留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雪峰山深孔水压致裂地应力测量及其意义

陈群策 孙东生 崔建军 秦向辉 张重远 孟文 李阿伟 杨跃辉

陈群策, 孙东生, 崔建军, 等, 2019. 雪峰山深孔水压致裂地应力测量及其意义. 地质力学学报, 25 (5): 853-865. DOI: 10.12090/j.issn.1006-6616.2019.25.05.070
引用本文: 陈群策, 孙东生, 崔建军, 等, 2019. 雪峰山深孔水压致裂地应力测量及其意义. 地质力学学报, 25 (5): 853-865. DOI: 10.12090/j.issn.1006-6616.2019.25.05.070
CHEN Qunce, SUN Dongsheng, CUI Jianjun, et al., 2019. HYDRAULIC FRACTURING STRESS MEASUREMENTS IN XUEFENGSHAN DEEP BOREHOLE AND ITS SIGNIFICANCE. Journal of Geomechanics, 25 (5): 853-865. DOI: 10.12090/j.issn.1006-6616.2019.25.05.070
Citation: CHEN Qunce, SUN Dongsheng, CUI Jianjun, et al., 2019. HYDRAULIC FRACTURING STRESS MEASUREMENTS IN XUEFENGSHAN DEEP BOREHOLE AND ITS SIGNIFICANCE. Journal of Geomechanics, 25 (5): 853-865. DOI: 10.12090/j.issn.1006-6616.2019.25.05.070

雪峰山深孔水压致裂地应力测量及其意义

doi: 10.12090/j.issn.1006-6616.2019.25.05.070
基金项目: 

国家科技重大专项 2016ZX05034003-002

中国地质调查局地质调查项目 DD20160082

详细信息
    作者简介:

    陈群策(1963-), 男, 研究员, 地质力学专业。E-mail:chenqunce@sina.com

  • 中图分类号: P315.727

HYDRAULIC FRACTURING STRESS MEASUREMENTS IN XUEFENGSHAN DEEP BOREHOLE AND ITS SIGNIFICANCE

  • 摘要: 利用最新研制的深孔水压致裂地应力测量设备在雪峰山2000 m科钻先导孔内开展了原地应力测量,在孔深170~2021 m范围内获得了16个测段的有效地应力测量数据,是国内首次利用水压致裂法获得的孔深超过2000 m深度的原地应力测量成果。测量结果表明,地应力随孔深增加而逐渐加大,对实测数据进行线性回归,得到最大和最小水平主应力随深度变化的关系分别为:SH=0.03328H+5.25408,Sh=0.0203H+4.5662,在孔深2021 m深度,其实测值分别为66.31 MPa和43.33 MPa。基于实测数据,结合钻孔成像测试和井温测试结果,对测点应力状态进行了综合分析。在170~800 m深度范围,三向主应力关系为SH > Sh > Sv,有利于逆断层活动;孔深1000~2021 m表现为SH > Sv > Sh,表明该区域深部应力结构属于走滑型。最大水平主应力方向为北西-北西西方向。基于实测地应力数据及莫尔-库伦破裂准则,对测区附近断层活动性进行了分析讨论,认为该区域断层处于稳定状态。

     

  • 图  1  新型水压致裂地应力测量系统井下设备

    Figure  1.  Downhole instruments of the recently developed hydraulic fracturing stress measurement system

    图  2  雪峰山深孔周边区域地质构造简图[12]

    Figure  2.  Simplified tectonic map around the Xuefengshan deep borehole[12]

    图  3  水压致裂地应力测量地面压力和流量记录曲线(测段深度范围:170~1032 m)

    (流量记录曲线中,蓝色部分表示注入流量,红色部分表示返回流量)

    Figure  3.  Ground record of pressure and flowrate of hydraulic fracturing in situ stress measurements

    (depth range:170~1032 m; in the flowrate charter, blue line represents the injection and the red represents the flowback)

    图  4  水压致裂地应力测量地面压力和流量记录曲线(测段深度范围:1140~2021 m)

    (流量记录曲线中,蓝色部分表示注入流量,红色部分表示返回流量)

    Figure  4.  Ground record of pressure and flowrate of hydraulic fracturing in situ stress measurements

    (depth range:1140~2021 m; in the flowrate charter, blue line represents the injection and the red represents the flowback)

    图  5  水压致裂地应力测量井下压力记录曲线(测段深度范围:170~2021 m)

    Figure  5.  Downhole pressure record of hydraulic fracturing in situ stress measurements(depth range:170~2021 m)

    图  6  雪峰山深孔1267 m测段地面与井下压力对比

    (红色代表地面压力,黑色为井下压力)

    Figure  6.  Comparison of downhole and ground pressure of 1267 m depth in Xuefengshan deep borehole

    (red line represents ground pressure, black represents downhole pressure)

    图  7  雪峰山深孔地应力随孔深分布图

    Figure  7.  Variations of stresses with the depth of Xuefengshan deep borehole

    图  8  雪峰山深孔钻孔崩落图像

    (图中暗色部分表示钻孔孔壁发生崩落区域。对于垂直钻孔,钻孔崩落方位一般对应于最小水平主应力方向)

    Figure  8.  Imaging of borehole break out of Xuefengshan deep borehole

    (In the above figures, the dark areas represent borehole breakouts. For vertical borehole, the orientation of borehole breakout corresponds to the direction of the minimum horizontal principal stress)

    图  9  基于地应力测量数据进行走滑断层活动性分析的莫尔圆

    (黑色曲线基于实测地应力值,蓝色曲线基于估算的上限值)

    Figure  9.  Mohr circle for analysis of strike-slip faults based on the in situ stress data

    (the black lines are from test data, the blue lines are from the estimated upper limit values)

    图  10  雪峰山深孔井温随孔深分布图

    Figure  10.  Variation of well temperature of Xuefengshan borehole

    表  1  雪峰山深孔水压致裂地应力测量压力参数取值结果(根据井下压力记录)

    Table  1.   Parameter values for hydraulic fracturing stress measurements in Xuefengshan deep borehole(according to downhole pressure record)

    序号测段中心
    深度/m
    Pb/
    MPa
    Pr/
    MPa
    Ps/MPa
    dp/dtdt/dpmaskat单切线平均值均方差
    1170.0028.9714.32////6.91/
    2278.0023.6410.677.767.767.647.567.680.1
    3368.0020.0914.5411.7911.8111.111.311.50.35
    4458.0019.9113.612.0411.8512.0211.9311.960.09
    5512.0025.4817.5814.5914.4114.5214.3514.470.11
    6655.0028.3822.7121.7720.5621.721.9321.490.63
    7763.0025.5820.7119.8119.3219.7319.6619.630.21
    81032.0032.7927.3425.4225.6225.4525.5725.520.1
    91140.0035.7731.529.8829.9630.0429.9929.970.07
    101175.0034.6627.4228.8728.8628.8928.8228.860.03
    111267.0041.6334.131.8532.6732.7132.8532.520.45
    121374.0045.7534.5235.8237.6537.7737.7137.240.95
    131482.0046.9240.4239.0340.2341.0241.1440.350.97
    141751.0042.8537.6138.4837.9237.9337.8138.030.3
    151760.0045.3538.9739.640.4140.7240.440.280.48
    162021.0047.4443.4742.7943.4243.7343.3743.330.39
    注:170 m测段在计算关闭压力时计算机自动取值出现异常,采用手动取值。P0为岩石原地破裂压力;Pr为破裂面重张压力;Ps为破裂面瞬时关闭压力
    下载: 导出CSV

    表  2  雪峰山深孔地应力测量结果(根据井下压力传感器记录)

    Table  2.   Results of in situ stress measurements of Xuefengshan deep borehole(according to downhole pressure record)

    序号测段中心
    深度/m
    压裂参数/MPa主应力值/MPa
    PoPbPrPsTSHShSv
    1170.001.7028.9714.3210.0014.6513.3010.004.51
    2278.002.7823.6410.677.6812.979.607.687.37
    3368.003.6820.0914.5411.505.5516.2811.509.75
    4458.004.5819.9113.611.966.3117.7011.9612.14
    5512.005.1225.4817.5814.477.9020.7114.4713.57
    6655.006.5528.3822.7121.495.6735.2121.4917.36
    7763.007.6325.5820.7119.634.8730.5519.6320.22
    81032.0010.3232.7927.3425.525.4538.8925.5227.35
    91140.0011.4035.7731.5029.974.2747.0129.9730.21
    101175.0011.7534.6627.4228.867.2447.4128.8631.14
    111267.0012.6741.6334.1032.527.5350.7932.5233.58
    121374.0013.74/34.5237.24/63.4637.2436.41
    131482.0014.82/40.4240.35/65.8240.3539.27
    141751.0017.5142.8537.6138.035.2458.9938.0346.40
    151760.0017.6045.3538.9740.286.3864.2740.2846.64
    162021.0020.2147.4443.4743.333.9766.3143.3353.56
    注:Pb为岩石原地破裂压力;Pr为破裂面重张压力;Ps为破裂面瞬时关闭压力;Po为孔隙压力;T为岩石抗拉强度;SH为最大水平主应力;Sh为最小水平主应力;Sv为根据上覆岩石埋深计算的垂向主应力(岩石容重取26.5 kN/m3)
    下载: 导出CSV

    表  3  对最大水平主应力上限值估算结果及参与计算的相关参数

    Table  3.   Results of the estimated upper limit of the maximum horizontal principal stress and related parameters

    深度
    /m
    Sh
    /MPa
    Po
    /MPa
    ΔP
    /MPa
    ΔT
    /℃
    αt
    /×10-6-1
    SH
    /MPa
    SH*
    /MPa
    103225.5210.322.0623.008.538.8946.04
    114029.9711.402.2826.008.547.0155.99
    117528.8611.752.3526.708.547.4151.65
    126732.5212.672.5328.008.550.7960.17
    注:SH*为最大水平主应力上限值估算结果。
    下载: 导出CSV
  • [1] ZANG A, STEPHANSSON O. Stress field of the earth's crust[M]. Dordrecht:Springer, 2010.
    [2] HAIMSON B C. The hydrofracturing stress measuring method and recent field results[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(4):167-178. doi: 10.1016-0148-9062(78)91223-8/
    [3] HAIMSON B C. Crustal stress in the Michigan basin[J]. Journal of Geophysical Research:Solid Earth, 1978, 83(B12):5857-5863. doi: 10.1029/JB083iB12p05857
    [4] ZOBACK M D, BARTON C A, BRUDY M, et al. Determination of stress orientation and magnitude in deep wells[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7-8):1049-1076. doi: 10.1016/j.ijrmms.2003.07.001
    [5] ZOBACK M D, APEL R, BAUMGÄRTNER J, et al. Upper-crustal strength inferred from stress measurements to 6 km depth in the KTB borehole[J]. Nature, 1993, 365(6447):633-635. doi: 10.1038/365633a0
    [6] HSV K J, SUN S, LI J L, et al. Mesozoic overthrust tectonics in South China[J]. Geology, 1988, 16(5):418-421. doi: 10.1130/0091-7613(1988)016<0418:MOTISC>2.3.CO;2
    [7] DONG S W, ZHANG Y Q, GAO R, et al. A possible buried Paleoproterozoic collisional orogen beneath central South China:evidence from seismic-reflection profiling[J]. Precambrian Research, 2015, 264:1-10. doi: 10.1016/j.precamres.2015.04.003
    [8] 颜丹平, 邱亮, 陈峰, 等.华南地块雪峰山中生代板内造山带构造样式及其形成机制[J].地学前缘, 2018, 25(1):1-13. http://d.old.wanfangdata.com.cn/Periodical/dxqy201801001

    YAN Danping, QIU Liang, CHEN Feng, et al. Structural style and kinematics of the Mesozoic Xuefengshan intraplate orogenic belt, South China Block[J]. Earth Science Frontiers, 2018, 25(1):1-13. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201801001
    [9] 褚杨, 林伟, FAURE M, 等.华南板块早中生代陆内造山过程——以雪峰山-九岭为例[J].岩石学报, 2015, 31(8):2145-2155. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201508003

    CHU Yang, LIN Wei, FAURE M, et al. Early Mesozoic intracontinental orogeny:example of the Xuefengshan-Jiuling Belt[J]. Acta Petrologica Sinica, 2015, 31(8):2145-2155. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201508003
    [10] HAIMSON B C, CORNET F H. ISRM Suggested Methods for rock stress estimation-Part 3:hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7-8):1011-1020. doi: 10.1016/j.ijrmms.2003.08.002
    [11] 王建军, 李方全, 陈群策, 等. DB/T 14-2000原地应力测量-水压致裂法和套芯解除法技术规范[S].北京: 科学出版社, 2001.

    WANG Jianjun, LI Fangquan, CHEN Qunce, et al. DB/T 14-2000 Code of hydraulic fracturing and overcoring method for in-situ stress measurement[S]. Beijing: Science Press, 2001. (in Chinese with English abstract)
    [12] SHI W, DONG S W, ZHANG Y Q, et al.The typical large-scale superposed folds in the central South China:Implications for Mesozoic intracontinental deformation of the South China Block[J]. Tectonophysics, 2015, 664:50-66. doi: 10.1016/j.tecto.2015.08.039
    [13] ZOBACK M D. Reservoir geomechanics[M]. Cambridge:Cambridge University Press, 2006.
    [14] 苏恺之, 李方全, 张伯崇, 等.长江三峡坝区地壳应力与孔隙水压力综合研究[M].北京:地震出版社, 1996.

    SU Kaizhi, LI Fangquan, ZHANG Bochong, et al. Integrated research on the stress field and pore pressure at The Three Gorges site[M]. Beijing:Seismological Press, 1996. (in Chinese)
    [15] ITO T, EVANS K, KAWAI K, et al. Hydraulic fracture reopening pressure and the estimation of maximum horizontal stress[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(6):811-826. doi: 10.1016/S0148-9062(99)00053-4
    [16] ITO T, IGARASHI A, KATO H, et al. Crucial effect of system compliance on the maximum stress estimation in the hydrofracturing method:theoretical considerations and field-test verification[J]. Earth, Planets and Space, 2006, 58(8):963-971. doi: 10.1186/BF03352601
    [17] ITO T, FUNATO A, LIN W R, et al. Determination of stress state in deep subsea formation by combination of hydraulic fracturing in situ test and core analysis:a case study in the IODP Expedition 319[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(3):1203-1215. doi: 10.1002/jgrb.50086
    [18] 王成虎, 宋成科, 邢博瑞.水压致裂应力测量系统柔性分析及其对深孔测量的影响[J].现代地质, 2012, 26(4):808-816. doi: 10.3969/j.issn.1000-8527.2012.04.024

    WANG Chenghu, SONG Chengke, XING Borui. Compliance of drilling-rod system for hydro-fracturing in situ stress measurement and its effect on measurements at great depth[J]. Geoscience, 2012, 26(4):808-816. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2012.04.024
    [19] 徐志英.岩石力学[M].北京:水利电力出版社, 1986.

    XU Zhiying. Rock mechanics[M]. Beijing:Water Resources and Electric Power Press, 1986. (in Chinese)
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  235
  • HTML全文浏览量:  88
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-30
  • 修回日期:  2019-09-20
  • 刊出日期:  2019-10-28

目录

    /

    返回文章
    返回