留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FEMM-Fracflow研究缝洞型油藏中裂缝扩展问题

王慧 刘泉声

王慧, 刘泉声, 2020. 基于FEMM-Fracflow研究缝洞型油藏中裂缝扩展问题. 地质力学学报, 26 (1): 55-64. DOI: 10.12090/j.issn.1006-6616.2020.26.01.006
引用本文: 王慧, 刘泉声, 2020. 基于FEMM-Fracflow研究缝洞型油藏中裂缝扩展问题. 地质力学学报, 26 (1): 55-64. DOI: 10.12090/j.issn.1006-6616.2020.26.01.006
WANG Hui, LIU Quansheng, 2020. Investigation on fracture propagation in fractured-cavity reservoirs based on FEMM-fracflow modelling. Journal of Geomechanics, 26 (1): 55-64. DOI: 10.12090/j.issn.1006-6616.2020.26.01.006
Citation: WANG Hui, LIU Quansheng, 2020. Investigation on fracture propagation in fractured-cavity reservoirs based on FEMM-fracflow modelling. Journal of Geomechanics, 26 (1): 55-64. DOI: 10.12090/j.issn.1006-6616.2020.26.01.006

基于FEMM-Fracflow研究缝洞型油藏中裂缝扩展问题

doi: 10.12090/j.issn.1006-6616.2020.26.01.006
基金项目: 

国家自然科学基金 41602296

详细信息
    作者简介:

    王慧(1994-), 女, 在读硕士, 研究方向为多物理场裂缝扩展问题。E-mail:huiwangwhu@163.com

    通讯作者:

    刘泉声(1962-), 男, 教授, 从事岩石力学方面研究。E-mail:2992464906@qq.com

  • 中图分类号: P618.13

Investigation on fracture propagation in fractured-cavity reservoirs based on FEMM-fracflow modelling

  • 摘要: 在缝洞型油藏中,水力裂缝的偏转路径对石油的开采量有重要的影响。Hybrid Finite-element and Mesh-free Method-Fracflow(FEMM-Fracflow)数值模拟平台,通过数值实验,文章分析了缝洞型油藏中自然溶洞、水平地应力以及注水流速三种因素对水力裂缝偏转路径的影响。结果表明,在存在溶洞时,裂缝明显向溶洞方向偏转;在改变水平围压时,不施加水平围压条件下,裂缝明显偏向溶洞方向扩展,并且最终与溶洞连通;而在施加50 MPa水平围压时,水力裂缝偏向溶洞的趋势明显减弱;在改变流速时,当流速为0.05 kg/s,裂缝明显向溶洞方向偏转,而当流速为0.2 kg/s,裂缝向溶洞方向偏转的趋势则减弱。

     

  • 图  1  被裂缝平面穿过的四面体

    Figure  1.  Tetrahedral element passed by a planar fracture

    图  2  网格覆盖域中裂缝单元、桥单元和普通单元示意图

    Figure  2.  Schematic of the FE, bridge, fracture elements

    图  3  裂缝单元流体流动路径

    Figure  3.  Flow path associated with a fracture-element

    图  4  裂缝单元子区域体积定义

    Figure  4.  The volume of node associated with a fracture-element

    图  5  FEMM与Fracflow耦合原理示意图

    Figure  5.  Scheme of coupling principle between FEMM and Fracflow

    图  6  裂缝开度验证模型几何示意图

    Figure  6.  A cubic rock with a central fracture

    图  7  裂缝开度验证模拟结果

    Figure  7.  Simulation results of facture aperture

    图  8  带空洞平板几何图

    Figure  8.  Geometry of a thin plate with a hole and an edge fracture

    图  9  带空洞平板裂纹偏转示意图

    Figure  9.  Fracture propagation near a hole without fluid

    图  10  裂缝沿y方向扩展位移比较

    Figure  10.  Comparison of the calculated path along the y direction for the fracture propagation near a hole without fluid with that of the reference

    图  11  带溶洞立方体几何图

    Figure  11.  A cubic domain with a cavity and a central fracture

    图  12  岩体位移场分布

    Figure  12.  Vertical displacement distribution of the reservoir for hydraulic fracture propagation

    图  13  不同围压下岩体竖向位移图及裂缝沿y方向的偏转位移比较

    Figure  13.  Comparison of vertical displacement of the reservoir and fracture propagation path along the y direction under different confining pressures

    图  14  不同注水速度下岩体竖向位移场分布

    Figure  14.  Vertical displacement distribution of the reservoir under different water injection velocities

    图  15  缝洞型油藏三维模型

    Figure  15.  Geometry of the 3D model of the fractured-cavity reserior

    图  16  三维缝洞型油藏裂缝偏转示意图

    Figure  16.  Fracture propagation for the 3D hydraulic fracture propagation near a spherical cavity

    表  1  裂缝开度验证模型输入参数

    Table  1.   Input parameters for the cubic rock with a central fracture

    输入参数 数值
    杨氏模量E/GPa 10
    泊松比v 0.25
    恒定水压p/kPa 10
    下载: 导出CSV

    表  2  带溶洞模型输入参数

    Table  2.   Input parameters for a cubic domain

    输入参数
    杨氏模量E/GPa 9
    泊松比v 0.25
    抗拉强度ft/MPa 1
    密度ρ/(kg·m-3) 1100
    材料孔隙度 0.1
    裂缝孔隙度 0.25
    岩体渗透率/(m2·s-1) 1.0×10-20
    裂缝渗透率/(m2·s-1) 1.0×10-10
    流体黏度/(Pa·s-1) 1.0×10-3
    流体注入速率/(kg·s-1) 6.0×10-2
    下载: 导出CSV

    表  3  三维模型输入参数

    Table  3.   Input parameters for the 3D model

    输入参数
    杨氏模量E/GPa 1
    泊松比v 0.20
    抗拉强度ft/MPa 1
    密度ρ/(kg·m-3) 1100
    岩体孔隙度 0.06
    岩体渗透率/m2 1.0×10-20
    裂缝处渗透率/m2 1.0×10-10
    黏度/(Pa·s-1) 1.0×10-3
    下载: 导出CSV
  • ADACHI J, SIEBRITS E, PEIRCE A, et al., 2007. Computer simulation of hydraulic fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 44(5):739-757. doi: 10.1016/j.ijrmms.2006.11.006
    BELYTSCHKO T, GRACIE R, VENTURA G, 2009. A review of extended/generalized finite element methods for material modeling[J]. Modelling and Simulation in Materials Science and Engineering, 17(4):043001. doi: 10.1088/0965-0393/17/4/043001
    FU J W, ZHU W S, ZHANG X Z, et al., 2017. Fracturing experiment and numerical simulation study on new material containing a hollow internal crack under internal water pressure[J]. Advanced Engineering Sciences, 49(4):78-85. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdxxb-gckx201704010
    GAO B, HUANG Z Q, YAO J, et al., 2016. Pressure transient analysis of a well penetrating a filled cavity in naturally fractured carbonate reservoirs[J]. Journal of Petroleum Science and Engineering, 145:392-403. doi: 10.1016/j.petrol.2016.05.037
    GONG D G, QU Z Q, LI J X, et al., 2016. Extended finite element simulation of hydraulic fracture based on ABAQUS platform[J]. Rock and Soil Mechanics, 37(5):1512-1520. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ytlx201605036
    HAO Z Y, YUE L X, 2018. Thermo-fluid-solid coupling model and numerical simulation of supercritical CO2 antireflection coal[J]. Advanced Engineering Sciences, 50(4):228-236. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/scdxxb-gckx201804030
    KHVATOVA I E, RENAUD A, MALYUTINA G, et al., 2012. Simulation of complex carbonate field: double media vs. single media Kharyaga field case (Russian)[R]. Moscow: Society of Petroleum Engineers.
    LIU G W, LI Q B, LIANG G H, 2017. A phase-field description of dynamic hydraulic fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 36(6):1400-1412. (in Chinese with English abstract) doi: 10.13722/j.cnki.jrme.2016.1075
    LIU Q S, SUN L, TANG X H, et al., 2018. Simulate intersecting 3D hydraulic cracks using a hybrid "FE-Meshfree" method[J]. Engineering Analysis with Boundary Elements, 91:24-43. doi: 10.1016/j.enganabound.2018.03.005
    MELENK J M, BABUŠKA I, 1996. The partition of unity finite element method:basic theory and applications[J]. Computer Methods in Applied Mechanics and Engineering, 139(1-4):289-314. doi: 10.1016/S0045-7825(96)01087-0
    RAJENDRAN S, ZHANG B R, 2007. A "FE-Meshfree" QUAD4 element based on partition of unity[J]. Computer Methods in Applied Mechanics and Engineering, 197(1-4):128-147. doi: 10.1016/j.cma.2007.07.010
    RAJENDRAN S, ZHANG B R, 2008. Corrigendum to "A 'FE-Meshfree' QUAD4 element based on partition of unity"[J]. Computer Methods in Applied Mechanics and Engineering, 197(13-16):1430. doi: 10.1016/j.cma.2007.11.012
    SHI G H, 1991. Manifold method of material analysis[C]//Proceedings of the transactions of the ninth army conference on applied mathematics and computing. Minnesoda: U.S. Army Research Office: 57-76.
    STROUBOULIS T, BABUŠKA I, COPPS K, 2000. The design and analysis of the generalized finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 181(1-3):43-69. doi: 10.1016/S0045-7825(99)00072-9
    TANG X H, ZHENG C, WU S C, et al., 2009. A novel four-node quadrilateral element with continuous nodal stress[J]. Applied Mathematics and Mechanics, 30(12):1519-1532. doi: 10.1007/s10483-009-1204-1
    WANG L, YANG S L, LIU Y C, et al., 2017. Experiments on gas supply capability of commingled production in a fracture-cavity carbonate gas reservoir[J]. Petroleum Exploration and Development, 44(5):779-787. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201705013
    WANG X, ZHU Z M, WANG X M, et al., 2017. Effect of integral paths on the accuracy of finite difference method[J]. Advanced Engineering Sciences, 49(S2):141-149. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SCLH2017S2020.htm
    WITHERSPOON P A, WANG J S Y, IWAI K, et al., 1980. Validity of cubic law for fluid flow in a deformable rock fracture[J]. Water Resources Research, 16(6):1016-1024. doi: 10.1029/WR016i006p01016
    WU P F, 2017. Experimental investigation on the crack propagation of hydraulic fracturing in coal-rock combination[D]. Shanxi: Taiyuan University of Technology: 1-50. (in Chinese)
    WU Y, DAI J S, GU Y C, et al., 2014. Numerical simulation of present geo-stress field and its effect on hydraulic fracturing of Fuyu reservoir in Gaotaizi oilfield[J]. Journal of Geomechanics, 20(4):363-371. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201404004
    XIE J, ZHU Z M, HU R, 2015. Propagation criterion and application of sandstone reservoir fractures under hydraulic fracturing[J]. Journal of Sichuan University (Engineering Science Edition), 47(5):38-45. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdxxb-gckx201505006
    YAN C Z, ZHENG H, SUN G H, 2016. Effect of in-situ stress on hydraulic fracturing based on FDEM-Flow[J]. Rock and Soil Mechanics, 37(1):237-246. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ytlx201601028
    YANG X, ZHANG G Q, LIU Z B, et al., 2017. Experimental research on the variation of fracture width in hydraulic fracturing process[J]. Chinese Journal of Rock Mechanics and Engineering, 36(9):2232-2237. (in Chinese with English abstract)
    YANG Y T, TANG X H, ZHENG H, 2014. A three-node triangular element with continuous nodal stress[J]. Computers & Structures, 141:46-58. doi: 10.1016/j.compstruc.2014.05.001
    YANG Y T, ZHENG H, 2016. A three-node triangular element fitted to numerical manifold method with continuous nodal stress for crack analysis[J]. Engineering Fracture Mechanics, 162:51-75. doi: 10.1016/j.engfracmech.2016.05.007
    YAO C, ZHAO M, YANG J H, et al., 2017. Improved method of rigid body spring for 2D hydraulic fracturing simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 36(9):2169-2176. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201709009
    ZHAO K Z, ZHANG L J, ZHENG D M, et al., 2015. A reserve calculation method for fracture-cavity carbonate reservoirs in Tarim Basin, NW China[J]. Petroleum Exploration and Development, 42(2):277-282. doi: 10.1016/S1876-3804(15)30017-3
    ZHAO Z J, LIU D A, CUI Z D, et al., 2019. Cyclic progressive pressure on the fracturing effect of shale[J]. Chinese Journal of Rock Mechanics and Engineering, 38(S1):2779-2789. (in Chinese with English abstract)
    ZIENKIEWICZ O C, TAYLOR R L, 2000. The finite element method[M]. 5th ed. Oxford, Boston:Butterworth-Heinemann.
    ZU K W, CHENG X S, LUO Z L, et al., 2018. The comparative analysis of different methods for fracture prediction in complex carbonate rock reservoir[J]. Journal of Geomechanics, 24(4):465-473. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/0148607102026001011
    付金伟, 朱维申, 张新中, 等, 2017.内水压下含中空裂隙新型材料的压裂试验及数值模拟研究[J].工程科学与技术, 49(4):78-85. http://d.old.wanfangdata.com.cn/Periodical/scdxxb-gckx201704010
    龚迪光, 曲占庆, 李建雄, 等, 2016.基于ABAQUS平台的水力裂缝扩展有限元模拟研究[J].岩土力学, 37(5):1512-1520. http://d.old.wanfangdata.com.cn/Periodical/ytlx201605036
    郝志勇, 岳立新, 2018.超临界CO2增透煤热流固耦合模型与数值模拟[J].工程科学与技术, 50(4):228-236. http://d.old.wanfangdata.com.cn/Periodical/scdxxb-gckx201804030
    刘国威, 李庆斌, 梁国贺, 2017.动力水力压裂的相场模拟方法[J].岩石力学与工程学报, 36(6):1400-1412. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201706009
    王璐, 杨胜来, 刘义成, 等, 2017.缝洞型碳酸盐岩气藏多层合采供气能力实验[J].石油勘探与开发, 44(5):779-787. http://d.old.wanfangdata.com.cn/Periodical/syktykf201705013
    王雄, 朱哲明, 汪小梦, 等, 2017.不同积分路径对动态有限差分法计算精度的影响效应[J].工程科学与技术, 49(S2):141-149. http://www.cnki.com.cn/Article/CJFDTotal-SCLH2017S2020.htm
    武鹏飞, 2017.煤岩复合体水压致裂裂纹扩展规律试验研究[D].山西: 太原理工大学: 1-50.
    伍亚, 戴俊生, 顾玉超, 等, 2014.高台子油田扶余油层现今地应力数值模拟及对水力压裂的影响[J].地质力学学报, 20(4):363-371. doi: 10.3969/j.issn.1006-6616.2014.04.004
    谢军, 朱哲明, 胡荣, 2015.砂岩储层裂缝在水力压裂作用下扩展准则及其应用[J].四川大学学报(工程科学版), 47(5):38-45. http://d.old.wanfangdata.com.cn/Periodical/scdxxb-gckx201505006
    严成增, 郑宏, 孙冠华, 等, 2016.基于FDEM-Flow研究地应力对水力压裂的影响[J].岩土力学, 37(1):237-246. http://d.old.wanfangdata.com.cn/Periodical/ytlx201601028
    杨潇, 张广清, 刘志斌, 等, 2017.压裂过程中水力裂缝动态宽度实验研究[J].岩石力学与工程学报, 36(9):2232-2237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201709016
    姚池, 赵明, 杨建华, 等, 2017.基于改进刚体弹簧方法的二维水压致裂模型[J].岩石力学与工程学报, 36(9):2169-2176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201709009
    赵子江, 刘大安, 崔振东, 等, 2019.循环渐进升压对页岩压裂效果的影响[J].岩石力学与工程学报, 38(S1):2779-2789. http://www.cqvip.com/QK/96026X/2019A01/89837688504849578349484956.html
    祖克威, 程秀申, 罗周亮, 等, 2018.复杂碳酸盐岩储层裂缝预测方法对比性研究[J].地质力学学报, 24(4):465-473. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180403&journal_id=dzlxxb
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  94
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-11
  • 修回日期:  2019-06-16
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回