留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太平洋板块中—新生代构造演化及板块重建

李三忠 曹现志 王光增 刘博 李玺瑶 索艳慧 姜兆霞 郭玲莉 周洁 王鹏程 朱俊江 汪刚 赵淑娟 刘永江 张国伟

李三忠, 曹现志, 王光增, 等, 2019. 太平洋板块中—新生代构造演化及板块重建. 地质力学学报, 25 (5): 642-677. DOI: 10.12090/j.issn.1006-6616.2019.25.05.060
引用本文: 李三忠, 曹现志, 王光增, 等, 2019. 太平洋板块中—新生代构造演化及板块重建. 地质力学学报, 25 (5): 642-677. DOI: 10.12090/j.issn.1006-6616.2019.25.05.060
LI Sanzhong, CAO Xianzhi, WANG Guangzeng, et al., 2019. MESO-CENOZOIC TECTONIC EVOLUTION AND PLATE RECONSTRUCTION OF THE PACIFIC PLATE. Journal of Geomechanics, 25 (5): 642-677. DOI: 10.12090/j.issn.1006-6616.2019.25.05.060
Citation: LI Sanzhong, CAO Xianzhi, WANG Guangzeng, et al., 2019. MESO-CENOZOIC TECTONIC EVOLUTION AND PLATE RECONSTRUCTION OF THE PACIFIC PLATE. Journal of Geomechanics, 25 (5): 642-677. DOI: 10.12090/j.issn.1006-6616.2019.25.05.060

太平洋板块中—新生代构造演化及板块重建

doi: 10.12090/j.issn.1006-6616.2019.25.05.060
基金项目: 

国家自然科学基金 U1606401

国家自然科学基金 41325009

国家海洋局重大专项 GASI-GEOGE-01

鳌山卓越科学家计划 2015ASTP-0S10

详细信息
    作者简介:

    李三忠(1968-), 男, 博士生导师, 海洋地质与构造地质专业。E-mail:sanzhong@ouc.edu.cn

  • 中图分类号: P542

MESO-CENOZOIC TECTONIC EVOLUTION AND PLATE RECONSTRUCTION OF THE PACIFIC PLATE

  • 摘要: 太平洋板块是一个中生代以来形成的地球上最大的大洋板块,但其起源机制、结构构造、构造演化等始终不清楚。太平洋板块内部的复杂性更是未受到重视,其内部的大火成岩省、海山链、微洋块、微陆块及其下部更深层地幔的微幔块都非常发育,这些复杂板内或板下构造代表的地球动力学含义亟待解决。文章基于最新的板块重建结果,试图分析其运动学过程,揭示太平洋板块形成与演化机制。研究表明,太平洋板块起源于RRR三节点,但不是一个纯粹的完整大洋板块,其增生演化过程经历了非威尔逊旋回模式,其板缘经历了一些外来微陆块或微洋块的并入,其内部也因各种原因出现了一些新生微洋块,总体表现为一个碎片化的镶嵌式板内格局。太平洋板块记录了与邻区板块相互作用的重要构造事件,大约55 Ma左右开始俯冲到东亚陆缘,导致东亚陆缘短暂的北西-南东向伸展,随后受印度-欧亚碰撞动力系统和太平洋俯冲动力系统联合控制,总体处于右行右阶的拉分背景,形成了一系列盆地群,俯冲后撤等逐渐形成了双俯冲系统。太平洋板块还记录了深浅部耦合过程,下地幔中的太平洋LLSVP通过遥相关对上部岩石圈微板块、大火成岩省分布具有决定性作用;火山链或热点揭示板块运动同时,也反映深浅部物质交换过程,海山群也揭示太平洋板块之下软流圈并非单一对流胞,其对流格局的多样性尚待深入研究。

     

  • 图  1  太平洋板块年龄及热点分布[4]

    Figure  1.  Oceanfloor ages and hotspot distribution in the Pacific Plate[4]

    图  2  太平洋板块核心区三角形磁条带展布

    Figure  2.  Triangle magnetic lineation distribution of the Pacific Plate core area

    图  3  190 Ma古太平洋的板块构造格局重建(模型据文献[6])

    Figure  3.  Plate configuration in the Paleo-Pacific Ocean in 190 Ma (Plate reconstruction model from reference [6])

    图  4  法拉隆(FAR)—菲尼克斯(PHO)—依泽奈崎(IZA)板块系统及太平洋板块诞生的三阶段演化过程[5]

    PAC—太平洋板块; IZA—依泽奈崎板块; FAR—法拉隆板块; PHO—菲尼克斯板块

    Figure  4.  Three-stage evolution of the FAR-PHO-IZA plate system and the birth of the Pacific Plate[5]

    图  5  夏威夷—皇帝海山链地区重力异常特征与火山年龄分布[8]

    Figure  5.  Gravity anomaly characteristics and volcanic age distribution in the Hawaii-Emperor Chain area[8]

    图  6  东北太平洋卫星重力异常与海山链[7]

    十字线指示了科布和鲍伊热点的位置,推测的区域(宽为250 km)以浅色阴影表示海山名称:AX—洋中脊轴海山; BO—Bowie(鲍伊);CO—Cobb(科布);DA—Davidson(戴维森);DE—Denson(邓森);DI—Dickens(狄更斯);DK—Dellwood Knolls(德尔伍德海丘);EI—Eickelberg(艾克伯格);EX—Explorer(拓荒者);GI—Giacomini(贾克米尼);GR—Graham(格雷厄姆);HE—Heckle(赫克勒);HK—Hodgkins(霍奇金);HO—Horton(霍顿);KO—Kodiak(科迪亚克);MI—Miller(米勒);MU—Murray(默里);OS—Oshawa(奥沙瓦);PF—Pathfinder(探路者);PK—Parker(帕克);PT—Patton(帕顿);PR—Pratt(普拉特);QN—Quinn(奎恩);Su—Surveyor(调查者);TW—Tuzo Wilson(图佐·威尔逊);UN—Union(尤宁);WE—Welker(维尔克)

    Figure  6.  Satellite gravity anomaly and seamount chains in the Northeast Pacific Ocean[7]

    图  7  翁通爪哇—马尼希基—希库朗基洋底高原地区等深线分布[29]

    红线区域—翁通爪哇—马尼希基—希库朗基洋底高原范围;白线—磁条带;粗的绿色虚线—转换断层;细的绿色虚线—三节点轨迹;细的红色虚线—锯齿状裂谷边界(zigzag rift boundary);黑色实线—海沟;黑色虚线—缝合线;小黑点和数字—大洋钻探井位(圆形DSDP,正方形ODP);M0—M29—海底磁异常条带图中简写:OJP—Ontong Java Plateau (翁通爪哇洋底高原);MP—Manihiki Plateau (马尼希基洋底高原);HP—Hikurangi Plateau (希库朗基洋底高原);RR—Robbie Ridge (罗比海岭);CR—Chatham Rise (查塔姆海隆);CFZ—Clipperton Fracture Zone(克利珀顿破碎带);EB—Ellice Basin (埃利斯海盆);EMB—East Mariana Basin (东马里亚纳海盆);GS—Gilbert Seamounts (吉伯海山);NB—Nauru Basin (瑙鲁海盆);OT—Osbourn Trough (奥斯本海槽);SI—Solomon Islands (所罗门群岛);SB—Stewart Basin (斯图尔特海盆);TS—Tokelau Seamounts (托克劳海山);WS—Wishbone Scarp (许愿骨海崖)

    Figure  7.  Bathymetric map showing the location of the Ontong Java, Manihiki and Hikurangi Plateau[29]

    图  8  翁通爪哇—马尼希基—希库朗基洋底高原深部洋中脊-地幔柱相互作用(125~90 Ma)[33]

    Figure  8.  Mid-ocean ridge-mantle plume interaction under the Ontong Java, Manihiki and Hikurangi Plateau (125~90 Ma)[33]

    图  9  沙茨基海隆及邻区构造特征[40]

    a—沙茨基海隆水深图和构造特征(不同的几何图形代表了不同的ODP或IODP站位;水深为基于卫星高度计获得的估计值;特征构造名称: Ori Massif—奥里地块;Shirshov Massif—希尔绍夫地块;Tamu Massif—塔穆地块);b—沙茨基海隆构造位置;c—沙茨基海隆演化示意图

    Figure  9.  Structural characteristics of the Shatsky Rise and adjacent area[40]

    图  10  岩石圈底部小尺度对流模型[50]

    m—熔体
    当热边界层超过临界厚度时,岩石圈底部小尺度对流形成卷筒,并平行板块运动方向排列;其启动早于侧向密度不均一性,对较大的Tmηeff (有效黏度),其启动则晚于侧向密度不均一性

    Figure  10.  Model of the small-scale sublithospheric convection[50]

    图  11  核-幔边界剪切波或横波异常[55]

    图示了现今非洲(A)和太平洋(P) “超级地幔柱”位置和侧向变化
    白色圈为201~15 Ma期间的大火成岩省位置,大火成岩省名称字母缩略如下:C—CAMP(中大西洋火成岩省);K—Karroo(卡鲁);A—Argo margin(阿尔戈边缘);SR—Shatsky Rise(沙茨基海隆);MG—Magellan Rise(麦哲伦海隆);G—Gascoyne(加斯科因);PE—Parana-Etendeka(巴拉那-埃滕德卡);BB—Banbury Baslats(班伯里玄武岩);MP—Manihiki Plateau(马尼希基洋底高原);O1—Ontong Java 1(翁通爪哇洋底高原1);R—Rajmahal Traps(拉治马哈);SK—Southern Kerguelen(克尔格伦南部);N—Nauru(瑙鲁);CK—Central Kerguelen(克尔格伦中部);HR—Hess Rise(赫斯海隆);W—Wallaby Plateau(沃勒比洋底高原);BR—Broken Ridge(布罗肯海岭);O2—Ontong Java 2(翁通爪哇洋底高原2);M—Madagascar(马达加斯加);SL—S. Leone Rise(圣·利昂海隆);MR—Maud Rise(毛德海隆);D—Deccan Traps(德干高原);NA—North Atlantic(北大西洋火成岩省);ET—Ethiopia(埃塞俄比亚);CR—Columbia River(哥伦比亚河)红色点为文献[12]认定的深起源热点

    Figure  11.  Shear wave velocity anomalies near the core-mantle boundary[55]

    图  12  环太平洋板块的运动学重建[57]

    黄绿色曲线定了太平洋下地幔低速区(LLSVP),洋中脊用浅蓝色粗线表示,磁线理用天蓝色细线表示
    BIS—Biscoe;CHS—Chonos;FAR—法拉隆;GUE—格雷罗;IZA—依泽奈崎;KUL—库拉;MAC—Mackinley;PAC—太平洋;PEN—Penas;PHO—菲尼克斯;WAK—Washikemba;WRA—Wrangellia;YAK—Yakutata—168.2 Ma (M42)太平洋板块初始形成,同时Pigafetta盆地(PIG)形成;b—139.6 Ma (M16)为太平洋下地幔低速区北北东部边缘的活动上涌时期,太平洋板块东北侧脊-柱相互作用触发了沙茨基海隆(SHA)形成于大约144 Ma, 尼科亚Ⅰ (NIC Ⅰ)海台和中太平洋海山群(MPM)形成于大约140 Ma,麦哲伦海隆(MAG)形成于大约135 Ma;c—120.4 Ma (M0)为一个新的活动上涌时期,太平洋板块南侧脊-柱相互作用激发了翁通爪哇海台(OJP)、马尼希基(MAN)和希库朗基海台(HIK)形成事件;尼科亚Ⅱ (NIC Ⅱ)海台也属于这次事件, 其喷发发生在太平洋下地幔低速区北部边缘脊-柱交接区,还是这次, 中太平洋海山群再次活跃,形成了几个具有OIB典型特征的次级水下海山;同时,太平洋下地幔低速区西缘附近的东马里亚纳海盆(EMB)先后发生了127 Ma和120 Ma的板内岩浆脉冲事件;d—112 Ma太平洋下地幔低速区南缘依然活动,并与洋中脊相互作用,形成了希库朗基海台、瑙鲁海盆(NAU)和东马里亚纳海盆;e—95 Ma太平洋下地幔低速区最东缘变得活跃,在与洋中脊相互作用的地区形成了加勒比海台(CAR)

    Figure  12.  Kinematic plate tectonic reconstructions for circum-Pacific Plate[57]

    图  13  太平洋两个三节点相关的中生代微板块和洋底高原分布[38]

    细线为磁线理,粗线为三节点迁移轨迹,虚线为推断的洋中脊跃迁的迁移轨迹。红色区域为洋中脊跃迁过程增生的岩石圈或微板块:MM—Magellan微板块;SP—沙茨基微板块;PFI—太平洋—法拉隆—依泽奈崎三节点;PFP—太平洋—法拉隆—菲尼克斯三节点;PIP—太平洋—依泽奈崎—菲尼克斯三节点;RJ—洋中脊跃迁;TM—Trinidad微板块

    Figure  13.  Mesozoic microplates and plateaus related to two Pacific triple junctions[38]

    图  14  塔穆地块内的磁异常条带重建及多幕洋中脊跃迁[59]

    底图为磁异常分布;蓝色(红色)线条为负(正)磁化异常;双箭头线代表洋中脊扩张方向;虚线为楔形异常包络线,指示洋中脊拓展方向;小的黑色箭头也标示拓展方向;红色和蓝色圆点(标注字母J)为三节点位置a—M21n时期洋中脊拓展而分裂的M21磁异常形成过程,黑色条带插图为晚侏罗世—早白垩世地磁极性年表;b—M21n和M20期间,洋中脊段发生了旋转;c—塔穆地块北侧M19-M18磁异常大拐弯(bights)的形成

    Figure  14.  Reconstruction of magnetic anomaly formation within Tamu Massif and multiple ridge jumping[59]

    图  15  翁通爪哇高原—所罗门岛汇聚带的自由空气重力异常[60]

    箭头指示太平洋板块相对于邻近板块的运动方向和速率;大的黄色区域是已知的或推测的洋底高原;黄色虚线指示热点轨迹或“尾端”
    NB—瑙鲁盆地;ER—欧里皮克(Eauripik)隆起;LP—路易(Louisiade)高原;OJP—所罗门岛—翁通爪哇高原;VAT—瓦努阿图(Vanuatu)海沟;VT—勇士(Vitiaz)海沟;NFP—北斐济高原;MP—马尼希基高原;SHS—萨摩亚热点;TT—汤加海沟;LR—路易斯维尔海脊;HP—希库郎伊高原;THS—塔斯马尼亚(Tasmanid)热点;LHS—豪勋爵热点

    Figure  15.  Free-air gravity anomalies of the Ontong Java Plateau-Solomon Islands convergent zone[60]

    图  16  85 Ma古太平洋的板块构造格局重建

    Figure  16.  Reconstruction of plate configuration in the Paleo-Pacific Ocean in 85 Ma

    图  17  圣·安德烈斯断层的演化[61]

    MTJ—门多西诺(Mendocino)三节点;RTJ—里维拉(Riviera)节点;JF—胡安·德·富卡板块;LA—洛杉矶

    Figure  17.  Evolution of the San Andreas Fault[61]

    图  18  俯冲的太平洋板块年龄分布图[62]

    红色和蓝色分别指示低速和高速扰动;每个横剖面上部标有蓝色数字的色标指示俯冲的太平洋岩石圈从西(中国东部)到东(海沟轴附近)的年龄;每个剖面的地形显示在岩石圈色标之上;每个横剖面下部标有红色数字的色标指示了太平洋板片的俯冲年龄;每个横剖面之上的红色和粉色三角分别指示了活动火山和新生代玄武岩的位置;背景层析成像中的地震和大地震(M≥7.0)分别以白色圆圈和红色五角星表示;两条黑色虚线指示了410 km和660 km不连续面
    CCO—中国中央造山带;NCC—华北克拉通;SCC—华南克拉通;ECS—东海陆架盆地;Ryukyu Arc—琉球岛弧;PHS—菲律宾海板块;Izu Arc—伊豆岛弧;Bonin Arc—小笠原岛弧;Yellow Sea—黄海;Korea—韩国;Japan Sea—日本海;Japan Arc—日本岛弧;Big mantle wedge—大地幔楔;Flat Pacific slab—呈水平状俯冲的太平洋板片;Mantle transition zone—地幔转换带

    Figure  18.  Age distribution of the subducting Pacific Plate[62]

    图  19  层析成像揭示的印度洋下滞留的古老的俯冲板片[64]

    Figure  19.  Tomographic images showing the ancient and stagnant subduction slab under the Indian Ocean[64]

    图  20  145 Ma古太平洋的板块构造格局重建

    Figure  20.  Reconstruction of plate configuration in the Paleo-Pacific Ocean in 145 Ma

    图  21  120 Ma古太平洋的板块构造格局重建

    Figure  21.  Reconstruction of plate configuration in the Paleo-Pacific Ocean in 120 Ma

    图  22  110 Ma古太平洋的板块构造格局重建

    Figure  22.  Reconstruction of plate configuration in the Paleo-Pacific Ocean in 110 Ma

    图  23  83 Ma古太平洋的板块构造格局重建

    Figure  23.  Reconstruction of plate configuration in the Paleo-Pacific Ocean in 83 Ma

    图  24  75 Ma古太平洋的板块构造格局重建

    Figure  24.  Reconstruction of plate configuration in the Paleo-Pacific Ocean in 75 Ma

    图  25  65 Ma古太平洋的板块构造格局重建

    Figure  25.  Reconstruction of plate configuration in the Paleo-Pacific Ocean in 65 Ma

    图  26  55 Ma太平洋的板块构造格局重建

    Figure  26.  Reconstruction of plate configuration in the Pacific Ocean in 55 Ma

    图  27  47 Ma太平洋的板块构造格局重建

    Figure  27.  Reconstruction of plate configuration in the Pacific Ocean in 47 Ma

    图  28  40 Ma太平洋的板块构造格局重建

    Figure  28.  Reconstruction of plate configuration in the Pacific Ocean in 40 Ma

    图  29  34 Ma太平洋的板块构造格局重建

    Figure  29.  Reconstruction of plate configuration in the Pacific Ocean in 34 Ma

    图  30  25 Ma太平洋的板块构造格局重建

    Figure  30.  Reconstruction of plate configuration in the Pacific Ocean in 25 Ma

    图  31  16 Ma太平洋的板块构造格局重建

    Figure  31.  Reconstruction of plate configuration in the Pacific Ocean in 16 Ma

    图  32  5 Ma太平洋的板块构造格局重建

    Figure  32.  Reconstruction of plate configuration in the Pacific Ocean in 5 Ma

  • [1] 朱日祥, 徐义刚, 朱光, 等.华北克拉通破坏[J].中国科学:地球科学, 2012, 42(8):1135-1159. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx200804016

    ZHU Rixiang, XU Yigang, Zhu Guang, et al. Destruction of the North China craton[J]. Science China Earth Sciences, 2012, 55(10):1565-1587. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx200804016
    [2] 吴福元, 徐义刚, 朱日祥, 等.克拉通岩石圈减薄与破坏[J].中国科学:地球科学, 2014, 44(11):2358-2372. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200806001

    WU Fuyuan, XU Yigang, ZHU Rixiang, et al. Thinning and destruction ofthe cratonic lithosphere:A global perspective[J]. Science China Earth Sciences, 2014, 57(12):2878-2890. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200806001
    [3] 朱日祥, 徐义刚.西太平洋板块俯冲与华北克拉通破坏[J].中国科学:地球科学, 2019, 49(9):1346-1356, doi: 10.1360/N072018-00282.

    ZHU Rixiang, XU Yigang. The subduction of the west Pacific plate and the destruction of the North China Craton[J]. Science China Earth Sciences, 2019, 62(9):1340-1350. doi: 10.1360/N072018-00282
    [4] 李三忠, 赵淑娟, 索艳慧, 等.区域海底构造(上、中、下)[M].北京:科学出版社, 2019.

    LI Sanzhong, ZHAO Shujuan, SUO Yanhui, et al. Regional submarine tectonics (Volume 1-3)[M]. Beijing:Science Press, 2019. (in Chinese)
    [5] BOSCHMAN L M, VAN HINSBERGEN D J J. On the enigmatic birth of the Pacific plate within the Panthalassa Ocean[J]. Science Advances, 2016, 2(7):e1600022. doi: 10.1126/sciadv.1600022
    [6] MVLLER R D, SETON M, ZAHIROVIC S, et al. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup[J]. Annual Review of Earth and Planetary Sciences, 2016, 44:107-138. doi: 10.1146/annurev-earth-060115-012211
    [7] WESSEL P, KROENKE L W. The geometric relationship between hot spots and seamounts:implications for Pacific hot spots[J]. Earth and Planetary Science Letters, 1998, 158(1-2):1-18. doi: 10.1016/S0012-821X(98)00043-0
    [8] TORSVIK T H, COCKS L R M. Earth history and palaeogeography[M]. Cambridge:Cambridge University Press, 2017:1-317.
    [9] HARRISON L N, WEIS D, GARCIA M O. The link between Hawaiian mantle plume composition, magmatic flux, and deep mantle geodynamics[J]. Earth and Planetary Science Letters, 2017, 463:298-309. doi: 10.1016/j.epsl.2017.01.027
    [10] WILSON J T. Evidence from islands on the spreading of ocean floors[J]. Nature, 1963, 197(4867):536-538. doi: 10.1038/197536a0
    [11] MORGAN J W, LOVERING J F. Rhenium and osmium abundances in some igneous and metamorphic rocks[J]. Earth and Planetary Science Letters, 1968, 3:219-224. doi: 10.1016-0012-821X(67)90041-6/
    [12] COURTILLOT V, DAVAILLE A, BESSE J, et al. Three distinct types of hotspots in the earth's mantle[J]. Earth and Planetary Science Letters, 2003, 205(3-4):295-308. doi: 10.1016/S0012-821X(02)01048-8
    [13] MONTELLI R, NOLET G, DAHLEN F A, et al. Finite-frequency tomography reveals a variety of plumes in the mantle[J]. Science, 2004, 303(5656):338-343. doi: 10.1126/science.1092485
    [14] FREY F A, GARCIA M O, WISE W S, et al. The evolution of Mauna Kea Volcano, Hawaii:petrogenesis of tholeiitic and alkalic basalts[J]. Journal of Geophysical Research:Solid Earth, 1991, 96(B9):14347-14375. doi: 10.1029/91JB00940
    [15] HAURI E H. Major-element variability in the Hawaiian mantle plume[J]. Nature, 1996, 382(6590):415-419. doi: 10.1038/382415a0
    [16] RIBE N M, CHRISTENSEN U R. The dynamical origin of Hawaiian volcanism[J]. Earth and Planetary Science Letters, 1999, 171(4):517-531. doi: 10.1016/S0012-821X(99)00179-X
    [17] WOLFE C J, SOLOMON S C, LASKE G, et al. Mantle shear-wave velocity structure beneath the Hawaiian hot spot[J]. Science, 2009, 326(5958):1388-1390. doi: 10.1126/science.1180165
    [18] DAVIES G F.地幔柱存在的依据[J].科学通报, 2005, 50(17):1801-1813. http://d.old.wanfangdata.com.cn/Periodical/kxtb200517002

    DAVIES G F. A case for mantle plume[J]. Chinese Science Bulletin, 2005, 50(15):1541-1554. http://d.old.wanfangdata.com.cn/Periodical/kxtb200517002
    [19] COFFIN M F, ELDHOLM O. Large igneous provinces:Crustal structure, dimensions, and external consequences[J]. Reviews of Geophysics, 1994, 32(1):1-36. http://cn.bing.com/academic/profile?id=94181276187e79f54e554cbc6ef131e1&encoded=0&v=paper_preview&mkt=zh-cn
    [20] SHETH H C. 'Large Igneous Provinces (LIPs)':Definition, recommended terminology, and a hierarchical classification[J]. Earth-Science Reviews, 2007, 85(3-4):117-124. doi: 10.1016/j.earscirev.2007.07.005
    [21] BRYAN S E, ERNST R E. Revised definition of Large Igneous Provinces (LIPs)[J]. Earth-Science Reviews, 2008, 86(1-4):175-202. doi: 10.1016/j.earscirev.2007.08.008
    [22] SHARP W D, CLAGUE D A. 50-Ma initiation of Hawaiian-emperor bend records major change in pacific plate motion[J]. Science, 2006, 313(5791):1281-1284. doi: 10.1126/science.1128489
    [23] SHAFER J T, NEAL C R, REGELOUS M. Petrogenesis of Hawaiian postshield lavas:Evidence from Nintoku Seamount, Emperor Seamount Chain[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(5):Q05L09.
    [24] TARDUNO J A, DUNCAN R A, SCHOLL D W, et al. The emperor seamounts:southward motion of the Hawaiian hotspot plume in earth's mantle[J]. Science, 2003, 301(5636):1064-1069. doi: 10.1126/science.1086442
    [25] CLAGUE D A, DALRYMPLE G B. Volcanism in Hawaii[M]. Hawaiian Volcano Observatory, 1987, 1-54.
    [26] NORTON I O. Plate motions in the North Pacific:The 43 Ma nonevent[J]. Tectonics, 1995, 14(5):1080-1094. doi: 10.1029/95TC01256
    [27] O'CONNOR J M, HOERNLE K, MVLLER R D, et al. Deformation-related volcanism in the Pacific ocean linked to the Hawaiian-emperor bend[J]. Nature Geoscience, 2015, 8(5):393-397. doi: 10.1038/ngeo2416
    [28] WHITTAKER J M, MVLLER R D, LEITCHENKOV G, et al. Major Australian-Antarctic plate reorganization at Hawaiian-Emperor bend time[J]. Science, 2007, 318(5847):83-86. doi: 10.1126/science.1143769
    [29] TAYLOR B. The single largest oceanic plateau:Ontong Java-Manihiki-Hikurangi[J]. Earth and Planetary Science Letters, 2006, 241(3-4):372-380. doi: 10.1016/j.epsl.2005.11.049
    [30] CONDIE K C. Mantle plumes and their record in earth history[M]. Cambridge:Cambridge University Press, 2001.
    [31] PETTERSON M G, NEAL C R, MAHONEY J J, et al. Structure and deformation of north and central Malaita, Solomon Islands:tectonic implications for the Ontong Java Plateau-Solomon arc collision, and for the fate of oceanic plateaus[J]. Tectonophysics, 1997, 283(1-4):1-33. doi: 10.1016/S0040-1951(97)00206-0
    [32] CASTILLO P R, PRINGLE M S, CARLSON R W. East Mariana Basin tholeiites:Cretaceous intraplate basalts or rift basalts related to the Ontong Java plume?[J]. Earth and Planetary Science Letters, 1994, 123(1-3):139-154. doi: 10.1016/0012-821X(94)90263-1
    [33] GLADCZENKO T P, COFFIN M F, ELDHOLM O. Crustal structure of the Ontong Java Plateau:modeling of new gravity and existing seismic data[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B10):22711-22729. doi: 10.1029/97JB01636
    [34] CLOUARD V, BONNEVILLE A. How many Pacific hotspots are fed by deep-mantle plumes?[J]. Geology, 2002, 29(8):695-698. http://cn.bing.com/academic/profile?id=4ee723e6257e8280d457b661cf53a69f&encoded=0&v=paper_preview&mkt=zh-cn
    [35] GÉLI L, ASLANIAN D, OLIVET J L, et al. Location of Louisville hotspot and origin of Hollister Ridge:geophysical constraints[J]. Earth and Planetary Science Letters, 1998, 164(1-2):31-40. doi: 10.1016/S0012-821X(98)00217-9
    [36] MAHONEY J J, SPENCER K J. Isotopic evidence for the origin of the Manihiki and Ontong Java oceanic plateaus[J]. Earth and Planetary Science Letters, 1991, 104(2-4):196-210. doi: 10.1016/0012-821X(91)90204-U
    [37] GELDMACHER J, VAN DEN BOGAARD P, HEYDOLPH K, et al. The age of Earth's largest volcano:Tamu Massif on Shatsky Rise (northwest Pacific Ocean)[J]. International Journal of Earth Sciences, 2014, 103(8):2351-2357. doi: 10.1007/s00531-014-1078-6
    [38] SAGER W W. What built Shatsky Rise, a mantle plume or ridge tectonics?[M]//FOULGER G R, NATLAND J H, PRESNALL D C, et al. Plates, Plumes and Paradigms. Princeton: Geological Society of America, 2005, 388: 721-733.
    [39] SAGER W W, ZHANG J C, KORENAGA J, et al. An immense shield volcano within the Shatsky Rise oceanic plateau, northwest Pacific Ocean[J]. Nature Geoscience, 2013, 6(11):976-981. doi: 10.1038/ngeo1934
    [40] HEYDOLPH K, MURPHY D T, GELDMACHER J, et al. Plume versus plate origin for the Shatsky Rise oceanic plateau (NW Pacific):Insights from Nd, Pb and Hf isotopes[J]. Lithos, 2014, 200-201:49-63. doi: 10.1016/j.lithos.2014.03.031
    [41] MAHONEY J J, DUNCAN R A, TEJADA M L G, et al. Jurassic-Cretaceous boundary age and mid-ocean-ridge-type mantle source for Shatsky Rise[J]. Geology, 2005, 33(3):185-188. doi: 10.1130/G21378.1
    [42] SAGER W W, SANO T, GELDMACHER J, et al. IODP Expedition 324:ocean drilling at shatsky rise gives clues about oceanic plateau formation[J]. Scientific Drilling, 2011, 12:24-31. doi: 10.5194/sd-12-24-2011
    [43] SAGER W W, HANDSCHUMACHER D W, HILDE T W C, et al. Tectonic evolution of the northern Pacific plate and Pacific-Farallon Izanagi triple junction in the late Jurassic and early cretaceous (M21-M10)[J]. Tectonophysics, 1988, 155(1-4):345-364. doi: 10.1016/0040-1951(88)90274-0
    [44] DAVAILLE A. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle[J]. Nature, 1999, 402(6763):756-760. doi: 10.1038/45461
    [45] NATLAND J H. The progression of volcanism in the Samoan linear volcanic chain[J]. American Journal of Science, 1980, 280A:709-735.
    [46] FAUL U H, JACKSON I. The seismological signature of temperature and grain size variations in the upper mantle[J]. Earth and Planetary Science Letters, 2005, 234(1-2):119-134. doi: 10.1016/j.epsl.2005.02.008
    [47] STIXRUDE L, LITHGOW-BERTELLONI C. Mineralogy and elasticity of the oceanic upper mantle:Origin of the low-velocity zone[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B3):B03204.
    [48] PRIESTLEY K, MCKENZIE D. The thermal structure of the lithosphere from shear wave velocities[J]. Earth and Planetary Science Letters, 2006, 244(1-2):285-301. doi: 10.1016/j.epsl.2006.01.008
    [49] KARATO S I, JUNG H. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle[J]. Earth and Planetary Science Letters, 1998, 157(3-4):193-207. doi: 10.1016/S0012-821X(98)00034-X
    [50] BALLMER M D, VAN HUNEN J, ITO G, et al. Non-hotspot volcano chains originating from small-scale sublithospheric convection[J]. Geophysical Research Letters, 2007, 34(23):L23310. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028232499/
    [51] BONNEVILLE A, DOSSO L, HILDENBRAND A. Temporal evolution and geochemical variability of the South Pacific superplume activity[J]. Earth and Planetary Science Letters, 2006, 244(1-2):251-269. doi: 10.1016/j.epsl.2005.12.037
    [52] MCNUTT M K. Superswells[J]. Reviews of Geophysics, 1998, 36(2):211-244. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/98RG00255
    [53] BALLMER M D, ITO G, VAN HUNEN J, et al. Small-scale sublithospheric convection reconciles geochemistry and geochronology of 'Superplume' volcanism in the western and south Pacific[J]. Earth and Planetary Science Letters, 2010, 290(1-2):224-232. doi: 10.1016/j.epsl.2009.12.025
    [54] Davis A S, Gray L B, Clague D A, et al. The Line Islands revisited:New 40Ar/39Ar geochronologic evidence for episodes of volcanism due to lithospheric extension[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(3):1018, doi: 10.1029/2001GC000190.
    [55] BURKE K, TORSVIK T H. Derivation of Large Igneous Provinces of the past 200 million years from long-term heterogeneities in the deep mantle[J]. Earth and Planetary Science Letters, 2004, 227(3-4):531-538. doi: 10.1016/j.epsl.2004.09.015
    [56] LI S Z, YU S, SUO Y H, et al. Orientation of joints and arrangement of solid inclusions in fibrous veins in the Shatsky Rise, NW Pacific:implications for crack-seal mechanisms and stress fields[J]. Geological Journal, 2016, 51(S1):562-578. http://cn.bing.com/academic/profile?id=7699eec7a41789012268e3918a7aeb6e&encoded=0&v=paper_preview&mkt=zh-cn
    [57] MADRIGAL P, GAZEL E, FLORES K E, et al. Record of massive upwellings from the Pacific large low shear velocity province[J]. Nature Communication, 2016, 7:13309. doi: 10.1038/ncomms13309
    [58] ANDERSON D L. The new theory of the earth[M]. Cambridge:Cambridge University Press, 2007:1-384.
    [59] SAGER W W, HUANG Y M, TOMINAGA M, et al. Oceanic plateau formation by seafloor spreading implied by Tamu Massif magnetic anomalies[J]. Nature Geoscience, 2019, 12(8):661-666. doi: 10.1038/s41561-019-0390-y
    [60] MANN P, TAIRA A. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone[J]. Tectonophysics, 2004, 389(3-4):137-190. doi: 10.1016/j.tecto.2003.10.024
    [61] ATWATER T, STOCK J. Pacific-North America plate tectonics of the Neogene southwestern United States:An update[J]. International Geology Review, 1998, 40(5):375-402. doi: 10.1080/00206819809465216
    [62] LIU X, ZHAO D P, LI S Z, et al. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications[J]. Earth and Planetary Science Letters, 2017, 464:166-174. doi: 10.1016/j.epsl.2017.02.024
    [63] LI S Z, SUO Y H, LI X Y, et al. Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the paleo-pacific plate[J]. Earth-Science Reviews, 2019, 192:91-137. doi: 10.1016/j.earscirev.2019.03.003
    [64] SIMMONS N A, MYERS S C, JOHANNESSON G, et al. Evidence for long-lived subduction of an ancient tectonic plate beneath the southern Indian Ocean[J]. Geophysical Research Letters, 2015, 42(21):9270-9278. doi: 10.1002/2015GL066237
    [65] WU L, KRAVCHINSKY V A. Derivation of paleolongitude from the geometric parametrization of apparent polar wander path:Implication for absolute plate motion reconstruction[J]. Geophysical Research Letters, 2014, 41(13):4503-4511. doi: 10.1002/2014GL060080
    [66] YANG Y T. An unrecognized major collision of the Okhotomorsk Block with East Asia during the Late Cretaceous, constraints on the plate reorganization of the Northwest Pacific[J]. Earth-Science Reviews, 2013, 126:96-115. doi: 10.1016/j.earscirev.2013.07.010
    [67] VAN DER MEER D G, TORSVIK T H, SPAKMAN W, et al. Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure[J]. Nature Geoscience, 2012, 5(3):215-219. doi: 10.1038/ngeo1401
    [68] ENGEBRETSON D C, COX A, GORDON R G. Relative motions between oceanic and continental plates in the Pacific basin[M]//ENGEBRETSON D C, COX A, GORDON R G. Relative Motions Between Oceanic and Continental Plates in the Pacific Basin. Boulder, Colo.: Geological Society of America, 1985, 206: 1-59.
    [69] BURKE K, STEINBERGER B, TORSVIK T H, et al. Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary[J]. Earth and Planetary Science Letters, 2008, 265(1-2):49-60. doi: 10.1016/j.epsl.2007.09.042
    [70] 李阳, 李三忠, 郭玲莉, 等.拆离型微地块:洋陆转换带和洋中脊变形机制[J].大地构造与成矿学, 2019, 43(4):779-794. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201904011

    LI Yang, LI Sanzhong, GUO Lingli, et al. Detachment-derived micro-blocks:new insights for the deformation mechanism of the ocean-continent transition and the mid-ocean ridge[J]. Geotectonica et Metallogenia, 2019, 43(4):779-794. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201904011
    [71] 刘金平, 李三忠, 索艳慧, 等.残生微洋块:俯冲消减系统下盘的复杂演化[J].大地构造与成矿学, 2019, 43(4):762-778. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201904010

    LIU Jinping, LI Sanzhong, SUO Yanhui, et al. Subduction-derived oceanic micro-block:complex evolution of footwall in subduction system[J]. Geotectonica et Metallogenia, 2019, 43(4):762-778. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201904010
    [72] 孟繁, 李三忠, 索艳慧, 等.跃生型微地块:离散型板块边界的复杂演化[J].大地构造与成矿学, 2019, 43(4):644-664. http://www.cnki.com.cn/Article/CJFDTotal-DGYK201904003.htm

    MENG Fan, LI Sanzhong, SUO Yanhui, et al. Ridge jumping-derived micro-blocks:Unravelling a complex evolutionary process for divergent plate boundaries[J]. Geotectonica et Metallogenia, 2019, 43(4):644-664. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DGYK201904003.htm
    [73] 牟墩玲, 李三忠, 索艳慧, 等.裂生微地块构造特征及成因模式:来自西太平洋弧后扩张作用的启示[J].大地构造与成矿学, 2019, 43(4):665-677. http://www.cnki.com.cn/Article/CJFDTotal-DGYK201904004.htm

    MU Dunling, LI Sanzhong, SUO Yanhui, et al. Tectonic and geodynamic mechanism of back-arc-rifting derived micro-blocks:insights fromback-arc spreading in the west pacific[J]. Geotectonica et Metallogenia, 2019, 43(4):665-677. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DGYK201904004.htm
    [74] 汪刚, 李三忠, 姜素华, 等.增生型微地块的成因模式及演化[J].大地构造与成矿学, 2019, 43(4):745-761. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201904009

    WANG Gang, LI Sanzhong, JIANG Suhua, et al. Formation mechanisms and evolution of accretion-derived micro-blocks[J]. Geotectonica et Metallogenia, 2019, 43(4):745-761. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201904009
    [75] 王光增, 李三忠, 索艳慧, 等.转换型微板块类型、成因及其大地构造启示[J].大地构造与成矿学, 2019, 43(4):700-714. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201904006

    WANG Guangzeng, LI Sanzhong, SUO Yanhui, et al. Transform-derived microplates:classification, mechanism and tectonic significance[J]. Geotectonica et Metallogenia, 2019, 43(4):700-714. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201904006
    [76] 赵林涛, 李三忠, 索艳慧, 等.延生微地块:洋脊增生系统的复杂过程[J].大地构造与成矿学, 2019, 43(4):715-729. http://www.cnki.com.cn/Article/CJFDTotal-DGYK201904007.htm

    ZHAO Lintao, LI Sanzhong, SUO Yanhui, et al. Propagation-derived micro-blocks:complex evolution of mid-ocean ridge accretion system[J]. Geotectonica et Metallogenia, 2019, 43(4):715-729. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DGYK201904007.htm
    [77] 甄立冰, 李三忠, 郭玲莉, 等.延生型微板块成因机制模拟研究进展[J].大地构造与成矿学, 2019, 43(4):730-744. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201904008

    ZHEN Libing, LI Sanzhong, GUO Lingli, et al. Genetic mechanism of the propagation-derived microplate:a review[J]. Geotectonica et Metallogenia, 2019, 43(4):730-744. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201904008
    [78] 周洁, 李三忠, 索艳慧, 等.碰生型微地块的分类及其形成机制[J].大地构造与成矿学, 2019, 43(4):795-823. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201904012

    ZHOU Jie, LI Sanzhong, SUO Yanhui, et al. Type and genetic mechanism of collision-derived micro-blocks[J]. Geotectonica et Metallogenia, 2019, 43(4):795-823. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201904012
    [79] 李三忠, 索艳慧, 刘博, 等.微板块构造理论:全球洋内与陆缘微地块研究的启示[J].地学前缘, 2018, 25(5):323-356. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201805028.htm

    LI Sanzhong, SUO Yanhui, LIU Bo, et al. Microplate tectonics theory:insights from microblocks in the global oceans and continental margins[J]. Earth Science Frontiers, 2018, 25(5):323-356. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-DXQY201805028.htm
    [80] HONZA E, FUJIOKA K. Formation of arcs and backarc basins inferred from the tectonic evolution of Southeast Asia since the Late Cretaceous[J]. Tectonophysics, 2004, 384(1-4):23-53. doi: 10.1016/j.tecto.2004.02.006
    [81] SUO Y H, LI S Z, ZHAO S J, et al. Continental margin basins in East Asia:tectonic implications of the meso-cenozoic East China Sea Pull-apart basins[J]. Geological Journal, 2015, 50(2):139-156. doi: 10.1002/gj.2535
    [82] FLOWER M, TAMAKI K, HOANG N. Mantle extrusion: a model for dispersed volcanism and DUPAL-like asthenosphere in east Asia and the western Pacific[M]//FLOWER M F J, CHUNG S L, HO C H, et al. Mantle Dynamics and Plate Interactions in East Asia. Washington D. C.: Geodynamics Series, 1998: 67-86.
    [83] JOLIVET L, FACCENNA C, BECKER T, et al. Mantle flow and deforming continents:from India-Asia convergence to pacific subduction[J]. Tectonics, 2018, 37(9):2887-2914. doi: 10.1029/2018TC005036
    [84] LIU B, LI S Z, SUO Y H, et al. The geological nature and geodynamics of the Okinawa Trough, Western Pacific. Geological Journal, 2016, 51(S1):416-428. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/gj.2774
    [85] VAN ORMAN J, COCHRAN J R, WEISSEL J K, et al. Distribution of shortening between the Indian and Australian plates in the central Indian Ocean[J]. Earth and Planetary Science Letters, 1995, 133(1-2):35-46. doi: 10.1016/0012-821X(95)00061-G
    [86] REPLUMAZ A, CAPITANIO F A, GUILLOT S, et al. The coupling of Indian subduction and Asian continental tectonics. Gondwana Research, 2014, 26(2):608-626. doi: 10.1016/j.gr.2014.04.003
    [87] GIBBONS A D, ZAHIROVIC S, MVLLER R D, et al. A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys[J]. Gondwana Research, 2015, 28(2):451-492. doi: 10.1016/j.gr.2015.01.001
    [88] ZAHIROVIC S, MVLLER R D, SETON M, et al. Tectonic speed limits from plate kinematic reconstructions[J]. Earth and Planetary Science Letters, 2015, 418:40-52. doi: 10.1016/j.epsl.2015.02.037
    [89] ZAHIROVIC S, MATTHEWS K J, FLAMENT N, et al. Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic[J]. Earth-Science Reviews, 2016, 162:293-337. doi: 10.1016/j.earscirev.2016.09.005
    [90] BULL J M, SCRUTTON R A. Fault reactivation in the central Indian Ocean and the rheology of oceanic lithosphere[J]. Nature, 1990, 344(6269):855-858. doi: 10.1038/344855a0
    [91] BULL J M, SCRUTTON R A. Seismic reflection images of intraplate deformation, central Indian Ocean, and their tectonic significance[J]. Journal of the Geological Society, 1992, 149(6):955-966. doi: 10.1144/gsjgs.149.6.0955
    [92] ROYER J Y, SANDWELL D T. Evolution of the eastern Indian Ocean since the Late Cretaceous-Constraints from Geosat altimetry[J]. Journal of Geophysical Rerearch:Soild Earth, 1989, 94(B10):13755-13782. doi: 10.1029/JB094iB10p13755
    [93] DELESCLUSE M, MONTÉSI L G J, CHAMOT-ROOKE N. Fault reactivation and selective abandonment in the oceanic lithosphere[J]. Geophysical Research Letters, 2008, 35(16):L16312. doi: 10.1029/2008GL035066
    [94] CHAMOT-ROOKE N, JESTIN F, DE VOOGD B, et al. Intraplate shortening in the central Indian Ocean determined from a 2100-km-long north-south deep seismic reflection profile[J]. Geology, 1993, 21(11):1043-1046. doi: 10.1130/0091-7613(1993)021<1043:ISITCI>2.3.CO;2
    [95] 索艳慧, 李三忠, 戴黎明, 等.东亚及其大陆边缘新生代构造迁移与盆地演化[J].岩石学报, 2012, 28(8):2602-2618. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201208025

    SUO Yanhui, LI Sanzhong, DAI Liming, et al. Cenozoic tectonic migration and basin evolution in East Asia and its continental margins[J]. Acta Petrologica Sinica, 2012, 28(8):2602-2618. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201208025
    [96] 索艳慧, 李三忠, 曹现志, 等.中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J].地学前缘, 2017, 24(4):249-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201704023

    SUO Yanhui, LI Sanzhong, CAO Xianzhi, et al. Mesozoic-Cenozoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate[J]. Earth Science Frontiers, 2017, 24(4):249-267. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201704023
    [97] 李三忠, 余珊, 赵淑娟, 等.东亚大陆边缘的板块重建与构造转换[J].海洋地质与第四纪地质, 2013, 33(3):65-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201303008

    LI Sanzhong, YU Shan, ZHAO Shujuan, et al. Tectonic transition and plate reconstructions of the East Asian Continental Magin[J]. Marine Geology & Quaternary Geology, 2013, 33(3):65-94. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201303008
    [98] SUO Y H, LI S Z, YU S, et al. Cenozoic Tectonic Jumping and implications for hydrocarbon accumulation in basins in the East Asia continental margin[J]. Journal of Asian Earth Sciences, 2014, 88:28-40. doi: 10.1016/j.jseaes.2014.02.019
    [99] 张国伟, 李三忠.西太平洋-北印度洋及其洋陆过渡带:古今演变与论争[J].海洋地质与第四纪地质, 2017, 37(4):1-17. http://www.cnki.com.cn/Article/CJFDTotal-HYDZ201704001.htm

    ZHANG Guowei, LI Sanzhong. West Pacific and North Indian Oceans and their ocean-continent connection zones:evolution and debates[J]. Marine Geology & Quaternary Geology, 2017, 37(4):1-17. (in Chinese with English abstract) http://www.cnki.com.cn/Article/CJFDTotal-HYDZ201704001.htm
    [100] 秦藴珊, 尹宏.西太平洋——我国深海科学研究的优先战略选区[J].地球科学进展, 2011, 26(3):245-248. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz201103001

    QIN Yunshan, YIN Hong. Western Pacific:The strategic priority in China deep-sea research[J]. Advance in Earth Sciences, 2011, 26(3):245-248. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz201103001
    [101] 李三忠, 索艳慧, 刘博. 《海底构造系统(上、下)》[M].北京:科学出版社, 2018.

    LI Sanzhong, SUO Yanhui, LIU Bo. Submarine tectonic system (Volume 1-2)[M]. Beijing:Science Press, 2018. (in Chinese with English abstract)
  • 加载中
图(32)
计量
  • 文章访问数:  1266
  • HTML全文浏览量:  324
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-10
  • 修回日期:  2019-09-28
  • 刊出日期:  2019-10-28

目录

    /

    返回文章
    返回