留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大火成岩省与大规模黑色页岩沉积的成因联系及其意义

张拴宏 裴军令 胡国辉 张琪琪 税国豪 赵越

张拴宏, 裴军令, 胡国辉, 等, 2019. 大火成岩省与大规模黑色页岩沉积的成因联系及其意义. 地质力学学报, 25 (5): 920-931. DOI: 10.12090/j.issn.1006-6616.2019.25.05.075
引用本文: 张拴宏, 裴军令, 胡国辉, 等, 2019. 大火成岩省与大规模黑色页岩沉积的成因联系及其意义. 地质力学学报, 25 (5): 920-931. DOI: 10.12090/j.issn.1006-6616.2019.25.05.075
ZHANG Shuanhong, PEI Junling, HU Guohui, et al., 2019. GENETIC LINK BETWEEN LARGE IGNEOUS PROVINCES AND LARGE VOLUMES OF BLACK SHALE DEPOSITION AND ITS IMPLICATIONS. Journal of Geomechanics, 25 (5): 920-931. DOI: 10.12090/j.issn.1006-6616.2019.25.05.075
Citation: ZHANG Shuanhong, PEI Junling, HU Guohui, et al., 2019. GENETIC LINK BETWEEN LARGE IGNEOUS PROVINCES AND LARGE VOLUMES OF BLACK SHALE DEPOSITION AND ITS IMPLICATIONS. Journal of Geomechanics, 25 (5): 920-931. DOI: 10.12090/j.issn.1006-6616.2019.25.05.075

大火成岩省与大规模黑色页岩沉积的成因联系及其意义

doi: 10.12090/j.issn.1006-6616.2019.25.05.075
基金项目: 

国家自然科学基金项目 41725011

国家自然科学基金项目 41920104004

国家重点研发计划课题 2018YFC0603802

详细信息
    作者简介:

    张拴宏(1974-), 男, 研究员, 从事区域地质、大地构造及前寒武纪地质学研究。E-mail:tozhangshuanhong@163.com

  • 中图分类号: P588.1;P587

GENETIC LINK BETWEEN LARGE IGNEOUS PROVINCES AND LARGE VOLUMES OF BLACK SHALE DEPOSITION AND ITS IMPLICATIONS

  • 摘要: 大火成岩省对全球性大气-海洋环境的巨变及生物灭绝有非常重要的影响。已有研究结果表明,显生宙(即寒武纪以来)大火成岩省与全球大洋缺氧与生物灭绝有明显的成因联系,显生宙国际地质年代表中多个金钉子均与以大火成岩省、黑色页岩及生物灭绝为代表的全球性地质事件相对应。但由于对前寒武纪,特别是"地球中年期"(18~8亿年,"枯燥的10亿年")大气氧浓度、海洋的氧化-还原状态及生物门类及演化认识的局限性,关于前寒武纪大火成岩省与环境的影响及其与黑色页岩沉积的成因联系一直很不清楚。通过对全球哥伦比亚(奴那)超大陆中约13.8亿年全球性大火成岩省及黑色页岩沉积时空分布的研究,发现这些大火成岩省及黑色页岩的分布有明显的规律。约13.8亿年大火成岩省广泛分布在北美、格陵兰、西伯利亚、波罗地、卡拉哈里、刚果、西非、亚马逊、南极及西澳大利亚等大陆上;而同期的黑色页岩在华北及北澳大利亚克拉通广泛分布,在西伯利亚、巴西及印度等克拉通也有分布。根据这些黑色页岩在超大陆重建图中的空间分布,提出了哥伦比亚(奴那)超大陆中这些广泛分布的约13.8亿年黑色页岩可能沉积于连通的大型海相盆地,而不是以往所认为的局部封闭的小盆地。通过约13.8亿年大火成岩省与黑色页岩内火山灰(斑脱岩)年龄的对比,进一步提出约13.8亿年存在一次与全球性大火成岩省有关的大洋缺氧事件,以此期大火成岩省与黑色页岩为代表的全球性地质事件为中元古代盖层系与延展系提供了精确的界限年龄为1383 Ma。初步的研究结果还显示,"地球中年期"可能还有多期的大火成岩省与黑色页岩沉积有时空联系,有望为晚前寒武纪地质年代表划分提供新的事件约束。

     

  • 图  1  白垩纪中期古地理重建及大火成岩省及与大洋缺氧有关的黑色页岩分布示意图(据文献[32])

    Figure  1.  Paleogeographic map showing distribution of large igneous provinces (LIPs) and coeval black shales and OAE-related sediments in the mid-Cretaceous (ca. 94 Ma) (after reference [32])

    图  2  早侏罗世古地理重建及与大洋缺氧有关的黑色页岩分布图(据文献[35])

    Figure  2.  Paleogeographic map showing distribution of early Jurassic black shales related to OAEs (after reference [35])

    图  3  显生宙全球大洋缺氧及生物灭绝事件与大火成岩省对比图(据文献[28])

    Figure  3.  Diagram showing link between global LIPs, mass extinction and ocean anoxic events during Phanerozoic Eon (after reference [28])

    图  4  大火成岩省喷发及侵入对陆地及海洋生态系统影响示意图(据文献[23]修改)

    Figure  4.  Diagram showing environmental disruption in both terrestrial and marine ecosystems by LIPs (modified after reference [23])

    图  5  显生宙大陆大火成岩省与表生环境及生物灭绝关系示意图(据文献[9-10])

    Figure  5.  Flow chart showing environmental effects for continental LIPs during Phanerozoic Eon (after references [9-10])

    图  6  地球演化历史中大气氧随时间变化示意图(据文献[42])

    Figure  6.  Evolution of Earth's atmospheric oxygen content through time (after reference [42])

    图  7  华北克拉通燕辽地区下马岭组黑色页岩及其中火山灰(斑脱岩夹层)夹层

    Figure  7.  Black shales and tuffs within the Xiamaling Formation in Yanliao area in the North China Craton

    图  8  不同哥伦比亚(奴那)重建图中约1380 Ma大火成岩省与黑色页岩的空间分布示意图(据文献[89],重建图据文献[90-93])

    Figure  8.  Distributions of ~1380 Ma black shales and LIPs in the paleogeographic reconstruction map of the Nuna supercontinent (after reference [89], reconstruction map from references [90-93])

    图  9  约1380 Ma大火成岩省锆石/斜锆石U-Pb年龄与下马岭组黑色页岩内火山灰(斑脱岩)锆石U-Pb年龄对比图(据文献[89])

    Figure  9.  Comparisons of ages of ~1380 Ma LIPs and those of tuff beds with black shales in the middle part of the Xiamaling Formation in the NCC (after reference [89])

  • [1] ERNST R E. Large igneous provinces[M]. Cambridge:Cambridge University Press, 2014:653.
    [2] WIGNALL P B. Large igneous provinces and mass extinctions[J]. Earth-Science Reviews, 2001, 53(1-3):1-33. http://d.old.wanfangdata.com.cn/Periodical/dzlp201301015
    [3] SOBOLEV S V, SOBOLEV A V, KUZMIN D V, et al. Linking mantle plumes, large igneous provinces and environmental catastrophes[J]. Nature, 2011, 477(7364):312-316. doi: 10.1038/nature10385
    [4] WIGNALL P B. The link between large igneous province eruptions and mass extinctions[J]. Elements, 2005, 1(5):293-297. doi: 10.2113/gselements.1.5.293
    [5] KERR A C. Oceanic LIPs:the kiss of death[J]. Elements, 2005, 1:289-292. doi: 10.2113/gselements.1.5.289
    [6] KERR A C. Oceanic plateaus[M]//HOLLAND H D, TUREKIAN K K. Treatise on Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 631-667.
    [7] GANINO C, ARNDT N T. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces[J]. Geology, 2009, 37(4):323-326. doi: 10.1130/G25325A.1
    [8] SVENSEN H, JAMTVEIT B. Metamorphic fluids and global environmental changes[J]. Elements, 2010, 6(3):179-182. doi: 10.2113/gselements.6.3.179
    [9] BOND D P G, WIGNALL P B. Large igneous provinces and mass extinctions: an update[M]//KELLER G, KERR A C. Volcanism, Impacts, and Mass Extinctions: Causes and Effects. Boulder: Geological Society of America, 2014, 505: 29-55.
    [10] ERNST R E, YOUBI N. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 478:30-52. doi: 10.1016/j.palaeo.2017.03.014
    [11] 沈树忠, 张华.什么引起五次生物大灭绝?[J].科学通报, 2017, 62(11):1119-1135. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201711007.htm

    SHEN S Z, ZHANGH Hua. What caused the five mass extinctions?[J]. Chinese Science Bulletin, 2017, 62(11):1119-1135(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201711007.htm
    [12] BLACK B A, NEELY R R, LAMARQUE J F, et al. Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing[J]. Nature Geoscience, 2018, 11(12):949-954. doi: 10.1038/s41561-018-0261-y
    [13] BROADLEY M W, BARRY P H, BALLENTINE C J, et al. End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles[J]. Nature Geoscience, 2018, 11(9):682-687. doi: 10.1038/s41561-018-0215-4
    [14] MARZOLI A, RENNE P R, PICCIRILLO E M, et al. Extensive 200 million-year-old continental flood basalts of the central Atlantic magmatic province[J]. Science, 1999, 284(5414):616-618. doi: 10.1126/science.284.5414.616
    [15] MARZOLI A, BERTRAND H, KNIGHT K B, et al. Synchrony of the central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis[J]. Geology, 2004, 32(11):973-976. doi: 10.1130/G20652.1
    [16] ZHOU M F, MALPAS J, SONG X Y, et al. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction[J]. Earth and Planetary Science Letters, 2002, 196(3-4):113-122. doi: 10.1016/S0012-821X(01)00608-2
    [17] KAMO S L, CZAMANSKE G K, AMELIN Y, et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma[J]. Earth and Planetary Science Letters, 2003, 214(1-2):75-91. doi: 10.1016/S0012-821X(03)00347-9
    [18] REICHOW M K, PRINGLE M S, AL'MUKHAMEDOV A I, et al. The timing and extent of the eruption of the Siberian traps large igneous province:Implications for the end-Permian environmental crisis[J]. Earth and Planetary Science Letters, 2009, 277(1-3):9-20.
    [19] WHITESIDE J H, OLSEN P E, EGLINTON T I, et al. Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(15):6721-6725. doi: 10.1073/pnas.1001706107
    [20] SCHALLER M F, WRIGHT J D, KENT D V, et al. Rapid emplacement of the central Atlantic magmatic province as a net sink for CO2[J]. Earth and Planetary Science Letters, 2012, 323-324:27-39. doi: 10.1016/j.epsl.2011.12.028
    [21] BLACKBURN T J, OLSEN P E, BOWRING S A, et al. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province[J]. Science, 2013, 340(6135):941-945. doi: 10.1126/science.1234204
    [22] BURGESS S D, BOWRING S A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth's most severe extinction[J]. Science Advances, 2015, 1(7):e1500470, doi: 10.1126/sciadv.1500470.
    [23] CLAPHAM M E, RENNE P R. Flood basalts and mass extinctions[J]. Annual Review of Earth and Planetary Sciences, 2019, 47:275-303. doi: 10.1146/annurev-earth-053018-060136
    [24] 杨競红, 蒋少涌, 凌洪飞, 等.黑色页岩与大洋缺氧事件的Re-Os同位素示踪与定年研究[J].地学前缘, 2005, 12(2):143-150. doi: 10.3321/j.issn:1005-2321.2005.02.016

    YANG J H, JIANG S Y, LING H F, et al. Re-Os isotope tracing and dating of black shales and oceanic anoxic events[J]. Earth Science Frontiers, 2005, 12(2):143-150(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2005.02.016
    [25] LENNIGER M, NØHR-HANSEN H, HILLS L V, et al. Arctic black shale formation during Cretaceous oceanic anoxic event 2[J]. Geology, 2014, 42(9):799-802. doi: 10.1130/G35732.1
    [26] PEARCE C R, COHEN A S, COE A L, et al. Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic[J]. Geology, 2008, 36(3):231-234. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9427e16907594e5f28e0b8d164ec9895
    [27] JENKYNS H C. Geochemistry of oceanic anoxic events[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3):Q03004, doi: 10.1029/2009GC002788.
    [28] PERCIVAL L M E, WITT M L I, MATHER T A, et al. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE:a link to the Karoo-Ferrar Large Igneous Province[J]. Earth and Planetary Science Letters, 2015, 428:267-280. doi: 10.1016/j.epsl.2015.06.064
    [29] CRAIG J, BIFFI U, GALIMBERTI R F, et al. The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks[J]. Marine and Petroleum Geology, 2013, 40:1-47. doi: 10.1016/j.marpetgeo.2012.09.011
    [30] ARTHUR M A, SAGEMAN B B. Marine black shales:depositional mechanisms and environments of ancient deposits[J]. Annual Review of Earth and Planetary Sciences, 1994, 22:499-551. doi: 10.1146/annurev.ea.22.050194.002435
    [31] SCHLANGER S O, JENKYNS H C. Cretaceous oceanic anoxic events:causes and consequences[J]. Geologie En Mijnbouw, 1976, 55(3):179-184. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025046758/
    [32] ALEXANDRE J T, TUENTER E, HENSTRA G A, et al. The mid-Cretaceous North Atlantic nutrient trap:Black shales and OAEs[J]. Paleoceanography and Paleoclimatology, 2010, 25(4):PA4201, doi: 10.1029/2010PA001925.
    [33] WINGUTH C, WINGUTH A M E. Simulating Permian-Triassic oceanic anoxia distribution:Implications for species extinction and recovery[J]. Geology, 2012, 40(2):127-130. http://cn.bing.com/academic/profile?id=92d3106df93be7d8c19de3254f497ed3&encoded=0&v=paper_preview&mkt=zh-cn
    [34] SONG H J, WIGNALL P B, TONG J N, et al. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition and the link with end-Permian extinction and recovery[J]. Earth and Planetary Science Letters, 2012, 353-354:12-21. doi: 10.1016/j.epsl.2012.07.005
    [35] XU W M, RUHL M, HESSELBO S P, et al. Orbital pacing of the Early Jurassic carbon cycle, black-shale formation and seabed methane seepage[J]. Sedimentology, 2017, 64(1):127-149. doi: 10.1111/sed.12329
    [36] UVEGES B T, JUNIUM C K, BOYER D L, et al. Biogeochemical controls on black shale deposition during the Frasnian-Famennian biotic crisis in the Illinois and Appalachian Basins, USA, inferred from stable isotopes of nitrogen and carbon[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 531:108787. doi: 10.1016/j.palaeo.2018.05.031
    [37] HOLLAND H D. The oxygenation of the atmosphere and oceans[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2006, 361(1470):903-915. doi: 10.1098/rstb.2006.1838
    [38] YOUNG G M. Precambrian supercontinents, glaciations, atmospheric oxygenation, metazoan evolution and an impact that may have changed the second half of Earth history[J]. Geoscience Frontiers, 2013, 4(3):247-261. doi: 10.1016/j.gsf.2012.07.003
    [39] CAWOOD P A, HAWKESWORTH C J. Earth's middle age[J]. Geology, 2014, 42(6):503-506. doi: 10.1130/G35402.1
    [40] ZHAI M G, HU B, ZHAO T P, et al. Late Paleoproterozoic-Neoproterozoic multi-rifting events in the North China Craton and their geological significance:a study advance and review[J]. Tectonophysics, 2015, 662:153-166. doi: 10.1016/j.tecto.2015.01.019
    [41] ALLEN P A, ERIKSSON P G, ALKMIM F F, et al. Chapter 2 Classification of basins, with special reference to Proterozoic examples[J]. Geological Society, London, Memoirs, 2015, 43(1):5-28. doi: 10.1144/M43.2
    [42] LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature, 2014, 506(7488):307-315. doi: 10.1038/nature13068
    [43] CANFIELD D E. The early history of atmospheric oxygen:homage to Robert M. Garrels[J]. Annual Review of Earth and Planetary Sciences, 2015, 33:1-36. doi: 10.1146-annurev.earth.33.092203.122711/
    [44] LEE C T A, YEUNG L Y, MCKENZIE N R, et al. Two-step rise of atmospheric oxygen linked to the growth of continents[J]. Nature Geoscience, 2016, 9(6):417-424. doi: 10.1038/ngeo2707
    [45] CANFIELD D E. A new model for Proterozoic ocean chemistry[J]. Nature, 1998, 396(6710):450-453. doi: 10.1038/24839
    [46] CANFIELD D E, HABICHT K S, THAMDRUP B. The Archean sulfur cycle and the early history of atmospheric oxygen[J]. Science, 2000, 288(5466):658-661. doi: 10.1126/science.288.5466.658
    [47] CANFIELD D E, POULTON S W, NARBONNE G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808):92-95. doi: 10.1126/science.1135013
    [48] OCH L M, SHIELDS-ZHOU G A. The Neoproterozoic oxygenation event:Environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews, 2012, 110(1-4):26-57. doi: 10.1016/j.earscirev.2011.09.004
    [49] PLANAVSKY N J, REINHARD C T, WANG X L, et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals[J]. Science, 2014, 346(6209):635-638. doi: 10.1126/science.1258410
    [50] ZHANG S C, WANG X M, WANG H J, et al. Reply to Planavsky et al.:Strong evidence for high atmospheric oxygen levels 1, 400 million years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(19):E2552-E2553. doi: 10.1073/pnas.1603982113
    [51] ZHU S X, ZHU M Y, KNOLL A H, et al. Decimetre-scale multicellular eukaryotes from the 1. 56-billion-year-old Gaoyuzhuang Formation in North China[J]. Nature Communications, 2016, 7:11500, doi: 10.1038/ncomms11500.
    [52] 阎玉忠, 朱士兴.山西永济白草坪组具刺疑源类的发现及其地质意义[J].微体古生物学报, 1992, 9(3):267-282. http://www.cnki.com.cn/Article/CJFDTotal-WSGT199203004.htm

    YAN Y Z, ZHU S X. Discovery of Acanthomorphic acritarchs from the Baicaoping formation in Yongji, Shanxi and its geological significance[J]. Acta Micropalaeontologica Sinica, 1992, 9(3):267-282(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-WSGT199203004.htm
    [53] 尹崇玉, 高林志.中国早期具刺疑源类的演化及生物地层学意义[J].地质学报, 1995, 69(4):360-371. doi: 10.3321/j.issn:0001-5717.1995.04.001

    YIN C Y, GAO L Z. The early evolution of the acanthomorphic acritarchs in China and their biostratigraphical implication[J]. Acta Geologica Sinica, 1995, 69(4):360-371(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.1995.04.001
    [54] YIN L M. Acanthomorphic acritarchs from Meso-Neoproterozoic shales of the Ruyang Group, Shanxi, China[J]. Review of Palaeobotany and Palynology, 1997, 98(1-2):15-25. doi: 10.1016/S0034-6667(97)00022-5
    [55] 尹磊明, 边立曾, 袁训来.山西中元古代汝阳群分枝管状藻体和显微环状螺旋加厚管体的发现[J].中国科学(D辑), 2003, 33(8):769-774. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200308008

    YIN L M, BIAN L Z, YUAN X L. Discovery of branched tubular algae and microscopic tubes with annular-helical thickening from the Mesoproterozoic Ruyang Group of Shanxi, North China[J]. Science in China Series D Earth Sciences, 2004, 47(10):880-885. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200308008
    [56] 尹磊明, 袁训来, 边立曾, 等.东秦岭北坡中元古代晚期微体生物群一个早期生命的新窗口[J].古生物学报, 2004, 43(1):1-13. http://d.old.wanfangdata.com.cn/Periodical/gswxb200401001

    YIN L M, YUAN X L, BIAN L Z, et al. Late Mesoproterozoic microfossil assemblage on northern slope of eastern Qinling mountains, China:A new window on early Eukaryotes[J]. Acta Palaeontologica Sinica, 2004, 43(1):1-13(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gswxb200401001
    [57] 高维, 张传恒, 王自强.华北古陆南缘豫西新元古代大型疑源类及古地理环境分析[J].中国地质, 2011, 38(5):1232-1243. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201105010

    GAO W, ZHANG C H, WANG Z Q. The discovery of large-scale acanthomorphic acritarch assemblage on the southern margin of North China old land and an analysis of its paleogeographic environment[J]. Geology in China, 2011, 38(5):1232-1243(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201105010
    [58] 尹崇玉, 高林志.豫西鲁山洛峪口组宏观藻类的发现及地质意义[J].地质学报, 2000, 74(4):339-344. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200004006

    YIN C Y, GAO L Z. Discovery of macroscopic algal fossils in the Luoyukou Formation Lushan County, Western Henan, and its stratigraphic significance[J]. Acta Geologica Sinica, 2000, 74(4):339-344(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb200004006
    [59] 胡健民, 孟庆任, 李文厚.豫西前寒武纪汝阳群蠕虫状遗迹化石[J].科学通报, 1996, 41(20):1868-1870. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb199620014

    HU J M, MENG Q R, LI W H. Vermiform trace fossils from the Precambrian Ruyang Group, western Henan[J]. Chinese Science Bulletin, 1997, 42(3):251-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb199620014
    [60] 苏文博, 李怀坤, 徐莉, 等.华北克拉通南缘洛峪群-汝阳群属于中元古界长城系——河南汝州洛峪口组层凝灰岩锆石LA-MC-ICPMS U-Pb年龄的直接约束[J].地质调查与研究, 2012, 35(2):96-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201202003

    SU W B, LI H K, XU L, et al. Luoyu and Ruyang Group at the south margin of the North China Craton (NCC) should belong in the Mesoproterozoic Changchengian System:direct constraints from the LA-MC-ICPMS U-Pb age of the Tuffite in the Luoyukou Formation, Ruzhou, Henan, China[J]. Geological Survey and Research, 2012, 35(2):96-108(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201202003
    [61] 李承东, 赵利刚, 常青松, 等.豫西洛峪口组凝灰岩锆石LA-MC-ICPMS U-Pb年龄及地层归属讨论[J].中国地质, 2017, 44(3):511-525. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201703009

    LI C D, ZHAO L G, CHANG Q S, et al. Zircon U-Pb dating of tuff bed from Luoyukou Formation in western Henan Province on the southern margin of the North China Craton and its stratigraphic attribution discussion[J]. Geology in China, 2017, 44(3):511-525(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201703009
    [62] SEILACHER A, BOSE P K, PFLVGER F. Triploblastic animals more than 1 billion years ago:Trace fossil evidence from India[J]. Science, 1998, 282(5386):80-83. doi: 10.1126/science.282.5386.80
    [63] RASMUSSEN B, BOSE P K, SARKAR S, et al. 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, Lower Vindhyan, India:possible implications for early evolution of animals[J]. Geology, 2002, 30(2):103-106. http://cn.bing.com/academic/profile?id=d7d3ab1fbcbaabcba67ae99d36f6d845&encoded=0&v=paper_preview&mkt=zh-cn
    [64] ZHANG S C, WANG X M, WANG H J, et al. Sufficient oxygen for animal respiration 1, 400 million years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(7):1731-1736. doi: 10.1073/pnas.1523449113
    [65] ZHANG K, ZHU X K, WOOD R A, et al. Oxygenation of the Mesoproterozoic ocean and the evolution of complex eukaryotes[J]. Nature Geoscience, 2018, 11(5):345-350. doi: 10.1038/s41561-018-0111-y
    [66] DIAMOND C W, LYONS T W. Mid-Proterozoic redox evolution and the possibility of transient oxygenation events[J]. Emerging Topics in Life Sciences, 2018, 2(2):235-245. doi: 10.1042/ETLS20170146
    [67] PLANAVSKY N J, SLACK J F, CANNON W F, et al. Evidence for episodic oxygenation in a weakly redox-buffered deep mid-Proterozoic ocean[J]. Chemical Geology, 2018, 483:581-594. doi: 10.1016/j.chemgeo.2018.03.028
    [68] LARGE R R, MUKHERJEE I, GREGORY D D, et al. Ocean and atmosphere geochemical proxies derived from trace elements in marine pyrite:Implications for ore genesis in sedimentary basins[J]. Economic Geology, 2017, 112(2):423-450. doi: 10.2113/econgeo.112.2.423
    [69] 吉利明, 陈践发, 郑建京, 等.华北燕山地区中新元古代沉积记录及其古气候、古环境特征[J].地球科学进展, 2001, 16(6):777-784. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200106006

    JI L M, CHEN J F, ZHENG J J, et al. Sedimental records and characteristics of palaeoclimate and palaeoenvironment in the Yanshan area, North China in the Mesoprot-erozoic and the Neoproterozoic[J]. Advance in Earth Sciences, 2001, 16(6):777-784. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200106006
    [70] KLEIN C. Some Precambrian banded iron-formations (BIFs) from around the world:Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins[J]. American Mineralogist, 2005, 90(10):1473-1499. doi: 10.2138/am.2005.1871
    [71] ERNST R E, WINGATE M T D, BUCHAN K L, et al. Global record of 1600-700 Ma Large Igneous Provinces (LIPs):implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents[J]. Precambrian Research, 2008, 160(1-2):159-178. doi: 10.1016/j.precamres.2007.04.019
    [72] RAVIZZA G, TUREKIAN K K. Application of the 187Re-187Os system to black shale geochronometry[J]. Geochimica et Cosmochimica Acta, 1989, 53(12):3257-3262. doi: 10.1016/0016-7037(89)90105-1
    [73] KENDALL B, CREASER R A, SELBY D. Re-Os geochronology of postglacial black shales in Australia:Constraints on the timing of "Sturtian" glaciation[J]. Geology, 2006, 34(9):729-732. doi: 10.1130/G22775.1
    [74] TURGEON S C, CREASER R A, ALGEO T J. Re-Os depositional ages and seawater Os estimates for the Frasnian-Famennian boundary:Implications for weathering rates, land plant evolution, and extinction mechanisms[J]. Earth and Planetary Science Letters, 2007, 261(3-4):649-661. doi: 10.1016/j.epsl.2007.07.031
    [75] XU G P, HANNAH J L, STEIN H J, et al. Re-Os geochronology of Arctic black shales to evaluate the Anisian-Ladinian boundary and global faunal correlations[J]. Earth and Planetary Science Letters, 2009, 288(3-4):581-587. doi: 10.1016/j.epsl.2009.10.022
    [76] KENDALL B, CREASER R A, GORDON G W, et al. Re-Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia[J]. Geochimica et Cosmochimica Acta, 2009, 73(9):2534-2558. doi: 10.1016/j.gca.2009.02.013
    [77] ACKEN D V, THOMSON D, RAINBIRD R H, et al. Constraining the depositional history of the Neoproterozoic Shaler Supergroup, Amundsen Basin, NW Canada:Rhenium-osmium dating of black shales from the Wynniatt and Boot Inlet Formations[J]. Precambrian Research, 2013, 236:124-131. doi: 10.1016/j.precamres.2013.07.012
    [78] GEBOY N J, KAUFMAN A J, WALKER R J, et al. Re-Os age constraints and new observations of Proterozoic glacial deposits in the Vazante Group, Brazil[J]. Precambrian Research, 2013, 238:199-213. doi: 10.1016/j.precamres.2013.10.010
    [79] BERTONI M E, ROONEY A D, SELBY D, et al. Neoproterozoic Re-Os systematics of organic-rich rocks in the São Francisco Basin, Brazil and implications for hydrocarbon exploration[J]. Precambrian Research, 2014, 255:355-366. doi: 10.1016/j.precamres.2014.10.010
    [80] LIU Y F, BAGAS L, NIE F J, et al. Re-Os system of black schist from the Mesoproterozoic Bayan Obo Group, Central Inner Mongolia, China and its geological implications[J]. Lithos, 2016, 261:296-306. doi: 10.1016/j.lithos.2015.11.023
    [81] 高林志, 张传恒, 史晓颖, 等.华北青白口系下马岭组凝灰岩锆石SHRIMP U-Pb定年[J].地质通报, 2007, 26(3):249-255. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200703001

    GAO L Z, ZHANG C H, SHI X Y, et al. Zircon SHRIMP U-Pb dating of the tuff bed in the Xiamaling Formation of the Qingbaikouan System in North China[J]. Geological Bulletin of China, 2007, 26(3):249-255(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgqydz200703001
    [82] 高林志, 张传恒, 尹崇玉, 等.华北古陆中-新元古代年代地层框架SHRIMP锆石年龄新依据[J].地球学报, 2008, 29(3):366-376. http://d.old.wanfangdata.com.cn/Periodical/dqxb200803010

    GAO L Z, ZHANG C H, YIN C Y, et al. SHRIMP zircon ages:basis for refining the chronostratigraphic classification of the Meso-and Neoproterozoic strata in North China Old Land[J]. Acta Geoscientica Sinica, 2008, 29(3):366-376(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqxb200803010
    [83] 高林志, 张传恒, 史晓颖, 等.华北古陆下马岭组归属中元古界的锆石SHRIMP年龄新证据[J].科学通报, 2008, 53(21):2617-2623. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200821013

    GAO L Z, ZHANG C H, SHI X Y, et al. Mesoproterozoic age for Xiamaling formation in North China Plate indicated by zircon SHRIMP dating[J]. Chinese Science Bulletin, 2008, 53(17):2665-2671. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200821013
    [84] SU W B, ZHANG S H, HUFF W D, et al. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation:Implications for revised subdivision of the Meso-to Neoproterozoic history of the North China Craton[J]. Gondwana Research, 2008, 14(3):543-553. http://cn.bing.com/academic/profile?id=40a009f8fe781501717168d2481ebc9d&encoded=0&v=paper_preview&mkt=zh-cn
    [85] 苏文博, 李怀坤, HUFF W D, 等.铁岭组钾质斑脱岩锆石SHRIMP U-Pb年代学研究及其地质意义[J].科学通报, 2010, 55(22):2197-2206. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201022005

    SU W B, LI H K, HUFF W D, et al. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation, North China[J]. Chinese Science Bulletin, 2010, 55(29):3312-3323. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201022005
    [86] 孙会一, 高林志, 包创, 等.河北宽城中元古代串岭沟组凝灰岩SHRIMP锆石U-Pb年龄及其地质意义[J].地质学报, 2013, 87(4):591-596. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201304012

    SUN H Y, GAO L Z, BAO C, et al. SHRIMP zircon U-Pb of Mesoproterozoic Chuanlinggou Formation from Kuancheng County in Hebei Province and its geological implications[J]. Acta Geologica Sinica, 2013, 87(4):591-596(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201304012
    [87] ZHANG S C, WANG X M, HAMMARLUND E U, et al. Orbital forcing of climate 1.4 billion years ago[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(12):E1406-E1413. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7368572d8c27afdeeaf32a0489df722c
    [88] 刘典波, 王小琳, 张恒石, 等.华北串岭沟组凝灰岩锆石SHRIMP年龄及其地层学意义[J].地学前缘, 2019, 26(3):183-189. http://d.old.wanfangdata.com.cn/Periodical/dxqy201903022

    LIU D B, WANG X L, ZHANG H S, et al. Zircon SHRIMP U-Pb age of the Chuanlinggou Formation of the Changcheng Group, North China and the stratigraphic implications[J]. Earth Science Frontiers, 2019, 26(3):183-189(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201903022
    [89] ZHANG S H, ERNST R E, PEI J L, et al. A temporal and causal link between ca. 1380 Ma large igneous provinces and black shales:Implications for the Mesoproterozoic time scale and paleoenvironment[J]. Geology, 2018, 46(11):963-966.
    [90] ZHAO G C, CAWOOD P A, WILDE S A, et al. A review of global 2.1~1.8 Ga orogens:implications for a pre-Rodinia supercontinent[J]. Earth-Science Review, 2002, 59(1-4):125-162. doi: 10.1016/S0012-8252(02)00073-9
    [91] EVANS D A D, MITCHELL R N. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna[J]. Geology, 2011, 39(5):443-446. doi: 10.1130/G31654.1
    [92] ZHANG S H, LI Z X, EVANS D A D, et al. Pre-Rodinia supercontinent Nuna shaping up:A global synthesis with new paleomagnetic results from North China[J]. Earth and Planetary Science Letters, 2012, 353-354:145-155. doi: 10.1016/j.epsl.2012.07.034
    [93] PISAREVSKY S A, ELMING S Å, PESONEN L J, et al. Mesoproterozoic paleogeography:supercontinent and beyond[J]. Precambrian Research, 2014, 244:207-225. doi: 10.1016/j.precamres.2013.05.014
    [94] ZHANG S H, ERNST R E, PEI J L, et al. LIPs (large igneous provinces) and anoxia events in 'the Boring Billion'[M]//ERNST R E, SUWAIDI A A, BEKKER A, et al. Environmental Change and Large Igneous Provinces: The Deadly Kiss of LIPs. American Geophysical Union and John Wiley & Sons, Inc., 2019. (in press)
  • 加载中
图(9)
计量
  • 文章访问数:  345
  • HTML全文浏览量:  74
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-01
  • 修回日期:  2019-09-23
  • 刊出日期:  2019-10-28

目录

    /

    返回文章
    返回