留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

塔河油田奥陶系储层构造应力场研究

刘佳庚 李静 苏玉亮 范作松 刘旭亮 郭豪

刘佳庚, 李静, 苏玉亮, 等, 2020. 塔河油田奥陶系储层构造应力场研究. 地质力学学报, 26 (1): 48-54. DOI: 10.12090/j.issn.1006-6616.2020.26.01.005
引用本文: 刘佳庚, 李静, 苏玉亮, 等, 2020. 塔河油田奥陶系储层构造应力场研究. 地质力学学报, 26 (1): 48-54. DOI: 10.12090/j.issn.1006-6616.2020.26.01.005
LIU Jiageng, LI Jing, SU Yuliang, et al., 2020. Tectonic stress field research on the Ordovician reservoirs in the Tahe Oilfield. Journal of Geomechanics, 26 (1): 48-54. DOI: 10.12090/j.issn.1006-6616.2020.26.01.005
Citation: LIU Jiageng, LI Jing, SU Yuliang, et al., 2020. Tectonic stress field research on the Ordovician reservoirs in the Tahe Oilfield. Journal of Geomechanics, 26 (1): 48-54. DOI: 10.12090/j.issn.1006-6616.2020.26.01.005

塔河油田奥陶系储层构造应力场研究

doi: 10.12090/j.issn.1006-6616.2020.26.01.005
基金项目: 

国家自然科学基金项目 41972138

国家科技重大专项 ZD2019-183-007

国家科技重大专项 2016ZX05002-002

详细信息
    作者简介:

    刘佳庚(1995-), 男, 在读硕士, 主要从事油气地质学方面的研究工作。E-mail:569741601@qq.com

    通讯作者:

    李静(1967-), 女, 博士、教授, 博士生导师, 主要从事地质力学及油气储层预测的研究工作。E-mail:lijing0681@163.com

  • 中图分类号: TE319

Tectonic stress field research on the Ordovician reservoirs in the Tahe Oilfield

  • 摘要: 油气储层构造应力场的分布特征,对油气运移、注采井网布置、储层改造等具有重要意义。为此,文章从塔河油田AD13井区的地质构造演化入手,基于油田测井资料,结合弹性力学及有限元理论,建立研究区地应力弹性力学计算模型,利用有限元软件对研究区储层地应力进行模拟研究,并将模拟结果与现场地应力实测值进行对比分析。结果表明,研究区最大水平主应力为102~130 MPa,最小水平主应力为87~110 MPa,均为压应力;研究区东部及南部最大水平主应力方向为北东向,西北部最大水平主应力方向为北东东向,西南部最大水平主应力方向为南东向,地应力大小及方向均与实际结果相符。研究结果可为研究区油气勘探开发工程提供科学依据。

     

  • 图  1  AD13井区中—下奥陶统顶面构造图

    Figure  1.  The top structural distribution map of the Well Block AD13 in middle-bottom Ordovician

    图  2  AD13井区奥陶系地层压力变化曲线图

    Figure  2.  The variation curves of the Ordovician formation pressure in the Well Block AD13

    图  3  AD13井区模型有限单元网格图

    Figure  3.  The finite element mesh graph of the Well Block AD13 model

    图  4  AD13井区最大水平主应力图

    Figure  4.  The maximum horizontal stress pattern of the Well Block AD13

    图  5  AD13井区最小水平主应力图

    Figure  5.  The minimum horizontal stress pattern of the Well Block AD13

    图  6  AD13井区地应力方向图

    Figure  6.  The crustal stress direction pattern of the Well Block AD13

    表  1  研究区AD13井区动态、静态力学参数值

    Table  1.   The values of dynamic and static mechanical parameters of the sample rocks

    井号 深度/m 弹性模量/GPa 泊松比
    静态 动态 静态 动态
    TK1201 6509.42 50.01 40.89 0.291 0.293
    TK1215 6240.00 67.44 57.16 0.266 0.264
    TK1225 6500.00 66.63 56.40 0.232 0.226
    TK1271 6400.00 59.13 49.40 0.274 0.274
    AD23 6264.71 66.63 56.40 0.263 0.261
    TK1213 6260.00 67.18 56.91 0.295 0.298
    TK1204 5976.48 69.25 58.85 0.251 0.247
    TK1240 5650.00 86.95 75.37 0.262 0.260
    TK1217 6000.00 75.57 64.75 0.246 0.242
    下载: 导出CSV

    表  2  塔河油田AD13井区奥陶系单井垂向压力数据表

    Table  2.   The single well vertical pressure data of the Well Block AD13 in the Tahe Oilfield

    井号 测点深度/
    m
    计算垂向压力/
    MPa
    压力系数
    AD23 6265 68.88 1.122
    TK1213 6260 68.00 1.108
    TK1204 5976 65.69 1.122
    TK1240 5650 61.31 1.107
    TK1217 6000 64.24 1.093
    TK1245 5960 63.71 1.091
    TK1275 5980 66.39 1.133
    下载: 导出CSV

    表  3  AD13井区特定井点目的层位水平向地应力值

    Table  3.   The horizontal ground stress values of the target layer at specific point in the Well Block AD13

    井号 水平最大主应力 水平最小主应力
    AD23 113.776 99.973
    TK1240 128.256 116.115
    TK1217 119.587 104.640
    TK1213 121.113 106.482
    TK1245 137.187 110.390
    TK1275 116.370 105.703
    下载: 导出CSV

    表  4  模型岩石物理力学参数表

    Table  4.   Physical mechanics parameter table of the rock model

    区域 弹性模量/MPa 泊松比 密度/(kg/m3)
    断裂带 36000 0.221 2000
    过渡区 48000 0.231 2300
    外围区 6000 0.238 2500
    下载: 导出CSV

    表  5  反演目标约束条件

    Table  5.   The constraint condition of the inversion target

    井号 σx/MPa σy/MPa
    AD23 113.776 99.973
    TK1240 128.256 116.115
    TK1217 119.587 104.640
    TK1213 121.113 106.482
    TK1245 137.187 110.390
    TK1275 116.370 105.703
    下载: 导出CSV

    表  6  AD13井区地应力模拟值与实测值对比表

    Table  6.   The comparison table of the simulated values and the actual values of the ground stress of the Well Block AD13

    井号 最大水平主应力/MPa 最小水平主应力/MPa
    实测值 模拟值 误差/% 实测值 模拟值 误差/%
    AD23 113.776 107.354 5.64 99.973 89.047 10.93
    TK1240 128.256 119.173 7.08 116.115 104.469 10.03
    TK1217 119.587 107.619 10.01 104.640 98.301 6.06
    TK1213 121.113 107.878 10.93 106.482 101.934 4.27
    TK1245 137.187 126.461 7.82 110.390 97.101 12.04
    TK1275 116.370 109.039 6.30 105.703 97.299 7.95
    下载: 导出CSV
  • AN Q M, SUN S Z, LIU Y Z, 1985. The inversion of tectonic stress field in North China from actual stress measurements[J]. North China Earthquake Sciences, 3(4):28-39. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-HDKD198504003.htm
    BEEKMAN F, BADSI M, VAN WEES J D, 2000. Faulting, fracturing and in situ stress prediction in the Ahnet Basin, Algeria-a finite element approach[J]. Tectonophysics, 320(3-4):311-329. doi: 10.1016/S0040-1951(00)00037-8
    CHEN S P, DAI J S, SONG Q Y, et al., 1998. Features of tectonic stress fields in Jiaolai Basin[J]. Journal of the University of Petroleum, China, 22(3):19-25. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800556951
    CHEN Y H, ZHU Q J, SU Y P, 2003. Finite element research on natural fracture distribution in underground rocks according to Griffith criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 22(3):364-369. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb200303005
    GE H K, CHEN Y, LIN Y S, 2000. A general analytical model and geophysical interpretation of rock mechanics properties[C]//Sixth National Rock Mechanics and Engineering Academic Conference Proceedings. Wuhan: Chinese Society for Rock Mechanics and Engineering: 238-242. (in Chinese)
    GUO P, 2012. Research on three dimensional tectonic stress field and tectonic fracture forecasting in the Damintun depression[D]. Fuxin: Liaoning Technical University. (in Chinese with English abstract)
    HU G Z, WANG H T, JIA J Q, et al., 2005. Relationship between dynamic and static value of elastic modulus in rock[J]. Journal of Chongqing University (Natural Science Edition), 28(3):102-105. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cqdxxb200503027
    LEI G L, XIE H W, ZHANG J Z, et al., 2007. Structural features and natural gas exploration in the Kelasu structural belt, Kuqa Depression[J]. Oil & Gas Geology, 28(6):816-820, 835. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200706017
    LI B, DING L F, WANG J X, et al., 2019. The state of the in-situ stress and fault stability evaluation of the Penglai Coast[J]. Journal of Geomechanics, 25(4):459-466. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201904002
    LI C L, GUO P, REN D S, 2012. Relationship between tectonic stress field and migration and accumulation of oil and gas in Damintun depression[J]. Petroleum Geology and Recovery Efficiency, 19(6):47-49. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQCS201206016.htm
    LI J, ZHA M, 2010. Determination of oil accumulation period and building up of paleopressure of Wumishan formation in Renqiu Oilfield by using fluid inclusion[J]. Journal of China University of Petroleum (Edition of Natural Science), 34(4):38-43. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydxxb201004007
    LI J, ZHA M, LIU Z, 2011. Research on crustal stress distribution based on acoustic logging data-taking north region of Renqiu Ordovician buried hill of Raoyang depression for example[J]. Rock and Soil Mechanics, 32(9):2765-2770. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201109034
    LIU J S, DING W L, YANG H M, et al., 2017. 3D geomechanical modeling and numerical simulation of in-situ stress fields in shale reservoirs:a case study of the lower Cambrian Niutitang formation in the Cen'gong block, South China[J]. Tectonophysics, 712-713:663-683. doi: 10.1016/j.tecto.2017.06.030
    LIU Q S, WANG D, ZHU Y G, et al., 2020. Application of support vector regression algorithm in inversion of geostress fizeld[J]. Rock and Soil Mechanics, doi: 10.16285/j.rsm.2019.0860. (in Chinese)
    MA N, YIN X Y, SUN C Y, et al., 2018. Inversion for crustal stress based on azimuthal seismic data[J]. Chinese Journal of Geophysics, 61(2):697-706. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201802027
    MAO Z, ZENG L B, QIN L B, et al., 2018. Research on ground stress distribution rules of deep tight volcanic rock reservoirs in the Huoshiling Formation, Xujiaweizi fault depression[J]. Journal of Geomechanics, 24(3):321-331. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201803005
    MATSUKI K, NAKAMA S, SATO T, 2009. Estimation of regional stress by fem for a heterogeneous rock mass with a large fault[J]. International Journal of Rock Mechanics and Mining Sciences, 46(1):31-50. doi: 10.1016/j.ijrmms.2008.03.005
    MENG W, HE C, WANG B, et al., 2018. Two-stage back analysis of initial geostress field in rockburst area based on lateral pressure coefficient[J]. Rock and Soil Mechanics, 39(11):4191-4200, 4209. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ytlx201811035
    PARSONS T, 2006. Tectonic stressing in California modeled from GPS observations[J]. Journal of Geophysical Research, 111(B3):B03407. doi: 10.1029/2005JB003946
    PENG J L, 2008. Study on evolutionary process of ground stress field in different geological periods[D]. Qingdao: China University of Petroleum (East China). (in Chinese with English abstract)
    QIN X H, CHEN Q C, MENG W, et al., 2018. Evaluating measured in-situ stress state changes associated with earthquakes and its implications:a case study in the Longmenshan fault zone[J]. Journal of Geomechanics, 24(3):309-320. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201803004
    SHENG J C, LIU J S, SU B Y, 2007. Coupled Multiphysics analysis in fractured rock masses based on digital image processing technique[J]. Engineering Mechanics, 24(10):30-35. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx200710006
    WANG J D, SUN L N, WANG J, et al., 2019. Research on the ground stress correction of reservoirs based on the finite element method[J]. Journal of Geomechanics, 25(3):349-356. (in Chinese with English abstract)
    YANG X C, LIU J G, WANG J L, et al., 2013. In-situ stress 3D numerical simulation study in Linfen Block[J]. Coal Geology of China, 25(11):1-5. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmtdz201311001
    YU H Z, 2019. Characteristics and influencing factors of carboniferous volcanic reservoirs in Hashan Area, northwestern margin of the Junggar Basin[J]. Journal of Geomechanics, 25(2):206-214. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlxxb201902007
    YU R L, 2005. Characteristics and significance of the Caledonian karst in the Tahe oil field, the Tarim Basin[J]. Petroleum Geology & Experiment, 27(5):468-472, 478. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz200505007
    ZHANG G M, XIONG C M, LIU H, et al., 2011. Numerical simulation method for in-situ stress field in complex fault block[J]. Fault-Block Oil & Gas Field, 18(6):710-713. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkyqt201106007
    ZHANG M, 2010. Data processing and analysis of parameters for crustal stress and rock mechanics[D]. Qingdao: China University of Petroleum (East China). (in Chinese with English abstract)
    ZHANG S C, PAN L H, ZHANG J, et al., 2012. An experimental study of in-situ stresses of carbonate reservoirs in Tahe Oilfield[J]. Chinese Journal of Rock Mechanics and Engineering, 31(S1):2888-2893. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2012z1038
    ZHONG C, QIN Q R, ZHOU J L, et al., 2018. Study on fault sealing of organic-rich shale by present stress:a case study of Longmaxi formation in Dingshan area, Southeast Sichuan[J]. Journal of Geomechanics, 24(4):452-464. (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DZLX201804003.htm
    安其美, 孙世宗, 刘玉琢, 1985.用地应力实测结果反演华北地区构造应力场[J].华北地震科学, 3(4):28-39. http://www.cnki.com.cn/Article/CJFDTotal-HDKD198504003.htm
    陈书平, 戴俊生, 宋全友, 等, 1998.胶莱盆地构造应力场特征及数学模拟[J].石油大学学报(自然科学版), 22(3):19-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800556951
    陈艳华, 朱庆杰, 苏幼坡, 2003.基于格里菲斯准则的地下岩体天然裂缝分布的有限元模拟研究[J].岩石力学与工程学报, 22(3):364-369. doi: 10.3321/j.issn:1000-6915.2003.03.005
    葛洪魁, 陈顒, 林英松, 2000.岩石力学特性通用预测模型及地球物理评价方法[C]//新世纪岩石力学与工程的开拓和发展——中国岩石力学与工程学会第六次学术大会论文集.武汉: 中国岩石力学与工程学会: 238-242.
    郭鹏, 2012.大民屯凹陷三维构造应力场与构造裂缝预测研究[D].阜新: 辽宁工程技术大学.
    胡国忠, 王宏图, 贾剑青, 等, 2005.岩石的动静弹性模量的关系[J].重庆大学学报(自然科学版), 28(3):102-105. http://d.old.wanfangdata.com.cn/Periodical/cqdxxb200503027
    雷刚林, 谢会文, 张敬洲, 等, 2007.库车坳陷克拉苏构造带构造特征及天然气勘探[J].石油与天然气地质, 28(6):816-820, 835. doi: 10.3321/j.issn:0253-9985.2007.06.017
    李兵, 丁立丰, 王建新, 等, 2019.山东蓬莱近海岸的地应力状态及断层稳定性评价[J].地质力学学报, 25(4):459-466. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190402&journal_id=dzlxxb
    李春林, 郭鹏, 任德生, 2012.大民屯凹陷构造应力场及其与油气运聚关系[J].油气地质与采收率, 19(6):47-49. doi: 10.3969/j.issn.1009-9603.2012.06.011
    李静, 查明, 2010.基于流体包裹体的任丘油田雾迷山组成藏期次确定与古压力恢复[J].中国石油大学学报(自然科学版), 34(4):38-43. doi: 10.3969/j.issn.1673-5005.2010.04.007
    李静, 查明, 刘震, 2011.基于声波测井资料的地应力分布研究:以饶阳凹陷任北奥陶系潜山为例[J].岩石力学, 32(9):2765-2770. http://d.old.wanfangdata.com.cn/Periodical/ytlx201109034
    刘泉声, 王栋, 朱元广, 等, 2020.支持向量回归算法在地应力场反演中的应用[J].岩土力学, doi: 10.16285/j.rsm.2019.0860.
    马妮, 印兴耀, 孙成禹, 等, 2018.基于方位地震数据的地应力反演方法[J].地球物理学报, 61(2):697-706. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201802027
    毛哲, 曾联波, 秦龙卜, 等, 2018.徐家围子断陷深层火石岭组致密火山岩储层地应力分布规律研究[J].地质力学学报, 24(3):321-331. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180304&journal_id=dzlxxb
    蒙伟, 何川, 汪波, 等, 2018.基于侧压力系数的岩爆区初始地应力场二次反演分析[J].岩土力学, 39(11):4191-4200, 4209. http://d.old.wanfangdata.com.cn/Periodical/ytlx201811035
    彭钧亮, 2008.不同地质时期地应力场演化过程研究[D].青岛: 中国石油大学(华东).
    秦向辉, 陈群策, 孟文, 等, 2018.大地震前后实测地应力状态变化及其意义:以龙门山断裂带为例[J].地质力学学报, 24(3):309-320. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180303&journal_id=dzlxxb
    盛金昌, 刘继山, 速宝玉, 2007.基于图像数字化技术的裂隙岩石多场耦合分析[J].工程力学, 24(10):30-35. doi: 10.3969/j.issn.1000-4750.2007.10.006
    王金铎, 孙鲁宁, 王军, 等, 2019.基于有限元方法的储层地应力修正研究[J].地质力学学报, 25(3):349-356. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190305&journal_id=dzlxxb
    杨秀春, 刘杰刚, 汪吉林, 等, 2013.临汾区块地应力三维数值模拟研究[J].中国煤炭地质, 25(11):1-5. doi: 10.3969/j.issn.1674-1803.2013.11.01
    于洪洲, 2019.准西北缘哈山地区石炭系火山岩储层特征及影响因素[J].地质力学学报, 25(2):206-214. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20190206&journal_id=dzlxxb
    俞仁连, 2005.塔里木盆地塔河油田加里东期古岩溶特征及其意义[J].石油实验地质, 27(5):468-472, 478. doi: 10.3969/j.issn.1001-6112.2005.05.007
    张广明, 熊春明, 刘合, 等, 2011.复杂断块地应力场数值模拟方法研究[J].断块油气田, 18(6):710-713. http://d.old.wanfangdata.com.cn/Periodical/dkyqt201106007
    张明, 2010.地应力与岩石力学参数测试数据的处理分析[D].青岛: 中国石油大学(华东).
    张士诚, 潘林华, 张劲, 等, 2012.塔河碳酸盐岩储层地应力实验研究[J].岩石力学与工程学报, 31(S1):2888-2893. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2012z1038
    钟城, 秦启荣, 周吉羚, 等, 2018.现今地应力对富有机质页岩断层封闭性的研究:以川东南丁山地区龙马溪组为例[J].地质力学学报, 24(4):452-464. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180402&journal_id=dzlxxb
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  309
  • HTML全文浏览量:  72
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-15
  • 修回日期:  2019-09-06
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回