳雍县张家湾镇普洒村崩塌特征与成因机理研究[J].工程地质学报, 26(1):223-240. doi: 10.13544/j.cnki.jeg.2018.01.023
  • 加载中
图(10)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  10
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-30
  • 修回日期:  2020-06-28
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回