留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

花岗岩大地构造研究的若干重要问题

王涛 郭磊 李舢 王晓霞 王朝阳

王涛, 郭磊, 李舢, 等, 2019. 花岗岩大地构造研究的若干重要问题. 地质力学学报, 25 (5): 899-919. DOI: 10.12090/j.issn.1006-6616.2019.25.05.074
引用本文: 王涛, 郭磊, 李舢, 等, 2019. 花岗岩大地构造研究的若干重要问题. 地质力学学报, 25 (5): 899-919. DOI: 10.12090/j.issn.1006-6616.2019.25.05.074
WANG Tao, GUO Lei, LI Shan, et al., 2019. SOME IMPORTANT ISSUES IN THE STUDY OF GRANITE TECTONICS. Journal of Geomechanics, 25 (5): 899-919. DOI: 10.12090/j.issn.1006-6616.2019.25.05.074
Citation: WANG Tao, GUO Lei, LI Shan, et al., 2019. SOME IMPORTANT ISSUES IN THE STUDY OF GRANITE TECTONICS. Journal of Geomechanics, 25 (5): 899-919. DOI: 10.12090/j.issn.1006-6616.2019.25.05.074

花岗岩大地构造研究的若干重要问题

doi: 10.12090/j.issn.1006-6616.2019.25.05.074
基金项目: 

国家重点研发计划 2017YFC0601301

国家重点研发计划 2018YFC0603702

国家自然科学基金 41802074

国家自然科学基金 41830216

国家自然科学基金 U1403291

国家自然科学基金 41972225

中国地质调查局项目 DD20190001

中国地质调查局项目 DD20190370

中国地质调查局项目 DD20190685

中国地质调查局项目 DD20190397

国际地学计划 IGCP662

详细信息
    作者简介:

    王涛(1959-), 男, 研究员, 主要从事构造地质、花岗岩与地壳生长、结构及演化等研究。E-mail:taowang@cags.ac.cn

  • 中图分类号: P313

SOME IMPORTANT ISSUES IN THE STUDY OF GRANITE TECTONICS

  • 摘要: 宇宙星球中只有地球发育花岗质岩石及广义的花岗岩,它是大陆最主要的组成。因此,花岗岩在固体地球科学研究中具有举足轻重的意义。对此,作者提出花岗岩大地构造,其基本研究内容可概括为物理特性(构造)、物质组成(岩石地化)和年代学三大方面。文章在已有的初步论述基础上,进一步阐述了以下若干研究方面的进展、问题和发展方向:花岗岩岩石组合及其构造背景与环境厘定;花岗岩演化及其构造环境与演化(构造过程);花岗岩变形、壳内流变及构造动力学意义;花岗岩深部物源填图与造山带及地壳生长。花岗岩大地构造是从花岗岩角度,探索解决大地构造问题,丰富大地构造研究内容,是当今地球科学学科交叉、融合发展的必要。

     

  • 图  1  岩浆性质演变的轨迹判别构造环境及其演变[5, 8]

    a—向上的“顺时针”花岗质岩浆演化“轨迹”可能揭示俯冲到碰撞到后碰撞(板内)环境及其演变(实线);b—向下的“反时针”轨迹可能揭示出从碰撞到后碰撞伸展的演变(虚线);秦岭新元古代花岗岩数据来源[5, 33-36]

    Figure  1.  Tectonic environment and its evolution discriminated by the magmatic property evolution[5, 8]

    图  2  阿尔泰古生代花岗岩由钙碱性向高钾钙碱性和碱性演化,揭示构造环境由俯冲增生向后增生(碰撞)演化[18, 37]

    Figure  2.  Altai Paleozoic granite evolved from calc-alkaline to high-potassium-calc-alkaline and alkaline, revealing that the tectonic environment evolved from subduction accretionary to backward accretionary (collision)[18, 37]

    图  3  地壳流变极性转换模式图

    a—地壳水平侧向流动与垂向流动构造及其流变极性转换模式;b—下地壳流变(渠道流和底辟流)在刚性上地壳之下(A和B)和在伸展环境下(C和D)及其P-T-t轨迹[89]

    Figure  3.  A conversion model for crustal rheological polarity

    图  4  造山带类型划分为3个相互关联的端元类型[27]

    Figure  4.  Three interrelated end member types of orogenic belt[27]

  • [1] LUNDSTROM C C, GLAZNER A F. Silicic magmatism and the volcanic-plutonic connection[J]. Elements, 2016, 12(2):91-96. doi: 10.2113/gselements.12.2.91
    [2] 翟明国, 张旗, 陈国能, 等.大陆演化与花岗岩研究的变革[J].科学通报, 2016, 61(13):1414-1420. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201613005

    ZHAI Mingguo, ZHANG Qi, CHEN Guoneng, et al. Adventure on the research of continental evolution and related granite geochemistry[J]. Chinese Science Bulletin, 2016, 61(13):1414-1420. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb201613005
    [3] VIGNERESSE J L. Should felsic magmas be considered as tectonic object, just like faults or folds?[J]. Journal of Structural Geology, 1999, 21(8-9):1125-1130. doi: 10.1016/S0191-8141(99)00102-9
    [4] 翟明国.岩石大地构造学[J].地球科学进展, 1992, (2):74-75. http://d.old.wanfangdata.com.cn/Periodical/dzkx200901027

    ZHAI Mingguo. Rock geotectonics[J]. Advances in Earth Science, 1992, (2):74-75. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dzkx200901027
    [5] 王涛, 王晓霞, 郭磊, 等.花岗岩与大地构造[J].岩石学报, 2017, 33(5):1459-1478. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201705006

    WANG Tao, WANG Xiaoxia, GUO Lei, et al. Granitoid and tectonics[J]. Acta Petrologica Sinica, 2017, 33(5):1459-1478.(in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201705006
    [6] 王涛, 王晓霞, 郑亚东, 等.花岗岩构造研究及花岗岩构造动力学刍议[J].地质科学, 2007, 42(1):91-113. doi: 10.3321/j.issn:0563-5020.2007.01.009

    WANG Tao, WANG Xiaoxia, ZHENG Yadong, et al. Studies on structures of granitic plutons and granitic tectonic dynamics[J]. Chinese Journal of Geology, 2007, 42(1):91-113.(in Chinese with English abstract) doi: 10.3321/j.issn:0563-5020.2007.01.009
    [7] PITCHER W S. Granite type and tectonic environment[M]//HSU K. Mountain Building Processes. London: Academic Press, 1983: 19-40.
    [8] FROST B R, BARNES C, COLLINS W, et al. A Geochemical Classification for Granitic Rocks[J]. Journal of Petrology, 2001, 42, 2033-2048 doi: 10.1093/petrology/42.11.2033
    [9] MANIAR P D, PICCOLI P M. Tectonic discrimination of granitoids[J]. GSA Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
    [10] BARBARIN B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3):605-626. doi: 10.1016/S0024-4937(98)00085-1
    [11] 莫宣学, 董国臣, 赵志丹, 等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J].高校地质学报, 2005, 11(3):281-290. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200503001

    MO Xuanxue, DONG Guochen, ZHAO Zhidan, et al. Spatial and temporal distribution and characteristics of granitoids in the gangdese, tibet and implication for crustal growth and evolution[J]. Geological Journal of China Universities, 2005, 11(3):281-290. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200503001
    [12] 王德滋, 舒良树.花岗岩构造岩浆组合[J].高校地质学报, 2007, 13(3):362-370. http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200703006

    WANG Dezi, SHU Liangshu. On granitic tectono-magmatic assemblages[J]. Geological Journal of China Universities, 2007, 13(3):362-370. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200703006
    [13] 邓晋福, 冯艳芳, 狄永军, 等.岩浆弧火成岩构造组合与洋陆转换[J].地质论评, 2015, 61(3):473-484. http://d.old.wanfangdata.com.cn/Periodical/dzlp201503001

    DENG Jinfu, FENG Yanfang, DI Yongjun, et al. Magmatic arc and ocean-continent transition:discussion[J]. Geological Review, 2015, 61(3):473-484. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlp201503001
    [14] 邓晋福, 刘翠, 冯艳芳, 等.关于火成岩常用图解的正确使用:讨论与建议[J].地质论评, 2015, 61(4):717-734. http://d.old.wanfangdata.com.cn/Periodical/dzlp201504002

    DENG Jinfu, LIU Cui, FENG Yanfang, et al. On the correct application in the common igneous petrological diagrams:discussion and suggestion[J]. Geological Review, 2015, 61(4):717-734. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlp201504002
    [15] 邓晋福, 冯艳芳, 狄永军, 等.中国侵入岩大地构造图(1:2500000)[M].北京:地质出版社, 2017:1-583.

    DENG Jinfu, FENG Yanfang, DI Yongjun, et al. Intrusive tectonic map of China (1:2500000)[M]. Beijing:Geological Publishing House, 2017:1-583. (in Chinese)
    [16] 邓晋福, 刘翠, 狄永军, 等.英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)岩石构造组合及其亚类划分[J].地学前缘, 2018, 25(6):42-50. http://d.old.wanfangdata.com.cn/Periodical/dxqy201806005

    DENG Jinfu, LIU Cui, DI Yongjun, et al. Discussion on the tonalite-trondhjemite-granodiorite (TTG) petrotectonic assemblage and its subtypes[J]. Earth Science Frontiers, 2018, 25(6):42-50. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201806005
    [17] LIÉGEOIS G P. Preface-Some words on the post-collisional magmatism[J]. Lithos, 1998, 45:15-17. doi: 10.1016-S0024-4937(98)00023-1/
    [18] PEARCE J A, HARRIS N B W, TINDLE A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4):956-983. doi: 10.1093/petrology/25.4.956
    [19] PEARCE J. Sources and settings of granitic rocks[J]. Episodes, 1996, 19(4):120-125. doi: 10.18814/epiiugs/1996/v19i4/005
    [20] 韩宝福, 季建清, 宋彪, 等.新疆准噶尔晚古生代陆壳垂向生长(Ⅰ)-后碰撞深成岩浆活动的时限[J].岩石学报, 2006, 22(5):1077-1086. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200605003

    HAN Baofu, JI Jianqing, SONG Biao, et al. Late Paleozoic vertical growth of continental crust around the Junggar Basin, Xinjiang, China (Part Ⅰ):Timing of post-collisional plutonism[J]. Acta Petrologica Sinica, 2006, 22(5):1077-1086. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200605003
    [21] 侯增谦.大陆碰撞成矿论[J].地质学报, 2010, 84(1):30-58. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201001002

    HOU Zengqian. Metallogensis of continental collision[J]. Acta Geologica Sinica, 2010, 84(1):30-58. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dizhixb201001002
    [22] WANG X X, WANG T, KE C H, et al. Nd-Hf isotopic mapping of Late Mesozoic granitoids in the East Qinling orogen, central China:Constraint on the basements of terranes and distribution of Mo mineralization[J]. Journal of Asian Earth Sciences, 2015, 103:169-183. doi: 10.1016/j.jseaes.2014.07.002
    [23] HOFMANN A W. Chemical differentiation of the Earth:the relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 1988, 90(3):297-314. doi: 10.1016/0012-821X(88)90132-X
    [24] BROWN M. Granite:from genesis to emplacement[J]. GSA Bulletin, 2013, 125(7-8):1079-1113. doi: 10.1130/B30877.1
    [25] ANNEN C, BLUNDY J D, SPARKS R S J. The genesis of intermediate and silicic magmas in deep crustal hot zones[J]. Journal of Petrology, 2006, 47(3):505-539. doi: 10.1093/petrology/egi084
    [26] JAGOUTZ O, KELEMEN P B. Role of arc processes in the formation of continental crust[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1):363-404. doi: 10.1146/annurev-earth-040809-152345
    [27] CAWOOD P A, KRÖNER A, COLLINS W J, et al. Accretionary orogens through Earth history[J]. Geological Society, London, Special Publications, 2009, 318(1):1-36. doi: 10.1144/SP318.1
    [28] CHAPPELL B W, BRYANT C J, WYBORN D. Peraluminous Ⅰ-type granites[J]. Lithos, 2012, 153:142-153. doi: 10.1016/j.lithos.2012.07.008
    [29] MOYEN J F, LAURENT O, CHELLE-MICHOU C, et al. Collision vs. subduction-related magmatism:Two contrasting ways of granite formation and implications for crustal growth[J]. Lithos, 2017, 277:154-177. doi: 10.1016/j.lithos.2016.09.018
    [30] CLEMENS J D. S-type granitic magmas-petrogenetic issues, models and evidence[J]. Earth-Science Reviews, 2003, 61(1-2):1-18. doi: 10.1016/S0012-8252(02)00107-1
    [31] COLLINS W J. Hot orogens, tectonic switching, and creation of continental crust[J]. Geology, 2002, 30(6):535-538. doi: 10.1130/0091-7613(2002)030<0535:HOTSAC>2.0.CO;2
    [32] MILLER C F, MCDOWELL S M, MAPES R W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance[J]. Geology, 2003, 31(6):529-532. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
    [33] 游振东, 索书田, 韩郁菁, 等.造山带核部杂岩的变质过程与构造解析——以东秦岭为例[M].武汉:中国地质大学出版社, 1991:1-322.

    YOU Zhendong, SUO Shutian, HAN Yujing, et al. Metamorphic progress andstructural analysis of the core of orogen:such as East Qinling[M]. Wuhan:China University of Geosciences Press, 1991:1-322. (in Chinese)
    [34] 张成立, 刘良, 张国伟, 等.北秦岭新元古代后碰撞花岗岩的确定及其构造意义[J].地学前缘, 2004, 11(3):33-42. doi: 10.3321/j.issn:1005-2321.2004.03.005

    ZHANG Chengli, LIU Liang, ZHANG Guowei, et al. Determination of Neoproterozoic post-collisional granites in the north Qinling Mountains and its tectonic significance[J]. Earth Science Frontiers, 2004, 11(3):33-42. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2004.03.005
    [35] BAO Zhiwei, WANG Qiang, BAI Guodian, et al. Geochronology and geochemistry of the Fangcheng Neoproterozoic alkali-syenites in east Qinling orogen and its geodynamic implications[J]. Chinese Science Bulletin, 2008, 53(13):2050-2061. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb-e200813019
    [36] WANG X X, WANG T, ZHANG C L. Neoproterozoic, Paleozoic, and mesozoic granitoid magmatism in the Qinling Orogen, China:constraints on orogenic process[J]. Journal of Asian Earth Sciences, 2013, 72:129-151. doi: 10.1016/j.jseaes.2012.11.037
    [37] SONG P, WANG T, TONG Y, et al. Contrasting deep crustal compositions between the Altai and East Junggar orogens, SW Central Asian Orogenic Belt:Evidence from zircon Hf isotopic mapping[J]. Lithos, 2019, 328-329:297-311. doi: 10.1016/j.lithos.2018.12.039
    [38] CHAPPELL B W, WHITE A J R. Ⅰ-and S-type granites in the Lachlan fold belt[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1992, 83(1-2):1-26. doi: 10.1017/S0263593300007720
    [39] GLEN R A. Refining accretionary orogen models for the Tasmanides of eastern Australia[J]. Australian Journal of Earth Sciences, 2013, 60(3):315-370. doi: 10.1080/08120099.2013.772537
    [40] COLLINS W J, HUANG H Q, BOWDEN P, et al. Repeated S-Ⅰ-A-type granite trilogy in the Lachlan Orogen and geochemical contrasts with A-type granites in Nigeria: Implications for petrogenesis and tectonic discrimination[J]. Geological Society, London, Special Publications, 2019, 491: SP491-2018-2159.
    [41] COLLINS W J, RICHARDS S W. Geodynamic significance of S-type granites in circum-Pacific orogens[J]. Geology, 2008, 36(7):559-562. doi: 10.1130/G24658A.1
    [42] RICHARDS S W, COLLINS W J. Growth of wedge-shaped plutons at the base of active half-grabens[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2004, 95(1-2):309-317. doi: 10.1017/S0263593300001097
    [43] CONEY P J, JONES D L, MONGER J W H. Cordilleran suspect terranes[J]. Nature, 1980, 288(5789):329-333. doi: 10.1038/288329a0
    [44] COLLINS W J, HUANG H Q, JIANG X Y. Water-fluxed crustal melting produces Cordilleran batholiths[J]. Geology, 2016, 44(2):143-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=477e3d76344d9988aa5e2e7e585e2552
    [45] DEWEY J F. Orogeny can be very short[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(43):15286-15293. doi: 10.1073/pnas.0505516102
    [46] ENGÖR A M C. Plate tectonics and orogenic research after 25 years:A Tethyan perspective[J]. Earth-Science Reviews, 1990, 27(1-2):1-201. doi: 10.1016/0012-8252(90)90002-D
    [47] SCHULMANN K, PATERSON S. Geodynamics:Asian continental growth[J]. Nature Geoscience, 2011, 4(12):827-829. doi: 10.1038/ngeo1339
    [48] 任纪舜, 牛宝贵, 刘志刚.软碰撞、叠覆造山和多旋回缝合作用[J].地学前缘, 1999, 6(3):85-93. http://d.old.wanfangdata.com.cn/Periodical/dxqy199903008

    REN Jishun, NIU Baogui, LIU Zhigang. Soft collision, superposition orogeny and polycyclic suturing[J]. Earth Science Frontiers, 1999, 6(3):85-93. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy199903008
    [49] LI S, CHUNG S L, WILDE S A, et al. Early-middle triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt:Implications for ocean closure in accretionary orogens[J]. Journal of Geophysical Research:Solid Earth, 2017, 122(3):2291-2309.
    [50] LI S, CHUNG S L, WILDE S A, et al. Linking magmatism with collision in an accretionary orogen[J]. Scientific Reports, 2016, 6:25751. doi: 10.1038/srep25751
    [51] LI S, CHUNG S L, WILDE S A, et al. Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the central Asian Orogenic Belt (central segment)[J]. Earth-Science Reviews, 2013, 126:206-234. doi: 10.1016/j.earscirev.2013.06.001
    [52] LI S, WANG T, WILDE S A, et al. Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China[J]. Lithos, 2012, 134-135:123-145. doi: 10.1016/j.lithos.2011.12.005
    [53] LI S, WILDE S A, WANG T, et al. Latest early permian granitic magmatism in southern Inner Mongolia, China:Implications for the tectonic evolution of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 2016, 29(1):168-180. doi: 10.1016/j.gr.2014.11.006
    [54] WHALEN J B, MCNICOLL V J, VAN STAAL C R, et al. Spatial, temporal and geochemical characteristics of Silurian collision-zone magmatism, Newfoundland Appalachians:An example of a rapidly evolving magmatic system related to slab break-off[J]. Lithos, 2006, 89(3-4):377-404. doi: 10.1016/j.lithos.2005.12.011
    [55] ZAGOREVSKI A, VAN STAAL C R. The record of ordovician Arc-Arc and Arc-continent collisions in the canadian appalachians during the closure of iapetus[M]//Arc-Continent Collision. Frontiers in Earth Sciences. Berlin, Heidelberg: Springer, 2011: 341-371.
    [56] CHUNG S L, CHU M F, JI J Q, et al. The nature and timing of crustal thickening in Southern Tibet:Geochemical and zircon Hf isotopic constraints from postcollisional adakites[J]. Tectonophysics, 2009, 477(1-2):36-48. doi: 10.1016/j.tecto.2009.08.008
    [57] XU X W, LI X H, JIANG N, et al. Basement nature and origin of the Junggar terrane:New zircon U-Pb-Hf isotope evidence from Paleozoic rocks and their enclaves[J]. Gondwana Research, 2015, 28(1):288-310. doi: 10.1016/j.gr.2014.03.011
    [58] JI W Q, WU F Y, LIU C Z, et al. Early Eocene crustal thickening in southern Tibet:New age and geochemical constraints from the Gangdese batholith[J]. Journal of Asian Earth Sciences, 2012, 53:82-95. doi: 10.1016/j.jseaes.2011.08.020
    [59] SHAO W Y, CHUNG S L, CHEN W S, et al. Old continental zircons from a young oceanic arc, eastern Taiwan:Implications for Luzon subduction initiation and Asian accretionary orogeny[J]. Geology, 2015, 43(6):479-482. doi: 10.1130/G36499.1
    [60] DUCEA M N, PATERSON S R, DECELLES P G. High-volume magmatic events in subduction systems[J]. Elements, 2015, 11(2):99-104. doi: 10.2113/gselements.11.2.99
    [61] DECELLES P G, DUCEA M N, KAPP P, et al. Cyclicity in Cordilleran orogenic systems[J]. Nature Geoscience, 2009, 2(4):251-257. doi: 10.1038/ngeo469
    [62] DUCEA M. The California Arc:Thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups[J]. GSA Today, 2001, 11(11):4-10. doi: 10.1130/1052-5173(2001)011<0004:TCATGB>2.0.CO;2
    [63] PATERSON S R, DUCEA M N. Arc magmatic tempos:gathering the evidence[J]. Elements, 2015, 11(2):91-98. doi: 10.2113/gselements.11.2.91
    [64] HUANG F, LUNDSTROM C C. 231Pa excesses in arc volcanic rocks:Constraint on melting rates at convergent margins[J]. Geology, 2007, 35(11):1007-1010. doi: 10.1130/G23822A.1
    [65] SHELLNUTT J G, LEE T Y, BROOKFIELD M E, et al. Correlation between magmatism of the Ladakh Batholith and plate convergence rates during the India-Eurasia collision[J]. Gondwana Research, 2014, 26(3-4):1051-1059. doi: 10.1016/j.gr.2013.09.006
    [66] ZHANG X R, CHUNG S L, LAI Y M, et al. A 6000-km-long Neo-Tethyan arc system with coherent magmatic flare-ups and lulls in South Asia[J]. Geology, 2019, 47(6):573-576. doi: 10.1130/G46172.1
    [67] HIRTH G. Earth science:Missing link in mantle dynamics[J]. Nature, 2014, 507(7490):42-43. doi: 10.1038/nature13064
    [68] CZAPLI AŃ SKA D, PIAZOLO S, ZIBRA I. The influence of phase and grain size distribution on the dynamics of strain localization in polymineralic rocks[J]. Journal of Structural Geology, 2015, 72:15-32. doi: 10.1016/j.jsg.2015.01.001
    [69] WANG T, WANG X X, LI W P. Evaluation of multiple emplacement mechanisms:the Huichizi granite pluton, Qinling orogenic belt, central China[J]. Journal of Structural Geology, 2000, 22(4):505-518. doi: 10.1016-S0191-8141(99)00169-8/
    [70] 刘正宏, 徐仲元, 杨振升.构造片麻岩含义及其成因机制[J].吉林大学学报(地球科学版), 2011, 41(5):1314-1321. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201105005

    LIU Zhenghong, XU Zhongyuan, YANG Zhensheng. Tectonic-gneiss and its origin machanism[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(5):1314-1321. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201105005
    [71] LIANG C Y, LIU Y J, NEUBAUER F, et al. Structures, kinematic analysis, rheological parameters and temperature-pressure estimate of the Mesozoic Xingcheng-Taili ductile shear zone in the North China Craton[J]. Journal of Structural Geology, 2015, 78:27-51. doi: 10.1016/j.jsg.2015.06.007
    [72] 李婧, 刘永江, 李伟民, 等.华北克拉通基底花岗质片麻岩变形和流变学研究——以辽西寺儿堡地区为例[J].大地构造与成矿学, 2016, 40(5):891-907. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201605001

    LI Jing, LIU Yongjiang, LI Weimin, et al. Structural deformation and rheology of granitic gneiss from the North China Craton Basement-an example from the Sierbao Area in Western Liaoning Province[J]. Geotectonica et Metallogenia, 2016, 40(5):891-907. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201605001
    [73] WANG T, GUO L, ZHENG Y D, et al. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton:Mainly constrained by zircon U-Pb ages from metamorphic core complexes[J]. Lithos, 2012, 154:315-345. doi: 10.1016/j.lithos.2012.07.020
    [74] ZHENG Y D, WANG T, MA M B, et al. Maximum effective moment criterion and the origin of low-angle normal faults[J]. Journal of Structural Geology, 2004, 26(2):271-285. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1bf8033cef0343ea1357918a5dea5b19
    [75] 李建波, 王涛, 欧阳志侠.内蒙古赤峰楼子店低角韧性剪切拆离带的应变与运动学涡度分析[J].中国科学:地球科学, 2010, 40(7):840-854. doi: 10.1080-09540120903443392/

    LI Jianbo, WANG Tao, OUYANG Zhixia. Strain and kinematic vorticity analysis of the Louzidian low-angle ductile shear detachment zone in Chifeng, Inner Mongolia, China[J].Science China Earth Sciences, 2010, 53(11):1611-1624. doi: 10.1080-09540120903443392/
    [76] LIU J L, LIU Y J, CHEN H, et al. The inner zone of the Liaoji paleorift:its early structural styles and structural evolution[J]. Journal of Asian Earth Sciences, 1997, 15(1):19-31. doi: 10.1016/S1367-9120(97)90103-6
    [77] DAOUDENE Y, GAPAIS D, RUFFET G, et al. Syn-thinning pluton emplacement during Mesozoic extension in eastern Mongolia[J]. Tectonics, 2012, 31(3):TC3001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=23f01363ce95ddac8d3ba6b429658e7b
    [78] LIN W, MONIÉ P, FAURE M, et al. Cooling paths of the NE China crust during the Mesozoic extensional tectonics:Example from the south-Liaodong peninsula metamorphic core complex[J]. Journal of Asian Earth Sciences, 2011, 42(5):1048-1065. doi: 10.1016/j.jseaes.2010.09.007
    [79] DAVIS G H, CONEY P J. Geologic development of the Cordilleran metamorphic core complexes[J]. Geology, 1979, 7(1):120-124. http://cn.bing.com/academic/profile?id=1bcac093d2ea205d7d21b93806d455f6&encoded=0&v=paper_preview&mkt=zh-cn
    [80] LISTER G S, DAVIS G A. The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, USA[J]. Journal of Structural Geology, 1989, 11(1-2):65-94. doi: 10.1016/0191-8141(89)90036-9
    [81] 张进江, 郭磊, 丁林.申扎-定结正断层体系中、南段构造特征及其与藏南拆离系的关系[J].科学通报, 2002, 47(10):738-743. http://d.old.wanfangdata.com.cn/Periodical/kxtb200210003

    ZHANG Jinjiang, GUO Lei, DING Lin. The relationship between the middle and southern parts structure characteristics of the Shenzha-Dingjie normal fault system with the southern Tibet detachment system[J]. Chinese Science Bulletin, 2002, 47(10):738-743. (in Chinese) http://d.old.wanfangdata.com.cn/Periodical/kxtb200210003
    [82] 郭磊, 李建波, 童英, 等.内蒙古苏尼特左旗早白垩世宝德尔花岗岩伸展穹隆的确定及其地质意义[J].地质通报, 2015, 34(12):2195-2202. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201512006

    GUO Lei, LI Jianbo, TONG Ying, et al. The identification of early cretaceous Baoder extensional gra-nitic dome in Sonid Left Banner, Inner Mongolia, and its tectonic implications[J]. Geological Bulletin of China, 2015, 34(12):2195-2202. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/zgqydz201512006
    [83] TEYSSIER C, WHITNEY D L. Gneiss domes and orogeny[J]. Geology, 2002, 30(12):1139-1142. doi: 10.1130/0091-7613(2002)030<1139:GDAO>2.0.CO;2
    [84] RAMBERG H. Gravity, deformation, and the earth's crust[M]//Theory, Experiments, and Geological Application. London: Academic Press, 1981.
    [85] PATERSON S R, FOWLER T K JR, SCHMIDT K L, et al. Interpreting magmatic fabric patterns in plutons[J]. Lithos, 1998, 44(1-2):53-82. doi: 10.1016/S0024-4937(98)00022-X
    [86] ESKOLA P E. The problem of mantled gneiss domes[J]. Quarterly Journal of the Geological Society, 1948, 104(1-4):461-476. doi: 10.1144/GSL.JGS.1948.104.01-04.21
    [87] YIN A. Gneiss domes and gneiss dome systems[J]. Geological Society of America Special, 2004, 380:1-14. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028686028/
    [88] REY P F, MONDY L, DUCLAUX G, et al. The origin of contractional structures in extensional gneiss domes[J]. Geology, 2017, 45(3):263-266. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0dd8b330189e56568414ea15d9cf800b
    [89] WHITNEY D L, TEYSSIER C, FAYON A K. Isothermal decompression, partial melting and exhumation of deep continental crust[J]. Geological Society London Special Publications, 2004, 227(1):313-326. doi: 10.1144/GSL.SP.2004.227.01.16
    [90] 许志琴, 马绪宣.中国大陆显生宙俯冲型、碰撞型和复合型片麻岩穹窿(群)[J].岩石学报, 2015, 31(12):3509-3523. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512001

    XU Zhiqin, MA Xuxuan. The Chinese Phanerozoic gneiss domes:Subduction-related type, collision-related type and combination type of subduction-collision[J]. Acta Petrologica Sinica, 2015, 31(12):3509-3523. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512001
    [91] REY P F, TEYSSIER C, WHITNEY D L. Extension rates, crustal melting, and core complex dynamics[J]. Geology, 2009, 37(5):391-394. doi: 10.1130/G25460A.1
    [92] BRUN J P. The cluster-ridge pattern of mantled gneiss domes in eastern Finland:evidence for large-scale gravitational instability of the Proterozoic crust[J]. Earth and Planetary Science Letters, 1980, 47(3):441-449. doi: 10.1016/0012-821X(80)90032-1
    [93] KAPP P, YIN A, MANNING C E, et al. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of Northern Tibet[J]. Geology, 2000, 28(1):19-22. doi: 10.1130-0091-7613(2001)029-0663-BBMCCI-2.0.CO%3b2/
    [94] CONEY P J. Cordilleran metamorphic core complexes: An overview[M]//Crittenden Jr M D, Coney P J, Davis G G. Cordilleran Metamorphic Core Complexes. Boulder, Colo.: Geological Society of America, 1980, 153: 7-31.
    [95] DAVIS G A. Rapid upward transport of mid-crustal mylonitic gneisses in the footwall of a Miocene detachment fault, Whipple Mountains, southeastern California[J]. Geologische Rundschau, 1988, 77(1):191-209. doi: 10.1007/BF01848684
    [96] FAURE M. Late orogenic carboniferous extensions in the Variscan French Massif Central[J]. Tectonics, 1995, 14(1):132-153. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/94TC02021
    [97] BURG J P, VAN DEN DRIESSCHE J, BRUN J P. Syn-to post-thickening extension:modes and consequences[J]. Comptes Rendus de l'Académie des Sciences. Série 2. Sciences de la terre et des Planètes, 1994, 319:1019-1032.
    [98] AMATO J M, WRIGHT J E, GANS P B, et al. Magmatically induced metamorphism and deformation in the Kigluaik gneiss dome, Seward Peninsula, Alaska[J]. Tectonics, 1994, 13(3):515-527. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/93TC03320
    [99] HARRIS L B, KOYI H A, FOSSEN H. Mechanisms for folding of high-grade rocks in extensional tectonic settings[J]. Earth-Science Reviews, 2002, 59(1-4):163-210. doi: 10.1016/S0012-8252(02)00074-0
    [100] ZHANG B, CHAI Z, YIN C Y, et al. Intra-continental transpression and gneiss doming in an obliquely convergent regime in SE Asia[J]. Journal of Structural Geology, 2017, 97:48-70. doi: 10.1016/j.jsg.2017.02.010
    [101] CAWOOD P A, HAWKESWORTH C J, DHUIME B. The continental record and the generation of continental crust[J]. GSA Bulletin, 2013, 125(1-2):14-32. doi: 10.1130/B30722.1
    [102] HUTTON D H W. Syntectonic granites and the principle of effective stress: A general solution to the space problem?[M]//BOUCHEZ J L, HUTTON D H W, STEPHENS W E, et al. Granite: From segregation of Melt to Emplacement Fabrics. Dordrecht: Springer, 1997: 189-197.
    [103] FERNÁNDEZ C, CASTRO A. Pluton accommodation at high strain rates in the upper continental crust. The example of the Central Extremadura batholith, Spain[J]. Journal of Structural Geology, 1999, 21(8-9):1143-1149. doi: 10.1016/S0191-8141(99)00086-3
    [104] WANG T, PEI X Z, WANG X X, et al. Orogen-parallel westward oblique uplift of the Qinling basement complex in the core of the Qinling Orogen (China):an example of oblique extrusion of deep-seated metamorphic rocks in a collisional orogen[J]. The Journal of Geology, 2005, 113(2):181-200. http://cn.bing.com/academic/profile?id=f52b9732b8e0860e64d0dba76a1590b4&encoded=0&v=paper_preview&mkt=zh-cn
    [105] WANG T, ZHENG Y D, ZHANG J J, et al. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia:Perspectives from metamorphic core complexes[J]. Tectonics, 2011, 30(6):TC6007. http://cn.bing.com/academic/profile?id=efe40333885ec524fcd656eea115a562&encoded=0&v=paper_preview&mkt=zh-cn
    [106] DUFEK J, BACHMANN O. Quantum magmatism:Magmatic compositional gaps generated by melt-crystal dynamics[J]. Geology, 2010, 38(8):687-690. doi: 10.1130/G30831.1
    [107] SCHOENE B, BOWRING S A. Rates and mechanisms of Mesoarchean magmatic arc construction, eastern Kaapvaal craton, Swaziland[J]. GSA Bulletin, 2010, 122(3-4):408-429. doi: 10.1130/B26501.1
    [108] COLLINS W J, BELOUSOVA E A, KEMP A I S, et al. Two contrasting Phanerozoic orogenic systems revealed by hafnium isotope data[J]. Nature Geoscience, 2011, 4(5):333-337. doi: 10.1038/ngeo1127
    [109] SAFONOVA I Y, SANTOSH M. Accretionary complexes in the Asia-Pacific region:Tracing archives of ocean plate stratigraphy and tracking mantle plumes[J]. Gondwana Research, 2014, 25(1):126-158. doi: 10.1016/j.gr.2012.10.008
    [110] SAFONOVA I. Juvenile versus recycled crust in the Central Asian Orogenic Belt:Implications from ocean plate stratigraphy, blueschist belts and intra-oceanic arcs[J]. Gondwana Research, 2017, 47:6-27. doi: 10.1016/j.gr.2016.09.003
    [111] MARUYAMA S. Pacific-type orogeny revisited:Miyashiro-type orogeny proposed[J]. Island Arc, 1997, 6(1):91-120. doi: 10.1111/j.1440-1738.1997.tb00042.x
    [112] SISSON V B, POOLE A R, HARRIS N R, et al. Geochemical and geochronologic constraints for genesis of a tonalite-trondhjemite suite and associated mafic intrusive rocks in the Eastern Chugach Mountains, Alaska: a record of ridge transform subduction[M]//SISSON V B, ROESKE S M, PAVLIS T L, et al. Geology of a Transpressional Orogen Developed During Ridge-Trench Interaction Along the North Pacific Margin. Boulder, Colorado: Geological Society of America, 2003: 375.
    [113] JAHN B M, WU F Y, HONG D W. Important crustal growth in the Phanerozoic:isotopic evidence of granitoids from east-central Asia[J]. Journal of Earth System Science, 2000, 109(1):5-20. http://cn.bing.com/academic/profile?id=e0c4c550e2cc054eaa04e81c44c5ade1&encoded=0&v=paper_preview&mkt=zh-cn
    [114] WINDLEY B F, ALEXEIEV D, XIAO W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1):31-47. doi: 10.1144/0016-76492006-022
    [115] ENGÖR A M C, NATAL'IN B A, BURTMAN V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435):299-307. doi: 10.1038/364299a0
    [116] XIAO W J, WINDLEY B F, SUN S, et al. A tale of amalgamation of three permo-triassic collage systems in central Asia:oroclines, sutures, and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1):477-507. doi: 10.1146/annurev-earth-060614-105254
    [117] DOBRETSOV N L, BUSLOV M M. Problems of geodynamics, tectonics, and metallogeny of orogens[J]. Russian Geology and Geophysics, 2011, 52(12):1505-1515. doi: 10.1016/j.rgg.2011.11.012
    [118] KRÖNER A, KOVACH V P, KOZAKOV I K, et al. Zircon ages and Nd-Hf isotopes in UHT granulites of the ider complex:a cratonic terrane within the Central Asian Orogenic Belt in NW Mongolia[J]. Gondwana Research, 2015, 27(4):1392-1406. doi: 10.1016/j.gr.2014.03.005
    [119] ZHOU J B, WILDE S A, ZHAO G C, et al. Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186:76-93. doi: 10.1016/j.earscirev.2017.01.012
    [120] KRÖNER A, KOVACH V, ALEXEIEV D, et al. No excessive crustal growth in the Central Asian Orogenic Belt:Further evidence from field relationships and isotopic data[J]. Gondwana Research, 2017, 50:135-166. doi: 10.1016/j.gr.2017.04.006
    [121] KRÖNER A, KOVACH V, BELOUSOVA E, et al. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt[J]. Gondwana Research, 2014, 25(1):103-125. doi: 10.1016/j.gr.2012.12.023
    [122] VAN STAAL C R, ZAGOREVSKI A. Field trip guidebook, accreted terranes of the Appachian orogen in central Newfoundland[M]. Geological Association of Canada, Mineralogical Association of Canada, 2017.
    [123] VAN STAAL C R, BARR S M, MURPHY J B. Provenance and tectonic evolution of Ganderia:constraints on the evolution of the Iapetus and Rheic oceans[J]. Geology, 2012, 40(11):987-990. doi: 10.1130/G33302.1
    [124] WANG T. Identification an accretionary orogen by amount of juvenile compositions: an example from the SW Central Asia Orogenic Belt[R]. Abstract and oral report. Session: Development of Accretionary Orogens: A Symposium Celebrating the Career of Cees van Staal. The 2017 Annual meeting of the GAC/MAC in Kingston and the 175th anniversary of the founding of the GSC in Kingston.
    [125] JAHN B M. Accretionary orogen and evolution of the Japanese Islands:Implications from a Sr-Nd isotopic study of the Phanerozoic granitoids from SW Japan[J]. American Journal of Science, 2010, 310(10):1210-1249. doi: 10.2475/10.2010.02
    [126] JAHN B M, USUKI M, USUKI T, et al. Generation of Cenozoic granitoids in Hokkaido (Japan):Constraints from zircon geochronology, Sr-Nd-Hf isotopic and geochemical analyses, and implications for crustal growth[J]. American Journal of Science, 2014, 314(2):704-750. doi: 10.2475/02.2014.09
    [127] GRAY D R, FOSTER D A. Tectonic evolution of the Lachlan Orogen, southeast Australia:historical review, data synthesis and modern perspectives[J]. Australian Journal of Earth Sciences, 2004, 51(6):773-817. doi: 10.1111/j.1400-0952.2004.01092.x
    [128] KEMP A I S, HAWKESWORTH C J. 3.11-Granitic perspectives on the generation and secular evolution of the Continental Crust[J]. Treatise on Geochemistry, 2003, 3:349-410. http://cn.bing.com/academic/profile?id=a10304356013fa3dde67851d388a11f9&encoded=0&v=paper_preview&mkt=zh-cn
    [129] HACKER B R, KELEMEN P B, BEHN M D. Continental lower crust[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1):167-205. doi: 10.1146/annurev-earth-050212-124117
    [130] RUDNICK R L. Making continental crust[J]. Nature, 1995, 378(6557):571-578. doi: 10.1038/378571a0
    [131] HAWKESWORTH C J, KEMP A I S. Evolution of the continental crust[J]. Nature, 2006, 443(7113):811-817. doi: 10.1038/nature05191
    [132] NIU Y L, ZHAO Z D, ZHU D C, et al. Continental collision zones are primary sites for net continental crust growth-A testable hypothesis[J]. Earth-Science Reviews, 2013, 127:96-110. doi: 10.1016/j.earscirev.2013.09.004
    [133] COUZINIÉ S, LAURENT O, MOYEN J F, et al. Post-collisional magmatism:crustal growth not identified by zircon Hf-O isotopes[J]. Earth and Planetary Science Letters, 2016, 456:182-195. doi: 10.1016/j.epsl.2016.09.033
    [134] MCCULLOCH M T, BENNETT V C. Progressive growth of the Earth's continental crust and depleted mantle:Geochemical constraints[J]. Geochimica et Cosmochimica Acta, 1994, 58(21):4717-4738. doi: 10.1016/0016-7037(94)90203-8
    [135] HAWKESWORTH C J, CAWOOD P A, DHUIME B, et al. Earth's continental lithosphere through time[J]. Annual Review of Earth and Planetary Sciences, 2017, 45(1):169-198. doi: 10.1146/annurev-earth-063016-020525
    [136] LEE C T A, MORTON D M, KISTLER R W, et al. Petrology and tectonics of Phanerozoic continent formation:from island arcs to accretion and continental Arc Magmatism[J]. Earth and Planetary Science Letters, 2007, 263(3-4):370-387. doi: 10.1016/j.epsl.2007.09.025
    [137] STERN R J, SCHOLL D W. Yin and Yang of continental crust creation and destruction by plate tectonic processes[J]. International Geology Review, 2010, 52(1):1-31. doi: 10.1080/00206810903332322
    [138] HALL R. Southeast Asia:new views of the geology of the malay archipelago[J]. Annual Review of Earth and Planetary Sciences, 2017, 45(1):331-358. doi: 10.1146/annurev-earth-063016-020633
    [139] HACKER B R, KELEMEN P B, BEHN M D. Differentiation of the continental crust by relamination[J]. Earth and Planetary Science Letters, 2011, 307(3-4):501-516. doi: 10.1016/j.epsl.2011.05.024
    [140] CASTRO A, GERYA T, GARCÍA-CASCO A, et al. Melting relations of MORB-sediment mélanges in underplated mantle wedge plumes; Implications for the origin of cordilleran-type batholiths[J]. Journal of Petrology, 2010, 51(6):1267-1295. doi: 10.1093/petrology/egq019
    [141] SCHOLL D W, VOV HUENE R. Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collisional) and collisional (suturing) orogens[J]. Geological Society, London, Special Publications, 2009, 318(1):105-125. doi: 10.1144/SP318.4
    [142] ROBINSON P T, TRUMBULL R B, SCHMITT A, et al. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites[J]. Gondwana Research, 2015, 27(2):486-506. doi: 10.1016/j.gr.2014.06.003
    [143] ZIMMERMANN S, HALL R. Provenance of Triassic and Jurassic sandstones in the Banda Arc:Petrography, heavy minerals and zircon geochronology[J]. Gondwana Research, 2016, 37:1-19. doi: 10.1016/j.gr.2016.06.001
    [144] BELOUSOVA E A, KOSTITSYN Y A, GRIFFIN W L, et al. The growth of the continental crust:Constraints from zircon Hf-isotope data[J]. Lithos, 2010, 119(3-4):457-466. doi: 10.1016/j.lithos.2010.07.024
    [145] CONDIE K C. Episodic continental growth and supercontinents:a mantle avalanche connection?[J]. Earth and Planetary Science Letters, 1998, 163(1-4):97-108. doi: 10.1016/S0012-821X(98)00178-2
    [146] HAWKESWORTH C, CAWOOD P A, DHUIME B. Continental growth and the crustal record[J]. Tectonophysics, 2013, 609:651-660. doi: 10.1016/j.tecto.2013.08.013
    [147] SPENCER C J, ROBERTS N M W, SANTOSH M. Growth, destruction, and preservation of Earth's continental crust[J]. Earth-Science Reviews, 2017, 172:87-106. doi: 10.1016/j.earscirev.2017.07.013
    [148] JAHN B M, WU F Y, CHEN B. Massive granitoid generation in Central Asia:Nd isotope evidence and implication for continental growth in the Phanerozoic[J]. Episodes, 2000, 23(2):82-92. doi: 10.18814/epiiugs/2000/v23i2/001
    [149] JAHN B M, WU F Y, CHEN B. Granitoids of the Central Asian orogenic belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh:Earth Science, 2000, 91(1-2):181-193. doi: 10.1017/S0263593300007367
    [150] JAHN B M. The central asian orogenic belt and growth of the continental crust in the phanerozoic[J]. Geological Society, London, Special Publications, 2004, 226(1):73-100. doi: 10.1144/GSL.SP.2004.226.01.05
    [151] 洪大卫, 王式洸, 谢锡林, 等.兴蒙造山带正ε(Nd, t)值花岗岩的成因和大陆地壳生长[J].地学前缘, 2000, 7(2):441-456. doi: 10.3321/j.issn:1005-2321.2000.02.012

    HONG Dawei, WANG Shiguang, XIE Xilin, et al. Genesis of positive ε(Nd, t) Granitoids in the DA Hinggan MTS. -mongolia orogenic belt and growth continental crust[J]. Earth Science Frontiers, 2000, 7(2):441-456. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2000.02.012
    [152] 洪大卫, 王式洸, 谢锡林, 等.从中亚正εNd值花岗岩看超大陆演化和大陆地壳生长的关系[J].地质学报, 2003, 77(2):203-209. doi: 10.3321/j.issn:0001-5717.2003.02.008

    HONG Dawei, WANG Shiguang, XIE Xilin, et al. Correlation between continental crustal growth and the supercontinental cycle:Evidence from the Granites with positive εNd in the central Asian orogenic belt[J]. Acta Geologica Sinica, 2003, 77(2):203-209. (in Chinese with English abstract) doi: 10.3321/j.issn:0001-5717.2003.02.008
    [153] HONG D W, ZHANG J S, WANG T, et al. Continental crustal growth and the supercontinental cycle:evidence from the Central Asian orogenic belt[J]. Journal of Asian Earth Sciences, 2004, 23(5):799-813. doi: 10.1016/S1367-9120(03)00134-2
    [154] HAN B F, WANG S G, JAHN B M, et al. Depleted-mantle source for the Ulungur River A-type granites from north Xinjiang, China:geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth[J]. Chemical Geology, 1997, 138(3-4):135-159. doi: 10.1016/S0009-2541(97)00003-X
    [155] HU A Q, JAHN B M, ZHANG G X, et al. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang:Nd isotopic evidence. Part I. Isotopic characterization of basement rocks[J]. Tectonophysics, 2000, 328(1-2):15-51. doi: 10.1016/S0040-1951(00)00176-1
    [156] WU F Y, JAHN B M, WILDE S, et al. Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 2000, 328(1-2):89-113. doi: 10.1016/S0040-1951(00)00179-7
    [157] KOVALENKO V I, YARMOLYUK V V, KOVACH V P, et al. Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt:geological and isotopic evidence[J]. Journal of Asian Earth Sciences, 2004, 23(5):605-627. doi: 10.1016/S1367-9120(03)00130-5
    [158] XU Q Q, JI J Q, ZHAO L, et al. Tectonic evolution and continental crust growth of Northern Xinjiang in northwestern China:remnant ocean model[J]. Earth Science Review, 2013, 126, 178-205. doi: 10.1016/j.earscirev.2013.08.005
    [159] SUN M, YUAN C, XIAO W J, et al. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai:Progressive accretionary history in the early to middle Palaeozoic[J]. Chemical Geology, 2008, 247(3-4):352-383. doi: 10.1016/j.chemgeo.2007.10.026
    [160] SELTMANN R, KONOPELKO D, BISKE G, et al. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt[J]. Journal of Asian Earth Sciences, 2011, 42(5):821-838. doi: 10.1016/j.jseaes.2010.08.016
    [161] PATCHETT P J, SAMSON S D. 3.10-Ages and growth of the continental crust from radiogenic isotopes[J]. Treatise on Geochemistry, 2003, 3: 321-348. http://cn.bing.com/academic/profile?id=6b2bf7844ef479337dc30754c4ff192e&encoded=0&v=paper_preview&mkt=zh-cn
    [162] LIU W, LIU X J, XIAO W J. Massive granitoid production without massive continental-crust growth in the Chinese Altay: Insight into the source rock of granitoids using integrated zircon U-Pb age, Hf-Nd-Sr isotopes and geochemistry[J]. American Journal of Science, 2012, 312(6): 629-684. doi: 10.2475/06.2012.02
    [163] WANG T. Nd-Hf isotopic mappin g of granitoid plutons in the southwestern Central Asian Orogenic Belt and implications for continental architecture and growth[R]. Abstract and oral report. Kapton: IGC, 2016.
    [164] WANG T, JAHN B M, KOVACH V P, et al. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt[J]. Lithos, 2009, 110(1-4): 359-372. doi: 10.1016/j.lithos.2009.02.001
    [165] 韩宝福, 何国琦, 王式洸, 等. 新疆北部后碰撞幔源岩浆活动与陆壳纵向生长[J]. 地质论评, 1998, 44(4): 396-406. doi: 10.3321/j.issn:0371-5736.1998.04.009

    HAN Baofu, HE Guoqi, WANG Shiguang, et al. Postcollisional mantle-derived magmatism and vertical growth of the continental crust in North Xinjiang[J]. Geological Review, 1998, 44(4): 396-406. (in Chinese with English abstract) doi: 10.3321/j.issn:0371-5736.1998.04.009
    [166] CHEN J F, HAN B F, JI J Q, et al. Zircon U-Pb ages and tectonic implications of Paleozoic plutons in northern West Junggar, North Xinjiang, China[J]. Lithos, 2010, 115(1-4): 137-152. doi: 10.1016/j.lithos.2009.11.014
    [167] YANG Q D, WANG T, GUO L, et al. Nd isotopic variation of Paleozoic-Mesozoic granitoids from the Da Hinggan Mountains and adjacent areas, NE Asia: Implications for the architecture and growth of continental crust[J]. Lithos, 2017, 272-273: 164-184. doi: 10.1016/j.lithos.2016.11.015
    [168] HOU Z Q, DUAN L F, LU Y J, et al. Lithospheric architecture of the lhasa terrane and its control on ore deposits in the himalayan-tibetan orogen[J]. Economic Geology, 2015, 110(6): 1541-1575. doi: 10.2113/econgeo.110.6.1541
    [169] LI J Y, ZHANG J, ZHAO X X, et al. Mantle subduction and uplift of intracontinental mountains: a case study from the Chinese Tianshan Mountains within eurasia[J]. Scientific Reports, 2016, 6: 28831. doi: 10.1038/srep28831
  • 加载中
图(4)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  75
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-16
  • 修回日期:  2019-09-27
  • 刊出日期:  2019-10-28

目录

    /

    返回文章
    返回