留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位地应力测量与实时监测在地震预报研究中的作用和意义

谭成轩 张鹏 路士龙 朱建竹 丰成君 秦向辉 孟静

谭成轩, 张鹏, 路士龙, 等, 2019. 原位地应力测量与实时监测在地震预报研究中的作用和意义. 地质力学学报, 25 (5): 866-876. DOI: 10.12090/j.issn.1006-6616.2019.25.05.071
引用本文: 谭成轩, 张鹏, 路士龙, 等, 2019. 原位地应力测量与实时监测在地震预报研究中的作用和意义. 地质力学学报, 25 (5): 866-876. DOI: 10.12090/j.issn.1006-6616.2019.25.05.071
TAN Chengxuan, ZHANG Peng, LU Shilong, et al., 2019. SIGNIFICANCE AND ROLE OF IN-SITU CRUSTAL STRESS MEASURING AND REAL-TIME MONITORING IN EARTHQUAKE PREDICTION RESEARCH. Journal of Geomechanics, 25 (5): 866-876. DOI: 10.12090/j.issn.1006-6616.2019.25.05.071
Citation: TAN Chengxuan, ZHANG Peng, LU Shilong, et al., 2019. SIGNIFICANCE AND ROLE OF IN-SITU CRUSTAL STRESS MEASURING AND REAL-TIME MONITORING IN EARTHQUAKE PREDICTION RESEARCH. Journal of Geomechanics, 25 (5): 866-876. DOI: 10.12090/j.issn.1006-6616.2019.25.05.071

原位地应力测量与实时监测在地震预报研究中的作用和意义

doi: 10.12090/j.issn.1006-6616.2019.25.05.071
基金项目: 

中国地质调查局项目 DD20160267

国土资源部公益性行业科研专项 201211096

深部探测技术与实验研究专项-原位地应力测量与监测技术 SinoProbe-06

详细信息
    作者简介:

    谭成轩(1964-), 男, 博士, 研究员, 博士生导师, 主要从事区域地壳稳定性评价、工程地质和地质灾害研究。E-mail:tanchengxuan@tom.com

  • 中图分类号: P553;P315.75

SIGNIFICANCE AND ROLE OF IN-SITU CRUSTAL STRESS MEASURING AND REAL-TIME MONITORING IN EARTHQUAKE PREDICTION RESEARCH

  • 摘要: 当2013年4月20日四川芦山Ms 7.0级大地震发生时,中国科学家已不再像2008年汶川Ms 8.0大地震发生时那样茫然和不知所措。其根本原因在于,2008年汶川大地震发生后,龙门山地区开展了大量的科学研究工作,已超前初步认知龙门山断裂带西南端具有潜在地震危险性,特别是原位地应力测量和实时监测已发现绝对地应力大小高值异常和相对地应力大小临震异常变化。论文简要介绍了地震预报国际主流观点与认识,梳理了地应力在地震预报研究中的作用和认识,探讨了2004 Parkfield earthquake钻孔应变监测结果给予的启示,详细介绍了原位地应力测量与实时监测在地震预报研究中应用的实践与探索。实践证明:地震预报是值得探索和研究的,原位地应力测量与实时监测是地震预报的有效方法之一。

     

  • 图  1  北京平谷地应力实时监测台站位置

    Figure  1.  The sketch map showing the site of the crustal stress real-time monitoring station at Pinggu District in Beijing, China

    图  2  北京平谷地应力实时监测台站记录的2011年3月11日日本Ms 9.0级大地震及Ms≥6.0级地震诱发的地应力大小相对变化

    Figure  2.  Crustal stress magnitude relative variation triggered by the Tohoku-Oki, Japan, Ms 9.0 earthquake on March 11, 2011 and its Ms≥6.0 fore- and after-earthquakes at the crustal stress real-time monitoring station at Pinggu District in Beijing, China

    图  3  北京平谷地应力实时监测台站记录的2011年3月11日日本Ms 9.0级大地震及Ms≥6.0级地震诱发的地下水位相对变化

    Figure  3.  Underground water level relative variation triggered by the Tohoku-Oki, Japan, Ms 9.0 earthquake on March 11, 2011 and its Ms≥6.0 fore- and after-earthquakes at the crustal stress real-time monitoring station at Pinggu District in Beijing, China

    图  4  北京平谷地应力实时监测台站记录的2011年3月9日—14日地应力大小相对变化及Ms≥6.0级地震

    Figure  4.  Crustal stress magnitude relative variation on the hour and Ms≥6.0 earthquakes from March 9 to 14, 2011

    图  5  北京平谷地应力实时监测台站记录的2011年3月9日—14日地下水位相对变化及Ms≥6.0级地震

    Figure  5.  Underground water level relative variation on the hour and Ms≥6.0 earthquakes from March 9 to 14, 2011

    图  6  龙门山断裂带地应力实时监测台站分布

    Figure  6.  The distribution of the crustal stress real-time monitoring stations along the Longmenshan fracture belt

    图  7  四川宝兴地应力实时监测台站2013年3月1日以来地应力大小相对变化曲线及Ms≥4.0级地震

    Figure  7.  Crustal stress magnitude relative variation and Ms≥4.0 earthquakes since March 1, 2013 at Baoxing crustal stress real-time monitoring station, Sichuan Province

    表  1  昆仑山Ms 8.1大地震前后压磁应力解除地应力测量结果

    Table  1.   In-situ crustal stress measurements by piezomagnetic stress overcoring method before and after Kunlunshan Ms 8.1 earthquake

    测点编号岩性测量深度/
    m
    最大水平主
    应力/MPa
    最小水平主
    应力/MPa
    最大水平
    主应力方向
    备注
    1花岗岩1812.912.1N45°E2001年8月,震前
    1*花岗岩183.53.2N66°E2002年7月,震后
    2辉长岩146.84.4N58°E2001年9月,震前
    2*辉长岩142.21.2N5°W2002年7月,震后
    下载: 导出CSV

    表  2  汶川Ms 8.0大地震前后水压致裂地应力测量结果

    Table  2.   In-situ crustal stress measurements by hydrofracturing method before and after Wenchuan Ms 8.0 earthquake

    测点
    编号
    测量深度/
    m
    最大水平主
    应力/MPa
    最小水平
    主应力/MPa
    测量日期位于发震断裂
    构造位置
    390.60~391.4021.1112.83上盘
    ZK1408.80~409.6021.7813.012008年5月4~7日,震前
    417.60~418.4021.8713.60
    390.60~391.4015.7310.33
    ZK1*408.80~409.6015.9110.012008年6月26~29日,震后
    417.60~418.4016.0010.10
    ZK3358.90~359.7010.027.522008年5月1~4日,震前下盘
    406.12~406.9211.988.48
    ZK3*358.90~359.7010.427.322008年7月2~5日,震后
    406.12~406.9211.888.48
    下载: 导出CSV
  • [1] 杜方, 龙锋, 阮祥, 等.四川芦山7.0级地震及其与汶川8.0级地震的关系[J].地球物理学报, 2013, 56(5):1772-1783. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201305035

    DU Fang, LONG Feng, RUAN Xiang, et al. The M7.0 Lushan earthquake and the relationship with the M8.0 Wenchuan earthquake in Sichuan, China[J]. Chinese Journal of Geophysics, 2013, 56(5):1772-1783. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201305035
    [2] 秦向辉, 陈群策, 谭成轩, 等.龙门山断裂带西南段现今地应力状态与地震危险性分析[J].岩石力学与工程学报, 2013, 32(S1):2870-2876. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2013z1038

    QIN Xianghui, CHEN Qunce, TAN Chengxuan et al. Analysis of current geostress state and seismic risk in southwest segment of Longmenshan Fracture Belt[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S1):2870-2876. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2013z1038
    [3] 吴满路, 张岳桥, 廖椿庭, 等.汶川地震后沿龙门山裂断带原地应力测量初步结果[J].地质学报, 2010, 84(9):1292-1299. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201009004

    WU Manlu, ZHANG Yueqiao, LIAO Chunting, et al. Preliminary results of in-situ stress measurements along the Longmenshan Fault Zone after the Wenchuan MS 8.0 earthquake[J]. Acta Geologica Sinica, 2010, 84(9):1292-1299. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dizhixb201009004
    [4] 易桂喜, 闻学泽, 辛华, 等.龙门山断裂带南段应力状态与强震危险性研究[J].地球物理学报, 2013, 56(4):1112-1120. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201304007

    YI Guixi, WEN Xueze, XIN Hua, et al. Stress state and major-earthquake risk on the southern segment of the Longmen Shan Fault zone[J]. Chinese Journal of Geophysics, 2013, 56(4):1112-1120. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201304007
    [5] 单斌, 熊熊, 郑勇, 等. 2008年5月12日MW7.9汶川地震导致的周边断层应力变化[J].中国科学D辑:地球科学, 2009, 39(5):537-545. http://www.cqvip.com/Main/Detail.aspx?id=30566639

    SHAN Bin, XIONG Xiong, ZHENG Yong, et al. Stress changes on major faults caused by MW7.9 Wenchuan earthquake, May 12, 2008[J]. Science China Earth Sciences, 2009, 52(5):593-601. http://www.cqvip.com/Main/Detail.aspx?id=30566639
    [6] 邵志刚, 周龙泉, 蒋长胜, 等. 2008年汶川MS8.0地震对周边断层地震活动的影响[J].地球物理学报, 2010, 53(8):1784-1795. doi: 10.3969/j.issn.0001-5733.2010.08.004

    SHAO Zhigang, ZHOU Longquan, JIANG Changsheng, et al. The impact of Wenchuan MS 8.0 earthquake on the seismic activity of surrounding faults[J]. Chinese Journal of Geophysics, 2010, 53(8):1784-1795. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5733.2010.08.004
    [7] 邓起东, 高翔, 陈桂华, 等.青藏高原昆仑-汶川地震系列与巴颜喀喇断块的最新活动[J].地学前缘, 2010, 17(5):163-178. http://d.old.wanfangdata.com.cn/Periodical/dxqy201005015

    DENG Qidong, GAO Xiang, CHEN Guihua, et al. Recent tectonic activity of Bayankala fault-block and the Kunlun-Wenchuan earthquake series of the Tibetan Plateau[J]. Earth Science Frontiers, 2010, 17(5):163-178. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201005015
    [8] 陈运泰, 许力生, 张勇, 等. 2008年5月12日汶川特大地震震源特性分析报告[R]. http://www.cea-igp.ac.cn/汶川地震专题/地震情况/初步研究及考察结果(一). 2008.
    [9] 陈运泰.汶川大地震的震源破裂过程[R].北京: 海峡两岸防震减灾学术研讨会. 2008.

    Chen Yuntai. Rupture process of the Wenchuan earthquake[R]. Beijing: Symposium on earthquake Prevention and disaster reduction on the two sides of the Taiwan Strait, 2008
    [10] 陈运泰.汶川地震的成因断层、破裂过程与成灾机理[R].成都: "科学技术与抗震救灾"科学技术论坛, 2008.

    Chen Yuntai. The earthquake fault, rapture process and disaster mechanism of the Wenchuan earthquake[R]. Chengdu: "Science and Technology and earthquake relief" Science and Technology Forum, 2008.
    [11] 曾佐勋, 王杰.芦山地震:一个成功的中期预测案例[J].地学前缘, 2013, 20(3):21-24. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201304036

    ZENG Zuoxun, WANG Jie. Lushan earthquake:A successful case for medium-term prediction[J]. Earth Science Frontiers, 2013, 20(3):21-24. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201304036
    [12] 蒋长胜, 庄建仓.基于时-空ETAS模型给出的川滇地区背景地震活动和强震潜在危险区[J].地球物理学报, 2010, 53(2):305-317. doi: 10.3969/j.issn.0001-5733.2010.02.008

    JIANG Changsheng, ZHUANG Jiancang. Evaluation of background seismicity and potential source zones of strong earthquakes in the Sichuan-Yunan region based on the space-time ETAS model[J]. Chinese Journal of Geophysics, 2010, 53(2):305-317. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5733.2010.02.008
    [13] 黄永明.陈运泰:地震预报要知难而进[J].科技导报, 2008, 26(10):19-21. doi: 10.3321/j.issn:1000-7857.2008.10.004

    HUANG Yongming. CHEN Yuntai:earthquake prediction should be advanced despite difficulties[J]. Science and Technology Review, 2008, 26(10):19-21. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-7857.2008.10.004
    [14] GILBERT G K. Earthquake forecasts introduction[J]. Science, 1909, 29(734):121-138. doi: 10.1126/science.29.734.121
    [15] WANG K L, CHEN Q F, SUN S H, et al. Predicting the 1975 Haicheng earthquake[J]. Bulletin of the Seismological Society of America, 2006, 96(3):757-795. doi: 10.1785/0120050191
    [16] BAKUN W H, AAGAARD B, DOST B, et al. Implications for prediction and hazard assessment from the 2004 Parkfield earthquake[J]. Nature, 2005, 437(7061):969-974. doi: 10.1038/nature04067
    [17] JOHNSTON M J S, LINDE A T. Implications of crustal strain during conventional, slow, and silent earthquakes[J]. International Geophysics, 2002, 81:589-605. doi: 10.1016/S0074-6142(02)80239-X
    [18] ROELOFFS E, LANGBEIN J. The earthquake prediction experiment at Parkfield, California[J]. Reviews of Geophysics, 1994, 32(3):315-336. doi: 10.1029-94RG01114/
    [19] GELLER R J, JACKSON D D, KAGAN Y Y, et al. Earthquake cannot be predicted[J]. Science, 1997, 275(5306):1616. doi: 10.1126/science.275.5306.1616
    [20] WYSS M. Cannot earthquakes be predicted?[J]. Science, 1997, 278(5337):487-490. doi: 10.1126/science.278.5337.487
    [21] 石耀霖, 张贝, 张斯奇, 等.地震数值预报[J].物理, 2013, 42(4):237-255. http://d.old.wanfangdata.com.cn/Periodical/dxqy2003z1030

    SHI Yaolin, ZHANG Bei, ZHANG Siqi, et al. Numerical earthquake prediction[J]. Physics, 2013, 42(4):237-255. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy2003z1030
    [22] LIAO C T, ZHANG C S, WU M L, et al. Stress change near the Kunlun fault before and after the MS8.1 Kunlun earthquake[J]. Geophysical Research Letters, 2003, 30(20): 2027. http://www.researchgate.net/publication/241061058_stress_change_near_the_kunlun_fault_before_and_after_the_ms_8.1_kunlun_earthquake
    [23] LIN W R, CONIN M, MOORE J C, et al. Stress state in the largest displacement area of the 2011 Tohoku-Oki earthquake[J]. Science, 2013, 339(6120):687-690. doi: 10.1126/science.1229379
    [24] LIN W R, SAITO S, SANADA Y, et al. Principal horizontal stress orientations prior to the 2011MW 9.0 Tohoku-Oki, Japan, earthquake in its source area[J]. Geophysical Research Letters, 2011, 38(7):L00G10. http://www.researchgate.net/publication/238501127_Principal_horizontal_stress_orientations_prior_to_the_2011_Mw_9.0_Tohoku-Oki_Japan_earthquake_in_its_source_area
    [25] 郭啟良, 王成虎, 马洪生, 等.汶川MS8.0级大震前后的水压致裂原地应力测量[J].地球物理学报, 2009, 52(5):1395-1401. doi: 10.3969/j.issn.0001-5733.2009.05.029

    GUO Qiliang, WANG Chenghu, MA Hongsheng, et al. In-situ hydro-fracture stress measurement before and after the Wenchuan MS8.0 earthquake of China[J]. Chinese Journal of Geophysics, 2009, 52(5):1395-1401. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5733.2009.05.029
    [26] Science editor. Weather prediction[J]. Science, 1884, 568. http://d.old.wanfangdata.com.cn/Periodical/qx200708001
    [27] RICHARDSON L F. Weather prediction by numerical process[M]. Cambridge:Cambridge University Press, 1922.
    [28] 李四光.地震地质[M].北京:科学出版社, 1973.

    LEE J S. Seismogeology[M]. Beijing:Science Press, 1973. (in Chinese)
    [29] 李四光.论地震[M].北京:地质出版社, 1977.

    LEE J S. On earthquake[M]. Beijing:Geological Publishing House, 1977. (in Chinese)
    [30] 佐藤裕.日本现代地壳运动与长期地震预报[M]//现代地壳运动.北京: 地震出版社, 1983: 219-228.

    SATO. Current crustal movement and long-term earthquake prediction in Japan[M]//Current Crustal Movement. Beijing: Seismological Press, 1983: 219-228. (in Chinese)
    [31] WANG J C, SHIEH C F, CHANG T M. Static stress changes as a triggering mechanism of a shallow earthquake:case study of the 1999 Chi-Chi (Taiwan) earthquake[J]. Physics of the Earth and Planetary Interiors, 2003, 135(1):17-25. doi: 10.1016/S0031-9201(02)00175-9
    [32] TSE S T, DMOWSKA R, RICE J R. Stressing of locked patches along a creeping fault[J]. Bulletin of the Seismological Society of America, 1985, 75(3):709-736.
    [33] SPUDICH P, STECK L K, HELLWEG M, et al. Transient stresses at Parkfield, California, produced by the M7.4 Landers earthquake of June 28, 1992:Observations from the UPSAR dense seismograph array[J]. Journal of Geophysical Research, 1995, 100(B1):675-690. doi: 10.1029-94JB02477/
    [34] HARRIS R A. Introduction to special section:Stress triggers, stress shadows, and implications for seismic hazard[J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B10):24347-24358. doi: 10.1029/98JB01576
    [35] STEIN R S. The role of stress transfer in earthquake occurrence[J]. Nature, 1999, 402(6762):605-609. doi: 10.1038/45144
    [36] GAO Y, CRAMPIN S. A stress-forecast earthquake (with hindsight), where migration of source earthquakes causes anomalies in shear-wave polarisations[J]. Tectonophysics, 2006, 426(3-4):253-262. doi: 10.1016/j.tecto.2006.07.013
    [37] SMITH K D, PRIESTLEY K F. Aftershock stress release along active fault planes of the 1984 Round Valley, California, earthquake sequence applying a time-domain stress drop method[J]. Bulletin of the Seismological Society of America, 1993, 83(1):144-159.
    [38] ZUÑIGA F R, WYSS M, WILSON M E. Apparent stresses, stress drops, and amplitude ratios of earthquakes preceding and following the 1975 Hawaii MS=7.2 main shock[J]. Bulletin of the Seismological Society of America, 1987, 77(1):69-96.
    [39] CRAMPIN S. Developing stress-monitoring sites using cross-hole seismology to stress-forecast the times and magnitudes of future earthquakes[J]. Tectonophysics, 2001, 338(3-4):233-245. doi: 10.1016/S0040-1951(01)00079-8
    [40] O'NEILL M E. Source dimensions and stress drops of small earthquakes near Parkfield, California[J]. Bulletin of the Seismological Society of America, 1984, 74(1):27-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/JB073i014p04681
    [41] MALIN P E, ALVAREZ M G. Stress diffusion along the San Andreas fault at Parkfield, California[J]. Science, 1992, 256(5059):1006-1007.
    [42] GIBOWICZ S J. Stress drop and aftershocks[J]. Bulletin of the Seismological Society of America, 1973, 63(4):1433-1446. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0230163240/
    [43] CRAMPIN S, VLOTI T, STEFÁNSSON R. A successfully stress-forecast earthquake[J]. Geophysical Journal International, 1999, 138(1):F1-F5. doi: 10.1046/j.1365-246x.1999.00891.x
    [44] KATO N. A possible explanation for difference in stress drop between intraplate and interplate earthquakes[J]. Geophysical Research Letters, 2009, 36(23):L23311. doi: 10.1029/2009GL040985
    [45] RICHWALSKI S M, ROTH F. Elastic and visco-elastic stress triggering in the South Iceland Seismic Zone due to large earthquakes since 1706[J]. Tectonophysics, 2008, 447(1-4):127-135. doi: 10.1016/j.tecto.2006.06.009
    [46] NALBANT S S, MCCLOSKEY J, STEACY S. Lessons on the calculation of static stress loading from the 2003 Bingol, Turkey earthquake[J]. Earth and Planetary Science Letters, 2005, 235(3-4):632-640. doi: 10.1016/j.epsl.2005.04.036
    [47] CHÉRY J, CARRETIER S, RITZ J F. Postseismic stress transfer explains time clustering of large earthquakes in Mongolia[J]. Earth and Planetary Science Letters, 2001, 194(1-2):277-286. doi: 10.1016/S0012-821X(01)00552-0
    [48] KING G C P, STEIN R S, LIN J. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 1994, 84(3):935-953. http://d.old.wanfangdata.com.cn/Periodical/dqkx-e201001004
    [49] BILEK S L, LITHGOW-BERTELLONI C. Stress changes in the Costa Rica subduction zone due to the 1999MW=6.9 Quepos earthquake[J]. Earth and Planetary Science Letters, 2005, 230(1-2):97-112. doi: 10.1016/j.epsl.2004.11.020
    [50] HEIDBACH O, BEN-AVRAHAM Z. Stress evolution and seismic hazard of the dead sea fault system[J]. Earth and Planetary Science Letters, 2007, 257(1-2):299-312. doi: 10.1016/j.epsl.2007.02.042
    [51] NALBANT S S, MCCLOSKEY J. Stress evolution before and after the 2008 Wenchuan, China earthquake[J]. Earth and Planetary Science Letters, 2011, 307(1-2):222-232. doi: 10.1016/j.epsl.2011.04.039
    [52] SANTOYO M A, LUZÓN F. Stress relations in three recent seismic series in the Murcia region, southeastern Spain[J]. Tectonophysics, 2008, 457(1-2):86-95. doi: 10.1016/j.tecto.2008.05.019
    [53] XIONG X, SHAN B, ZHENG Y, et al. Stress transfer and its implication for earthquake hazard on the Kunlun Fault, Tibet[J]. Tectonophysics, 2010, 482(1-4):216-225. doi: 10.1016/j.tecto.2009.07.020
    [54] GAHALAUT K, GAHALAUT V K. Stress triggering of normal aftershocks due to strike slip earthquakes in compressive regime[J]. Journal of Asian Earth Sciences, 2008, 33(5-6):379-382. doi: 10.1016/j.jseaes.2008.03.001
    [55] FALCUCCI E, GORI S, MORO M, et al. The 2009 L'Aquila earthquake (Italy):What's next in the region? Hints from stress diffusion analysis and normal fault activity[J]. Earth and Planetary Science Letters, 2011, 305(3-4):350-358. doi: 10.1016/j.epsl.2011.03.016
    [56] 王连捷, 潘立宙, 廖椿庭, 等.地应力测量及其在工程中的应用[M].北京:地质出版社, 1991.

    WANG Lianjie, PAN Lizhou, LIAO Chunting, et al. Stress measurements and applications in engineering[M]. Beijing:Geological Publishing House, 1991. (in Chinese)
    [57] 陈庆宣, 王维襄, 孙叶, 等.岩石力学与构造应力场分析[M].北京:地质出版社, 1998.

    CHEN Qingxuan, WANG Weixiang, SUN Ye, et al. Pock mechanics and analysis of tectonic stress field[M]. Beijing:Geological Publishing House, 1998. (in Chinese with English abstract)
    [58] ZOBACK M D, TSUKAHARA H, HICKMAN S. Stress measurements at depth in the vicinity of the San Andreas fault:Implications for the magnitude of shear stress at depth[J]. Journal of Geophysical Research:Solid Earth, 1980, 85(B11):6157-6173. doi: 10.1029/JB085iB11p06157
    [59] 陈群策, 丰成君, 孟文, 等. 5. 12汶川地震后龙门山断裂带东北段现今地应力测量结果分析[J].地球物理学报, 2012, 55(12):3923-3932. doi: 10.6038/j.issn.0001-5733.2012.12.005

    CHEN Qunce, FENG Chengjun, MENG Wen, et al. Analysis of in situ stress measurements at the northeastern section of the Longmenshan fault zone after the 5. 12 Wenchuan earthquake[J]. Chinese Journal of Geophysics, 2012, 55(12):3923-3932. (in Chinese with English abstract) doi: 10.6038/j.issn.0001-5733.2012.12.005
    [60] 丰成君, 陈群策, 谭成轩, 等.汶川MS8.0地震对龙门山断裂带附近地应力环境影响初探-以北川、江油地区为例[J].地震学报, 2013, 35(2):137-150. doi: 10.3969/j.issn.0253-3782.2013.02.001

    FENG Chengjun, CHEN Qunce, TAN Chengxuan, et al. A preliminary study of the influence of Wenchuan MS 8.0 earthquake on in-situ stress state near Longmenshan fault zone:A case study in Beichuan and Jiangyou areas[J]. Acta Seismologica Sinica, 2013, 35(2):137-150. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-3782.2013.02.001
    [61] 谭成轩, 秦向辉, 王瑞江, 等.中国大陆中东部MS ≥ 8.0级特大地震发震背景初步分析[J].岩石力学与工程学报, 2010, 29(S2):3598-3607. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2010z2022

    TAN Chengxuan, QIN Xianghui, WANG Ruijiang, et al. Preliminary analysis of earthquake occurrence backgrounds of MS ≥ 8.0 catastrophic earthquakes in middle and east parts of Chinese continent[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2):3598-2607. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2010z2022
    [62] MOGI K. Rescent earthquake prediction research in Japan[J]. Science, 1986, 233(4761):324-330. doi: 10.1126/science.233.4761.324
    [63] SACKS I S, LINDE A T, SUYEHIRO S, et al. Slow earthquakes and stress redistribution[J]. Nature, 1978, 275(5681):599-602. doi: 10.1038/275599a0
    [64] NODA H, LAPUSTA N. Stable creeping fault segments can become destructive as a result of dynamic weakening[J]. Nature, 2013, 493(7433):518-521. doi: 10.1038/nature11703
    [65] ITO Y, OBARA K, SHIOMI K, et al. Slow earthquakes coincident with episodic tremors and slow slip events[J]. Science, 2007, 315(5811):503-506. doi: 10.1126/science.1134454
    [66] STEACY S, GOMBERG J, COCCO M. Introduction to special section:Stress transfer, earthquake triggering, and time-dependent seismic hazard[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B5):B05S01. doi: 10.1029-2005JB003692/
    [67] 谭成轩, 张鹏, 丰成君, 等.探索首都圈地区深孔地应力测量与实时监测及其在地震地质研究中应用[J].地质学报, 2014, 88(8):1436-1452. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201408006

    TAN Chengxuan, ZHANG Peng, FENG Chengjun, et al. An approach to deep borehole crustal stress measuring and real-time monitoring and its application in seismogeology research in Capital Beijing Region[J]. Acta Geologica Sinica, 2014, 88(8):1436-1452. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dizhixb201408006
    [68] 谭成轩, 胡秋韵, 张鹏, 等.日本MW9.0级大地震前后华北和东北地区现今构造应力作用调整过程与研究意义探讨[J].地学前缘, 2015, 22(1):345-359. http://d.old.wanfangdata.com.cn/Periodical/dxqy201501030

    TAN Chengxuan, HU Qiuyun, ZHANG Peng, et al. Present tectonic stress adjustment process before and after Japan MW 9.0 earthquake in north and northeast China and its research significance[J]. Earth Science Frontiers, 2015, 22(1):345-359. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201501030
    [69] OZAWA S, NISHIMURA T, SUITO H, et al. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake[J]. Nature, 2011, 475(7356):373-376. doi: 10.1038/nature10227
    [70] 陈运泰, 杨智娴, 张勇, 等.从汶川地震到芦山地震[J].中国科学:地球科学, 2013, 43(6):1064-1072. http://d.old.wanfangdata.com.cn/Periodical/kx201304011

    CHEN Yuntai, YANG Zhixian, ZHANG Yong, et al. From 2008 Wenchuan earthquake to 2013 Lushan earthquake[J]. Scientia Sinica Terrae, 2013, 43(6):1064-1072. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/kx201304011
    [71] 单斌, 熊熊, 郑勇, 等. 2013年芦山地震导致的周边断层应力变化及其与2008年汶川地震的关系[J].中国科学:地球科学, 2013, 43(6):1002-1009. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201306007

    SHAN Bin, XIONG Xiong, ZHENG Yong, et al. Stress changes on major faults caused by 2013 Lushan earthquake and its relationship with 2008 Wenchuan earthquake[J]. Science China Earth Sciences, 2013, 56(7):1169-1176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201306007
    [72] 孙叶, 谭成轩, 苗培实, 等.地震地质与地震预报[M].北京:地质出版社, 2012.

    SUN Ye, TAN Chengxuan, MIAO Peishi, et al. Seismogeology and earthquake prediction[M]. Beijing:Geological Publishing House, 2012. (in Chinese)
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  89
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-05
  • 修回日期:  2019-09-06
  • 刊出日期:  2019-10-28

目录

    /

    返回文章
    返回