留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地震作用下西藏易贡滑坡动力响应特征分析

刘铮 李滨 贺凯 高杨 王文沛

刘铮, 李滨, 贺凯, 等, 2020. 地震作用下西藏易贡滑坡动力响应特征分析. 地质力学学报, 26 (4): 471-480. DOI: 10.12090/j.issn.1006-6616.2020.26.04.040
引用本文: 刘铮, 李滨, 贺凯, 等, 2020. 地震作用下西藏易贡滑坡动力响应特征分析. 地质力学学报, 26 (4): 471-480. DOI: 10.12090/j.issn.1006-6616.2020.26.04.040
LIU Zheng, LI Bin, HE Kai, et al., 2020. An analysis of dynamic response characteristics of the Yigong Landslide in Tibet under strong earthquake. Journal of Geomechanics, 26 (4): 471-480. DOI: 10.12090/j.issn.1006-6616.2020.26.04.040
Citation: LIU Zheng, LI Bin, HE Kai, et al., 2020. An analysis of dynamic response characteristics of the Yigong Landslide in Tibet under strong earthquake. Journal of Geomechanics, 26 (4): 471-480. DOI: 10.12090/j.issn.1006-6616.2020.26.04.040

地震作用下西藏易贡滑坡动力响应特征分析

doi: 10.12090/j.issn.1006-6616.2020.26.04.040
基金项目: 

国家重点研发计划项目 2018YFC1504806

国家自然科学基金 41702342

详细信息
    作者简介:

    刘铮(1994-), 男, 在读硕士, 主要从事地质灾害研究工作。E-mail:2026786929@qq.com

    通讯作者:

    李滨(1980-), 男, 研究员, 主要从事地质灾害防治研究工作。E-mail:libin1102@163.com

  • 中图分类号: P642.22

An analysis of dynamic response characteristics of the Yigong Landslide in Tibet under strong earthquake

  • 摘要: 西藏雅鲁藏布江大峡谷地区是地震滑坡的高易发区,发生过多期地震滑坡。以西藏易贡滑坡为例,运用FLAC3D有限差分方法,对滑坡所在山体进行频响特征分析,并以此为基础对其地震波作用下的放大效应开展研究,最后对近场强震条件下山顶潜在崩滑体稳定性进行预测。研究结果发现:易贡山体整体卓越频率处于较低值,山顶卓越频率主要集中在1 Hz以下、山顶两侧卓越频率在2~6 Hz之间;在地震波作用下,易贡山体顶部及两侧出现不同程度放大,山体内部沿高度向上呈先增后减、进而再次增大的变化趋势,其计算结果与频响特征分析结果基本一致;静力条件下,潜在崩滑体基本保持稳定,其安全系数为1.27,但地震作用下的计算结果却表明其发生了失稳破坏;在考虑水平向和竖向加速度同时输入的近场强震条件下,崩滑体稳定程度将进一步下降,因此需加强近场强震条件下山体的风险分析及预测。

     

  • 图  1  西藏波密易贡滑坡(镜向50°)

    Figure  1.  The Yigong Landslide in Bomi, Tibet (view towards 50°)

    图  2  易贡滑坡工程地质剖面简图

    Figure  2.  Engineering geological section of the Yigong Landslide

    图  3  计算模型及监测点设置

    Figure  3.  Computation model with monitoring points

    图  4  不同频率Ricker子波作用下易贡山体水平向加速度云图

    Figure  4.  Contours of horizontal acceleration of the Yigong Landslide under the action of Ricker wavelet with varying frequencies

    图  5  不同频率Ricker子波作用下易贡山体竖向加速度云图

    Figure  5.  Contours of vertical acceleration of the Yigong Landslide under the action of Ricker wavelet with varying frequencies

    图  6  汶川地震卧龙台站实测地震记录

    Figure  6.  Seismic records of the Wenchuan Earthquake in the Wolong Station

    图  7  截取后的卧龙实测地震记录及其傅里叶谱值

    Figure  7.  Extracted seismic records of the Wolong Station and its Fourier spectrum ratio with power spectrum

    图  8  实测地震波作用下易贡山体坡面放大效应

    A1、B1—水平向加速度曲线;A2、B2—竖向加速度曲线

    Figure  8.  Measured amplification effect of the Yigong Mountain surface under earthquake waves(A1, A2: Horizontal and vertical accelerations under EW and UD seismic waves. B1, B2: Horizontal and vertical accelerations under only EW seismic wave.)

    图  9  实测地震波作用下易贡山体内部放大效应

    Figure  9.  Measured amplification effect of the Yigong Mountain interior under earthquake waves(A1, B1: Horizontal acceleration. A2, B2: Vertical acceleration)

    图  10  易贡山体计算模型

    Figure  10.  Numerical model of the Yigong Mountain

    图  11  静力条件下塑性区分布图

    Figure  11.  Plastic zones under static condition

    图  12  动力加载条件下剪应变增量及塑性区分布图

    Figure  12.  Shear strain increment and plastic zones distribution under dynamic loading

    图  13  两向加速度同时加载条件下残余变形量曲线

    Figure  13.  Curves of residual deformation under simultaneous loading of both EW and UD seismic waves

    图  14  水平向加速度加载条件下残余变形量曲线

    Figure  14.  Curves of residual deformation under the loading of EW seismic waves

    表  1  不同工况下坡体表面典型监测点加速度值

    Table  1.   Acceleration values of typical monitoring points on the slope surface under varying working conditions

    监测点序号 加速度方向 加速度值/(m·s-2)(两向加速度加载) 加速度值/(m·s-2)(水平向加速度加载)
    A13 水平向 25.1 15.5
    竖向 17.8 10.4
    A7 水平向 12.0 9.0
    竖向 13.7 5.5
    B1 水平向 15.8 11.9
    竖向 23.5 12.4
    B2 水平向 14.8 10.2
    竖向 21.0 10.7
    下载: 导出CSV

    表  2  不同工况下稳定性计算结果

    Table  2.   Stability analysis under varying working conditions

    指标 静力条件 工况1:水平及竖向加速度输入 工况2:水平向加速度输入
    塑性区 未贯通 贯通 贯通
    剪应变增量最大值 约0.02 约0.14 约0.08
    残余变形量/m B1监测点为最大水平0.8;竖向1.0 B1监测点为最大水平0.3;竖向0.6
    稳定性 稳定安全系数1.27 失稳残余变形不收敛 失稳残余变形不收敛
    下载: 导出CSV
  • ASHFORD S A, SITAR N.1997. Analysis of topographic amplification of inclined shear waves in a steep coastal Bluff[J]. Bulletin of the Seismological Society of America, 87(3):692-700. http://cn.bing.com/academic/profile?id=ef378e49178bc23e2e544de530003502&encoded=0&v=paper_preview&mkt=zh-cn
    ASHFORD S A, SITAR N, LYSMER J, et al., 1997. Topographic effects on the seismic response of steep slopes[J]. Bulletin of the Seismological Society of America, 87(3):701-709. https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/87/3/701/120237/Topographic-effects-on-the-seismic-response-of
    BAI Y J, NI H Y, GE H.2019. Advances in research on the geohazard effect of active faults on the southeastern margin of the Tibetan plateau[J]. Journal of Geomechanics, 25(6):1166-1128. (in Chinese with English abstract)
    BOURDEAU C, HAVENITH H B.2008. Site effects modelling applied to the slope affected by the suusamyr earthquake (Kyrgyzstan.1992)[J]. Engineering Geology, 97(3-4):126-145. doi: 10.1016/j.enggeo.2007.12.009
    CHEN J C, WANG L M, WANG P, et al., 2020. Dynamic response of loess slopes based on the shake table test[J]. China Earthquake Engineering Journal, 42(2):529-535. (in Chinese with English abstract)
    DI FIORE V.2010. Seismic site amplification induced by topographic irregularity:results of a numerical analysis on 2D synthetic models[J]. Engineering Geology, 114(3-4):109-115. doi: 10.1016/j.enggeo.2010.05.006
    HARP E L, JIBSON R W.2002. Anomalous concentrations of seismically triggered rock falls in Pacoima canyon:are they caused by highly susceptible slopes or local amplification of seismic shaking?[J]. Bulletin of the Seismological Society of America, 92(8):3180-3189. doi: 10.1785/0120010171
    Itasca Consulting Group Inc.2005. FLAC (fast Lagrange analysis of continua) slope user's guide (version 5.0)[R]. Minneapolis, Minnesota.
    LI N, WANG B Q, Men Y M, et al., 2018. Study on dynamic response of landslide supported by pressure-type anchor under earthquake[J]. Journal of Geomechanics, 24(4):490-497. (in Chinese with English abstract)
    LIU H D, NIU L F, YUAN F Q, et al., 2018. Test research on the influence of seismic wave frequency on the dynamic response of a layered rock slope[J]. Hydrogeology and Engineering Geology, 45(2):77-83.(in Chinese with English abstract)
    LIU Z, LI B, HE K, et al., 2020. Research of dynamic response patterns of high steep rock slope under earthquake effects[J]. Journal of Geomechanics, 26(1):116-125. (in Chinese with English abstract)
    LUO Y H.2011. Study on complex slopes response law under earthquake action[D]. Chengdu: Chengdu University of Technology. (in Chinese with English abstract)
    MEUNIER P, HOVIUS N, HAINES J A.2008. Topographic site effects and the location of earthquake induced landslides[J]. Earth and Planetary Science Letters, 275(3-4):221-232. doi: 10.1016/j.epsl.2008.07.020
    MITANI Y, WANG F W, OKEKE A C, et al., 2013. Dynamic analysis of earthquake amplification effect of slopes in different topographic and geological conditions by using ABAQUS[M]//WANG F W, MIYAJIMA M, LI T L, et al. Progress of Geo-Disaster Mitigation Technology in Asia. Berlin, Heidelberg:Springer:469-490.
    QI S W.2006. Two patterns of dynamic responses of single-free-surface slopes and their threshold height[J]. Chinese Journal of Geophysics, 49(2):518-523. (in Chinese with English abstract) doi: 10.1002/cjg2.855
    QI S W, WU F Q, SUN J Z.2003. General regularity of dynamic responses of slopes under dynamic input[J]. Science in China Series E (Technological Sciences), 46(S1):28-40. (in Chinese) http://cn.bing.com/academic/profile?id=09364f028d5db23ce6a88c12efaf4d16&encoded=0&v=paper_preview&mkt=zh-cn
    SUN P, YIN Y, CHEN L W.2011. Numerical analysis of the failure mechanism of the Donghekou rockslide in the Wenchuan earthquake region with FLAC[J]. Hydrogeology and Engineering Geology, 38(5):87-91.(in Chinese with English abstract) http://cn.bing.com/academic/profile?id=66f8778a527b6b19c33f73fb95bfa2d8&encoded=0&v=paper_preview&mkt=zh-cn
    SUN Z L, KONG L W, GUO A G, et al., 2019. Experimental and numerical investigations of the seismic response of a rock-soil mixture deposit slope[J]. Environmental Earth Sciences, 78(24):716. doi: 10.1007/s12665-019-8717-y
    WANG B S, FAN X D, LIU W, et al., 2000. Investigation report of Yigong landslide[R]. Lhasa: Department of Land and Resources of Tibet Autonomous Region. (in Chinese)
    WANG H Y, XIE L L.2010. Effects of topography on ground motion in the Xishan park, Zigong city[J]. Chinese Journal of Geophysics, 53(7):1631-1638. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=2252b8f5c4d67a88873fcadc13649a8d&encoded=0&v=paper_preview&mkt=zh-cn
    WANG W P, LI B, FENG Z, et al., 2019. Failure mechanism of a high-steep rock slope considering site effect[J]. Rock and Soil Mechanics, 40(1):297-304, 314. (in Chinese with English abstract) https://www.sciencedirect.com/science/article/pii/S0013795217304659
    WANG W P, YIN Y P, LI B, et al., 2015. Spectral characteristics of dynamic response of slope with different angles of inclination[J]. Chinese Journal of Rock Mechanics and Engineering, 34(1):121-128. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=34c3f1086e8d89d284b40af40f46deb5&encoded=0&v=paper_preview&mkt=zh-cn
    XIAO W J, LIAO J M, ZHANG L L.2018. Shaking table test on seismic dynamic responses of isolated mountains[J]. Journal of Geomechanics, 40(3):582-590. (in Chinese with English abstract) https://www.sciencedirect.com/science/article/pii/S0267726114002000
    YANG G X, WU F Q, DONG J Y, et al., 2012. Study of dynamic response characters and failure mechanism of rock slope under earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 31(4):696-702. (in Chinese with English abstract) https://www.researchgate.net/publication/283483745_Study_of_dynamic_response_characters_and_failure_mechanism_of_rock_slope_under_earthquake
    YIN Y P.2000. The study of Yigong tremendous high-speed landslide in Bomi, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 11(2):100. (in Chinese)
    YIN Y P.2008. Researches on the geo-hazards triggered by Wenchuan earthquake, Sichuan[J]. Journal of Engineering Geology, 16(4):433-444. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=da929fadbf6811e0a723482473bbdd76&encoded=0&v=paper_preview&mkt=zh-cn
    YIN Y P, WANG M, LI B, et al., 2012. Dynamic response characteristics of Daguangbao landslide triggered by Wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 31(10):1969-1982. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=d85b9fd040c2f2f9a9ea01bf245bfa2d&encoded=0&v=paper_preview&mkt=zh-cn
    ZHANG Y S, LEI W Z, SHI J S, et al., 2008. General characteristics of 5.12 earthquake-induced geohazards in Sichuan[J]. Journal of Geomechanics, 14(2):109-116. (in Chinese with English abstract) http://cn.bing.com/academic/profile?id=756d8344d39165db922e2621253266d0&encoded=0&v=paper_preview&mkt=zh-cn
    ZHOU X T, HAN J L, SHI F G, et al., 2014. Numerical simulation for amplification effect of topography and geomorphology to seismic waves[J]. Journal of Engineering Geology, 22(6):1211-1220. (in Chinese with English abstract). doi: 10.1007%2Fs11430-008-0130-4
    ZHU C M, ZHANG C X.2015. Preliminary discussion on treatment of geological hazard in Zhamunong Valley in Tibet[J]. Yangtze River, 46(18):26-28. (in Chinese with English abstract)
    白永健, 倪化勇, 葛华.2019.青藏高原东南缘活动断裂地质灾害效应研究现状[J].地质力学学报, 25(6):1166-1128.
    陈金昌, 王兰民, 王平, 等.2020.基于振动台试验的纯黄土边坡动力响应研究[J].地震工程学报, 42(2):529-535.
    李楠, 汪班桥, 门玉明, 等.2018.压力型锚杆支护滑坡的地震动力响应特性研究[J].地质力学学报, 24(4):490-497.
    刘汉东, 牛林峰, 袁富强, 等.2018.地震波频率对层状岩质边坡动力响应影响的试验研究[J].水文地质工程地质, 45(2):77-83. doi: 10.16030/j.cnki.issn.1000-3665.2018.02.12
    刘铮, 李滨, 贺凯, 等.2020.地震作用下高陡岩质斜坡动力响应规律研究[J].地质力学学报, 26(1):116-125.
    罗永红.2011.地震作用下复杂斜坡响应规律研究[D].成都: 成都理工大学.
    祁生文, 伍法权, 孙进忠.2003.边坡动力响应规律研究[J].中国科学E辑技术科学, 33(S1):28-40. doi: 10.3321/j.issn:1006-9275.2003.z1.004
    祁生文.2006.单面边坡的两种动力反应形式及其临界高度[J].地球物理学报, 49(2):518-523. doi: 10.3321/j.issn:0001-5733.2006.02.026
    孙萍, 殷跃平, 陈立伟.2011.汶川地震区东河口滑坡破坏机制FLAC模拟分析[J].水文地质工程地质, 38(5):87-91.
    王保生, 范相德, 刘伟, 等.2000.易贡巨型山体崩塌滑坡调查研究报告[R].拉萨: 西藏自治区国土资源厅.
    王海云, 谢礼立.2010.自贡市西山公园地形对地震动的影响[J].地球物理学报, 53(7):1631-1638.
    王文沛, 殷跃平, 李滨, 等.2015.不同坡角斜坡动力响应频谱特征研究[J].岩石力学与工程学报, 34(1):121-128. doi: 10.13722/j.cnki.jrme.2015.01.013
    王文沛, 李滨, 冯振, 等.2019.考虑场地效应的高陡岩质斜坡地震失稳机制[J].岩土力学, 40(1):297-304, 314. doi: 10.16285/j.rsm.2017.1163
    肖文静, 廖佳名, 张亮亮.2018.孤立山体地震动力响应的振动台试验研究[J].地震工程学报, 40(3):582-590. doi: 10.3969/j.issn.1000-0844.2018.03.582
    杨国香, 伍法权, 董金玉, 等.2012.地震作用下岩质边坡动力响应特性及变形破坏机制研究[J].岩石力学与工程学报, 31(4):696-702. doi: 10.3969/j.issn.1000-6915.2012.04.007
    殷跃平.2000.西藏波密易贡高速巨型滑坡概况[J].中国地质灾害与防治学报, 11(2):100. doi: 10.3969/j.issn.1003-8035.2000.02.024
    殷跃平.2008.汶川八级地震地质灾害研究[J].工程地质学报, 16(4):433-444.
    殷跃平, 王猛, 李滨, 等.2012.汶川地震大光包滑坡动力响应特征研究[J].岩石力学与工程学报, 31(10):1969-1982. doi: 10.3969/j.issn.1000-6915.2012.10.003
    张永双, 雷伟志, 石菊松, 等.2008.四川5.12地震次生地质灾害的基本特征初析[J].地质力学学报, 14(2):109-116.
    周兴涛, 韩金良, 施凤根, 等.2014.地形地貌对地震波放大效应数值模拟研究[J].工程地质学报, 22(6):1211-1220. doi: 10.13544/j.cnki.jeg.2014.06.027
    朱成明, 张彩霞.2015.西藏扎木弄沟地质灾害治理初步探讨[J].人民长江, 46(18):26-28. doi: 10.16232/j.cnki.1001-4179.2015.18.007
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  152
  • HTML全文浏览量:  15
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-20
  • 修回日期:  2020-06-29
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回