留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采动作用下岩溶山体深大裂隙扩展贯通机理研究

杨忠平 蒋源文 李滨 高杨 刘新荣 赵亚龙

杨忠平, 蒋源文, 李滨, 等, 2020. 采动作用下岩溶山体深大裂隙扩展贯通机理研究. 地质力学学报, 26 (4): 459-470. DOI: 10.12090/j.issn.1006-6616.2020.26.04.039
引用本文: 杨忠平, 蒋源文, 李滨, 等, 2020. 采动作用下岩溶山体深大裂隙扩展贯通机理研究. 地质力学学报, 26 (4): 459-470. DOI: 10.12090/j.issn.1006-6616.2020.26.04.039
YANG Zhongping, JIANG Yuanwen, LI Bin, et al., 2020. Study on the mechanism of deep and large fracture propagation and transfixion in karst slope under the action of mining. Journal of Geomechanics, 26 (4): 459-470. DOI: 10.12090/j.issn.1006-6616.2020.26.04.039
Citation: YANG Zhongping, JIANG Yuanwen, LI Bin, et al., 2020. Study on the mechanism of deep and large fracture propagation and transfixion in karst slope under the action of mining. Journal of Geomechanics, 26 (4): 459-470. DOI: 10.12090/j.issn.1006-6616.2020.26.04.039

采动作用下岩溶山体深大裂隙扩展贯通机理研究

doi: 10.12090/j.issn.1006-6616.2020.26.04.039
基金项目: 

国家重点研发计划项目 2018YFC1504802

国家自然科学基金项目 41772306

中央高校基本科研业务费项目 2019CDXYTM0032

详细信息
  • 中图分类号: P642.25

Study on the mechanism of deep and large fracture propagation and transfixion in karst slope under the action of mining

  • 摘要: 岩溶坡体裂隙的扩展贯通是造成坡体失稳破坏的重要因素。为研究采动作用下高陡岩溶坡体随裂隙扩展贯通的失稳破坏机理,采用离散元(Universal Distinct Element Code,UDEC)数值模拟,研究了采动作用下坡体裂隙的发展规律。研究结果表明:采动作用对岩溶坡体的稳定性具有重要的影响作用,主要表现在煤层上覆岩体新生裂隙的发育以及诱发坡体原有裂隙的扩展;坡体内部裂隙的发育具有一定的时空效应,裂隙带高度随着采空区范围的增加而增加;坡体原有深大裂隙对坡体的破坏具有控制作用,坡体破坏时崩滑体沿着主控裂隙发生滑动;二维模型显示,含深大裂隙岩溶坡体在采动作用下形成类似"悬臂梁结构",悬臂梁结构沿着主控裂隙发生断裂,坡体中间软岩被挤出,最终主控裂隙与临空面扩展贯通,坡体发生崩塌破坏。

     

  • 图  1  贵州纳雍张家湾镇普洒村崩塌区地貌特征

    Figure  1.  Geomorphic characteristics of the collapse area in Pusa village, Zhangjiawan, Nayong, Guizhou Province

    图  2  贵州纳雍崩塌工程地质剖面图

    1—灰岩;2—泥灰岩;3—泥质粉砂岩;4—粉砂质泥岩;5—煤层;6—采空区;7—深大裂隙;8—断层;9—下三叠统夜郎组二段;10—下三叠统夜郎组一段;11—上二叠统长兴组+大隆组;12—上二叠统龙潭组

    Figure  2.  Engineering geological profile of the Nayong collapse in Guizhou Province

    图  3  山体岩溶管道

    Figure  3.  Schematic diagram of the karst slope pipeline

    图  4  崩塌体后缘岩溶裂隙

    Figure  4.  Schematic diagram of the karst fissure at the trailing edge of the collapse

    图  5  崩塌体后缘山顶岩溶塌陷坑

    Figure  5.  Karst collapse pit at the top of the trailing edge of the collapse

    图  6  崩塌后坡体壁面

    Figure  6.  Wall surface of the slope after the collapse

    图  7  崩塌后坡体后缘裂隙

    LD—拉陷槽;LX—拉裂缝

    Figure  7.  Schematic diagram of cracks at the trailing edge of the slope after the collapse

    图  8  岩体被节理切割形成块体

    Figure  8.  Blocks formed after being cut by joints

    图  9  普洒滑坡二维概化计算模型

    Figure  9.  Two-dimensional generalized calculation model of the Pusa landslide

    图  10  煤层开挖顺序图

    Figure  10.  Sequence diagram of the coal seam excavation

    图  11  普洒崩滑采空下竖向位移云图

    Figure  11.  Cloud chart of the vertical displacements under the goaf of the Pusa landslide

    图  12  坡表监测点水平和垂直位移曲线图(监测点位置见图 9)

    Figure  12.  Horizontal and vertical displacement curves of the monitoring points on the slope surface (Positions of the monitoring points are shown in Fig. 9

    图  13  M10-1工作面上覆岩层监测点水平和垂直位移曲线图(监测点位置见图 9)

    Figure  13.  Horizontal and vertical displacement curves of the overburden strata monitoring points on the working face M10-1 (Positions of the monitoring points are shown in Fig. 9)

    图  14  煤层上覆岩层垮落示意图

    Figure  14.  Schematic diagram of the overburden collapse in the coal seam

    图  15  煤层上覆岩体裂隙带高度时空演化图

    Figure  15.  Spatial and temporal evolution of the fracture zone height of the overburden rock mass in the coal seam

    图  16  坡体上部裂隙发育示意图

    Figure  16.  Sketch map of the fracture development in the upper part of the slope

    图  17  坡体变形破坏示意图

    Figure  17.  Diagram of the slope deformation and failure

    表  1  岩体物理力学参数表

    Table  1.   Physical and mechanical parameters of the rock mass

    岩性 密度/(kg·m-3) 体积模量/GPa 剪切模量/GPa 粘聚力/MPa 内摩擦角/(°) 抗拉强度/MPa
    灰岩 2700 31.28 17.53 8.16 45 2.90
    泥灰岩 2450 25.62 14.76 6.53 39 1.60
    泥质粉砂岩 2600 21.47 11.52 4.29 34 1.40
    粉砂质泥岩 2500 18.21 9.84 5.89 30 1.50
    煤层 1350 4.00 2.50 0.52 48 0.31
    下载: 导出CSV

    表  2  结构面物理力学参数表

    Table  2.   Physical and mechanical parameters of the structural surface

    结构面类型 法向刚度系数/GPa 切向刚度系数/GPa 粘聚力/MPa 内摩擦角/(°) 抗拉强度/MPa
    煤层交界面 2.6 2.7 0.7 14 0.12
    其他岩层交界面 28.0 28.0 1.3 24 0.16
    岩体节理 32.0 32.0 0.8 19 0.24
    断层 31.0 34.0 0.5 16 0.00
    下载: 导出CSV
  • BENKO B, STEAD D. 1998. The Frank slide:a reexamination of the failure mechanism[J]. Canadian Geotechnical Journal, 35(2):299-311. doi: 10.1139/t98-005
    CHEN J P, HU T, LI Z H, et al., 2020. UDEC numerical simulation of two-zone height in Nanyang coal mine[J]. Coal Technology, 39(4):133-135. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtjs202004036
    FAN S K. 2006. A discussion on the slope stability on the goaf[J]. Resources Environment and Engineering, 20(Z1):617-627. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdk2006z1005
    FENG Z, YIN Y P, LI B, et al., 2012. Mechanism analysis of apparent dip landslide of Jiweishan in Wulong, Chongqing[J]. Rock and Soil Mechanics, 33(9):2704-2712. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201209023
    GU D Z. 1979. Foundation of rock engineering geomechanics[M]. Beijing:Science Press. (in Chinese)
    HE K, GAO Y, WANG W P, et al., 2018. Physical model experimental study on deformation and failure of overlying rock slope under the condition of steep coal seam mining[J]. Journal of Geomechanics, 24(3):399-406. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201803012
    HUNGR O, EVANS S G. 2004. The occurence and classification of massive rock slope failure[Aufreten und klassifikation von hangbewegungen in massigem Fels] [J]. Felsbau, 22(2):16-23.
    LI B, WANG G Z, FENG Z, et al., 2015. Failure mechanism of steeply inclined rock slopes induced by underground mining[J]. Chinese Journal of Rock Mechanics and Engineering, 34(6):1148-1161. (in Chinese with English abstract)
    LI T F, LI X, YUAN W N, et al., 2011. Current status and prospects of studies on mechanism of landslide geohazards induced by underground mining[J]. Journal of Engineering Geology, 19(6):831-838. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201106006
    LI Y B, WANG S J, XIONG K N. 2003. On the research for eco-hydrological effects in southwest China karst mountain area[J]. Carsologica Sinica, 22(1):24-27. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyr200301005
    LIU C Z. 2010. Mechanism analysis on the Jiweishan rockfall disaster happened in Wulong, Chongqing, June 5. 2009[J]. Journal of Engineering Geology, 18(3):297-304. (in Chinese with English abstract)
    MILLER S M. 1983. A statistical method to evaluate homogeneity of structural populations[J]. Journal of the International Association for Mathematical Geology, 15(2):317-328. doi: 10.1007/BF01036073
    TANG F Q. 1989. Mechanism analysis of landslide by mining[J]. Journal of Xi'an Institute of Mining, 9(3):32-36. (in Chinese with English abstract)
    TANG F Q, LIANG M. 1995. Stability analysis and evaluation of mountain under the influence of underground mining[J]. Mine Survey(1):23-26(in Chinese)
    WANG G Z, LI B, FENG Z, et al., 2014. Simulation of the process of the Jiguanling rock avalanche in Wulong of Chongqing[J]. Hydrogeology and Engineering Geology, 41(5):101-106. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz201405017
    WANG L, HU C L, ZHANG J W, et al., 2019. Correlation between the structural characteristics of the deep four-level fault and the important mineral deposits in Guizhou province[J]. Journal of Geomechanics, 25(1):36-51. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201901006
    WANG Z Q, YAN E C, YIN X M, et al., 2014. Study on collapse mechanism of anti inclined rock slope:A case study of Honglianchi Iron Mine slope in Hefeng, Hubei province[J]. Journal of Central South University (Science and Technology), 45(7):2295-2302. (in Chinese with English abstract)
    WEI L W. 2002. The problems of environmental geology in mining regions and corresponding control policy in southwest of China[J]. Journal of Geological Hazards and Environment Preservation, 13(1):6-8. (in Chinese with English abstract)
    WU J L. 1998. Hazards of underground mining collapse and countermeasures[J]. Geology of Chemical Minerals, 20(2):141-144. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdky201805053
    XIAO R H, CHEN H Q, LENG Y Y, et al., 2018. Preliminary analysis on the failure process and mechanism of the August 28 collapse in Nayong County, Guizhou Province[J]. The Chinese Journal of Geological Hazard and Control, 29(1):3-9. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzzhyfzxb201801002
    XIE H, WANG M C. 2012. Geological hazards of coal-mining subsidence and types of subsidence area in Guizhou[J]. Journal of Guizhou University (Natural Sciences), 29(3):128-131, 135. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzdxxb201203033
    XU H, HUANG C G, LI B, et al., 2015. Study on the failure mechanism and calculation method of slip style slope instability[J]. China Civil Engineering Journal, 48(S2):227-230. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9154200
    XU Y Q, YIN Z Q, ZHANG N, et al., 2015. Analysis of the cause of Toutun large scale landslide in Zhenxiong county, Yunnan province[J]. The Chinese Journal of Geological Hazard and Control, 26(4):6-11, 24. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzzhyfzxb201504002
    YIN Y P, ZHU J L, YANG S Y. 2010. Investigation of a high speed and long run-out rockslide-debris flow at Dazhai in Guanling of Guizhou province[J]. Journal of Engineering Geology, 18(4):445-454. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201004002
    YIN Y P, LIU C Z, CHEN H Q, et al., 2013. Investigation on catastrophic landslide of January 11. 2013 at Zhaojiagou, Zhenxiong county, Yunnan province[J]. Journal of Engineering Geology, 21(1):6-15. (in Chinese with English abstract)
    ZHANG J J, YANG S Y, WANG R. 2010. Enlightenment of "6·28" catastrophic geological disaster in Guanling, Guizhou[J]. The Chinese Journal of Geological Hazard and Control, 21(3):137-139. (in Chinese)
    ZHANG R, WANG Z M, ZHOU X Y. 2019. Water chemical characteristics and water quality evaluation of karst groundwater in Longli area, South Guizhou[J]. Water Resources and Hydropower Engineering, 50(5):167-174. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsdjs201905020
    ZHANG Y Y, HUANG R Q, PEI X J, et al., 2017. Deformation failure mode of fractured rock mass slope in Lenggu hydropower station[J]. Journal of Engineering Geology, 25(2):556-564. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201702036
    ZHU S N, YIN Y P, LI B. 2018. Evolution characteristics of weak intercalation in massive layered rockslides:A case study of Jiweishan rockslide in Wulong, Chongqing[J]. Journal of Engineering Geology, 26(6):1638-1647. (in Chinese with English abstract)
    ZHU X G, XIA H C, WANG Z C. 2016. Movement law of overburden strata in rock seam based on UDEC[J]. Journal of Liaoning Technical University (Natural Science), 35(12):1402-1410. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lngcjsdxxb201612005
    陈建鹏, 胡涛, 李柱和, 等. 2020.南阳煤矿两带高度UDEC数值模拟研究[J].煤炭技术, 39(4):133-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtjs202004036
    范士凯. 2006.采空区上边坡稳定问题[J].资源环境与工程, 20(Z1):617-627. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdk2006z1005
    冯振, 殷跃平, 李滨, 等. 2012.重庆武隆鸡尾山滑坡视向滑动机制分析[J].岩土力学, 33(9):2704-2712. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201209023
    谷德振. 1979.岩体工程地质力学基础[M].北京:科学出版社.
    贺凯, 高杨, 王文沛, 等. 2018.陡倾煤层开采条件下上覆山体变形破坏物理模型试验研究[J].地质力学学报, 24(3):399-406. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180311&journal_id=dzlxxb
    李滨, 王国章, 冯振, 等. 2015.地下采空诱发陡倾层状岩质斜坡失稳机制研究[J].岩石力学与工程学报, 34(6):1148-1161.
    李腾飞, 李晓, 苑伟娜, 等. 2011.地下采矿诱发山体崩滑地质灾害研究现状与展望[J].工程地质学报, 19(6):831-838. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201106006
    李阳兵, 王世杰, 熊康宁. 2003.浅议西南岩溶山地的水文生态效应研究[J].中国岩溶, 22(1):24-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyr200301005
    刘传正. 2010.重庆武隆鸡尾山危岩体形成与崩塌成因分析[J].工程地质学报, 18(3):297-304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201003002
    汤伏全. 1989.采动滑坡的机理分析[J].西安矿业学院学报, 9(3):32-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003394571
    汤伏全, 梁明. 1995.地下开采影响下山体的稳定性分析与评价[J].矿山测量(1):23-26.
    王国章, 李滨, 冯振, 等. 2014.重庆武隆鸡冠岭岩质崩滑-碎屑流过程模拟[J].水文地质工程地质, 41(5):101-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz201405017
    王亮, 胡从亮, 张嘉玮, 等. 2019.贵州深部四级断裂构造特征及与重要矿产的关系[J].地质力学学报, 25(1):36-51. https://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190105&journal_id=dzlxxb
    王章琼, 晏鄂川, 尹晓萌, 等. 2014.层状反倾岩质边坡崩塌机理研究:以湖北鹤峰红莲池铁矿边坡为例[J].中南大学学报(自然科学版), 45(7):2295-2302.
    魏伦武. 2002.西南地区矿山环境地质问题与防治对策[J].地质灾害与环境保护, 13(1):6-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzhyhjbh200201002
    吴建林. 1998.地下采矿崩落塌陷的危害及其治理对策[J].化工矿产地质, 20(2):141-144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800229572
    肖锐铧, 陈红旗, 冷洋洋, 等. 2018.贵州纳雍"8·28"崩塌破坏过程与变形破坏机理初探[J].中国地质灾害与防治学报, 29(1):3-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzzhyfzxb201801002
    谢宏, 王茂春. 2012.贵州采煤塌陷引发的地质灾害及塌陷区的类型[J].贵州大学学报(自然科学版), 29(3):128-131, 135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzdxxb201203033
    徐晗, 黄成涛, 李彪, 等. 2015.滑移型岸坡失稳机理及计算方法研究[J].土木工程学报, 48(S2):227-230.
    徐永强, 殷志强, 张楠, 等. 2015.云南镇雄中屯镇头屯村大型滑坡成因分析[J].中国地质灾害与防治学报, 26(4):6-11, 24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzzhyfzxb201504002
    殷跃平, 朱继良, 杨胜元. 2010.贵州关岭大寨高速远程滑坡-碎屑流研究[J].工程地质学报, 18(4):445-454. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201004002
    殷跃平, 刘传正, 陈红旗, 等. 2013. 2013年1月11日云南镇雄赵家沟特大滑坡灾害研究[J].工程地质学报, 21(1):6-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201301002
    张建江, 杨胜元, 王瑞. 2010.贵州关岭"6·28"特大地质灾害的启示[J].中国地质灾害与防治学报, 21(3):137-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdzzhyfzxb201003029
    张荣, 王中美, 周向阳. 2019.黔南龙里地区岩溶地下水水化学特征及水质评价[J].水利水电技术, 50(5):167-174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slsdjs201905020
    张御阳, 黄润秋, 裴向军, 等. 2017.楞古水电站碎裂岩质边坡变形破坏模式研究[J].工程地质学报, 25(2):556-564. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201702036
    朱赛楠, 殷跃平, 李滨. 2018.大型层状基岩滑坡软弱夹层演化特征研究:以重庆武隆鸡尾山滑坡为例[J].工程地质学报, 26(6):1638-1647.
    朱训国, 夏洪春, 王忠昶. 2016.煤层开采过程中覆岩移动规律的UDEC数值模拟[J].辽宁工程技术大学学报(自然科学版), 35(12):1402-1410. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lngcjsdxxb201612005
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  683
  • HTML全文浏览量:  91
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-26
  • 修回日期:  2020-06-24
  • 刊出日期:  2020-08-28

目录

    /

    返回文章
    返回