留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深层致密砂岩储层脆性指数评价新方法

刘惠民 郑金凯 赵文山 杜振京 李静 王昊

刘惠民, 郑金凯, 赵文山, 等, 2019. 深层致密砂岩储层脆性指数评价新方法. 地质力学学报, 25 (4): 492-500. DOI: 10.12090/j.issn.1006-6616.2019.25.04.047
引用本文: 刘惠民, 郑金凯, 赵文山, 等, 2019. 深层致密砂岩储层脆性指数评价新方法. 地质力学学报, 25 (4): 492-500. DOI: 10.12090/j.issn.1006-6616.2019.25.04.047
LIU Huimin, ZHENG Jinkai, ZHAO Wenshan, et al., 2019. A NEW METHOD FOR EVALUATING BRITTLENESS INDEX OF DEEP TIGHT SANDSTONE RESERVOIR. Journal of Geomechanics, 25 (4): 492-500. DOI: 10.12090/j.issn.1006-6616.2019.25.04.047
Citation: LIU Huimin, ZHENG Jinkai, ZHAO Wenshan, et al., 2019. A NEW METHOD FOR EVALUATING BRITTLENESS INDEX OF DEEP TIGHT SANDSTONE RESERVOIR. Journal of Geomechanics, 25 (4): 492-500. DOI: 10.12090/j.issn.1006-6616.2019.25.04.047

深层致密砂岩储层脆性指数评价新方法

doi: 10.12090/j.issn.1006-6616.2019.25.04.047
基金项目: 

国家科技重大专项 2016ZX05002-002

国家自然科学基金 41272141

详细信息
    作者简介:

    刘惠民(1969-), 男, 教授级高级工程师, 从事油气勘探研究与管理工作。E-mail:hmliu@vip.163.com

    通讯作者:

    李静(1967-), 女, 教授、博士生导师, 地质力学及油气储层预测。E-mail:lijing0681@163.com

  • 中图分类号: TE311;TU45

A NEW METHOD FOR EVALUATING BRITTLENESS INDEX OF DEEP TIGHT SANDSTONE RESERVOIR

  • 摘要: 储层岩石脆性评价是储层压裂改造方案设计的重要基础工作,对储层压裂改造效果有着重要影响。以准中地区深层致密砂岩储层为研究对象,开展了0~90 MPa多级围压下的岩石三轴试验,分析了围压变化对于岩石脆性的影响。针对现有脆性指数对目标储层岩石脆性评价效果不理想的情况,基于应力-应变曲线中的能量转化关系建立了新的脆性指数模型,包括岩石峰前峰后脆性指数和综合脆性指数。研究结果表明:试验围压对岩石脆性评价有着显著影响;岩石峰前脆性随围压增大先增加后减小,峰后脆性和综合脆性随围压增大而递减;研究区储层含砾细砂岩的脆性较细砂岩的脆性小,脆性差异主要表现在峰后脆性。

     

  • 图  1  细砂岩压后破坏情况

    Figure  1.  Failure of fine sandstone after compressure

    图  2  含砾细砂岩压后破坏情况

    Figure  2.  Failure of gravel bearing fine sandstone after compression

    图  3  细砂岩莫尔包络线

    Figure  3.  Moire envelope of fine sandstone

    图  4  含砾细砂岩莫尔包络线

    Figure  4.  Moire envelope of boulder fine sandstone

    图  5  峰值应力与围压关系曲线

    Figure  5.  The relationship between peak stress and confining pressure

    图  6  细砂岩应力-应变曲线

    Figure  6.  Stress-strain curves of fine sandstone

    图  7  含砾细砂岩应力-应变曲线

    Figure  7.  Stress-strain curves of gravel bearing fine sandstone

    图  8  岩石脆塑性模型

    Figure  8.  Rock brittle plastic model

    图  9  脆性指数与围压关系分布图

    Figure  9.  The distribution diagram of brittleness index and confining pressure

    图  10  脆性指数B4不能考虑的情况

    Figure  10.  The situation where the brittleness index B4 can not be considered

    图  11  脆性指数B参数示意图

    Figure  11.  B parameter diagram of brittleness index

    图  12  脆性指数B参数示意图

    Figure  12.  B parameter diagram of brittleness index

    图  13  脆性指数BBB0与围压关系

    Figure  13.  The relationship between the brittleness index B, B and B0 and the confining pressure

    表  1  岩石物理参数及三轴试验结果统计

    Table  1.   Rock physical parameters and statistics of triaxial axis test results

    岩样编号 深度/
    m
    密度/
    (g/cm3)
    取心描述 围压/
    MPa
    泊松比
    μ
    弹性模量/
    GPa
    峰值偏应力/
    MPa
    峰值应力/
    MPa
    1# 4254.42 2.55 细砂岩 0 0.10 13.20 57.13 57.13
    2# 4256.80 2.39 含砾细砂岩 80 0.19 25.05 273.20 353.20
    3# 4258.05 2.50 细砂岩 70 0.14 26.13 278.98 348.98
    4# 4259.85 2.39 含砾细砂岩 20 0.19 16.35 144.27 164.27
    5# 4261.40 2.27 含砾细砂岩 80 0.16 20.41 235.40 315.40
    6# 4262.70 2.37 含砾细砂岩 60 0.18 24.09 234.40 294.40
    7# 4268.30 2.55 细砂岩 60 0.17 23.04 269.85 329.85
    8# 4269.95 2.44 细砂岩 40 0.13 21.80 237.24 277.24
    9# 4291.70 2.44 细砂岩 90 0.15 28.55 323.33 413.33
    10# 4292.30 2.44 细砂岩 80 0.15 26.73 296.14 376.14
    11# 4293.98 2.29 含砾细砂岩 80 0.17 23.10 252.80 332.80
    13# 4296.15 2.25 含砾细砂岩 90 0.14 22.85 253.39 343.39
    下载: 导出CSV

    表  2  内摩擦角ϕ与粘聚力C计算

    Table  2.   Calculation of internal friction angle ϕ and cohesive force C

    岩样分组 低围压
    ϕ/(°)
    低围压
    C/MPa
    全局围压
    ϕ/(°)
    全局围压
    C/MPa
    细砂岩 43.82 12.20 35.89 21.24
    含砾细砂岩 32.06 27.50 26.96 36.45
    下载: 导出CSV

    表  3  基于应力-应变曲线的脆性指数

    Table  3.   Brittleness index based on stress-strain curve

    公式 变量说明 文献
    B1=(εtεr)/εt (εtεr)为可恢复应变,无量
    纲,εt为总应变,无量纲
    [16]
    B2=WrWt Wr为可恢复应变能,J;Wt为总
    应变能,J
    [16]
    B3=(εpεc)/εp εp为峰值应变,无量纲;εc为残
    余应变,无量纲
    [17]
    B4=(τpτc)/τp τp为强度峰值,MPa;τc为残余
    强度,MPa
    [6]
    下载: 导出CSV

    表  4  脆性指数计算结果

    Table  4.   Calculation results of brittleness index

    岩心
    编号
    围压/
    MPa
    B1 B2 B3 B4 岩心
    描述
    1# 0 0.291 0.664 0.646 0.519 细砂岩
    8# 40 0.378 0.582 0.701 0.364 细砂岩
    7# 60 0.382 0.646 0.766 0.401 细砂岩
    3# 70 0.323 0.447 0.594 0.320 细砂岩
    10# 80 0.262 0.398 0.531 0.378 细砂岩
    9# 90 0.297 0.365 0.497 0.300 细砂岩
    4# 20 0.362 0.650 0.705 0.373 含砾细砂岩
    6# 60 0.365 0.539 0.662 0.221 含砾细砂岩
    2# 80 0.350 0.417 0.553 0.073 含砾细砂岩
    5# 80 0.227 0.426 0.576 0.115 含砾细砂岩
    11# 80 0.284 0.485 0.620 0.115 含砾细砂岩
    13# 90 0.275 0.379 0.518 0.087 含砾细砂岩
    下载: 导出CSV

    表  5  脆性指数B0计算结果

    Table  5.   Calculation results of brittleness index B0

    岩心
    编号
    围压/
    MPa
    E/
    GPa
    (-M)/
    GPa
    εp τp/
    MPa
    τe/
    MPa
    τc/
    MPa
    B B B0 岩心描述
    1 0 13.68 66.01 0.65 57.13 44.59 27.49 0.400 4.825 1.932 细砂岩
    8 40 22.05 31.24 1.53 237.24 122.18 150.83 1.137 1.417 1.611 细砂岩
    7 60 23.02 24.90 1.58 269.85 135.13 156.63 1.239 1.082 1.330 细砂岩
    3 70 26.33 20.00 1.78 278.98 101.85 189.64 0.930 0.760 0.707 细砂岩
    10 80 26.80 20.56 2.08 296.14 82.13 184.13 0.818 0.767 0.628 细砂岩
    9 90 29.55 25.91 2.20 323.33 72.16 226.26 0.766 0.877 0.672 细砂岩
    4 20 16.54 19.82 1.24 144.27 99.35 90.41 0.744 1.198 0.892 含砾细砂岩
    6 60 24.08 8.57 1.47 234.40 102.22 182.59 1.102 0.356 0.392 含砾细砂岩
    2 80 26.00 2.24 1.90 273.20 58.17 253.33 0.973 0.086 0.084 含砾细砂岩
    5 80 21.32 1.14 1.92 235.40 79.28 208.24 0.900 0.053 0.048 含砾细砂岩
    11 80 23.15 1.78 1.76 252.80 98.08 223.68 0.998 0.077 0.077 含砾细砂岩
    13 90 23.08 1.44 2.12 253.39 83.79 231.46 0.718 0.062 0.045 含砾细砂岩
    下载: 导出CSV
  • [1] 邹才能, 朱如凯, 吴松涛, 等.常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J].石油学报, 2012, 33(2):173-187. http://d.old.wanfangdata.com.cn/Periodical/syxb201202001

    ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulation:taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2):173-187. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/syxb201202001
    [2] RICKMAN R, MULLEN M J, PETRE J E, et al. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett shale[C]//Proceedings of the SPE Annual Technical Conference and Exhibition. Denver, Colorado, USA: Society of Petroleum Engineers, 2008.
    [3] HONDA H, SANADA Y. Hardness of coal[J]. Fuel, 1956, 35(4):451-461.
    [4] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems:the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4):475-499. doi: 10.1306/12190606068
    [5] 周雪晴, 张占松, 张超谟, 等.基于矿物组分和成岩作用的致密砂岩储层脆性评价方法:以鄂尔多斯盆地东北部某区块为例[J].油气地质与采收率, 2017, 24(5):10-16, 26. doi: 10.3969/j.issn.1009-9603.2017.05.002

    ZHOU Xueqing, ZHANG Zhansong, ZHANG Chaomo, et al. A new brittleness evaluation method for tight sandstone reservoir based on mineral compositions and diagenesis:a case study of a certain block in the northeastern Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(5):10-16, 26. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-9603.2017.05.002
    [6] BISHOP A W. Progressive failure with special reference to the mechanism causing it[C]//Proceedings of the Geotechnical Conference on Shear Strength Properties of Natural Soils and Rocks. Oslo: [s.n.], 1967: 142-150.
    [7] 曾治平, 刘震, 马骥, 等.深层致密砂岩储层可压裂性评价新方法[J].地质力学学报, 2019, 25(2):223-232. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20190208&flag=1

    ZENG Zhiping, LIU Zhen, MA Ji, et al. A new method for fracrability evaluation in deep and tight sandstone reservoirs[J]. Journal of Geomechanics, 2019, 25(2):223-232. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20190208&flag=1
    [8] 孟召平, 彭苏萍, 张慎河.不同成岩作用程度砂岩物理力学性质三轴试验研究[J].岩土工程学报, 2003, 25(2):140-143. doi: 10.3321/j.issn:1000-4548.2003.02.003

    MENG Zhaoping, PENG Suping, ZHANG Shenhe. Triaxial test on physical and mechanical properties of sandstone for different diagenesis degree[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2):140-143. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2003.02.003
    [9] 张军, 艾池, 李玉伟, 等.基于岩石破坏全过程能量演化的脆性评价指数[J].岩石力学与工程学报, 2017, 36(6):1326-1340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201706003

    ZHANG Jun, AI Chi, LI Yuwei, et al. Brittleness evaluation index based on energy variation in the whole process of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6):1326-1340. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201706003
    [10] 张春会, 赵全胜, 黄鹂, 等.考虑围压影响的岩石峰后应变软化力学模型[J].岩土力学, 2010, 31(S2):193-197. http://d.old.wanfangdata.com.cn/Conference/7415453

    ZHANG Chunhui, ZHAO Quansheng, HUANG Li, et al. Post-peak strain softening mechanical model of rock considering confining pressure effect[J] Rock and Soil Mechanics, 2010, 31(S2):193-197. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Conference/7415453
    [11] 曾立新.深层岩石力学性质的试验方法[J].地质力学学报, 1999, 5(1):71-75. doi: 10.3969/j.issn.1006-6616.1999.01.012

    ZENG Lixin. Laboratory test method study of deep rock physical mechanics[J]. Journal of Geomechanics, 1999, 5(1):71-75. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.1999.01.012
    [12] 尤明庆.围压对杨氏模量的影响与裂隙摩擦的关系[J].岩土力学, 2003, 24(S1):167-170. http://d.old.wanfangdata.com.cn/Conference/6734723

    YOU Mingqing. Effect of confining pressure on the young's modulus of rock specimen and the friction in fissures[J]. Rock and Soil Mechanics, 2003, 24(S1):167-170. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Conference/6734723
    [13] 王佩新, 曹平, 王敏, 等.围压作用下岩石峰后应力-应变关系模型[J].中南大学学报(自然科学版), 2017, 48(10):2753-2758. doi: 10.11817/j.issn.1672-7207.2017.10.027

    WANG Peixin, CAO Ping, WANG Min, et al. Post-peak stress-strain relationship model of rock considering confining pressure effect[J]. Journal of Central South University (Science and Technology), 2017, 48(10):2753-2758. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2017.10.027
    [14] 张骞, 李术才, 李利平, 等.岩石三轴压缩峰后曲线与抗剪强度参数关系探讨[J].地下空间与工程学报, 2015, 11(3):642-646, 657. http://d.old.wanfangdata.com.cn/Periodical/dxkj201503018

    ZHANG Qian, LI Shucai, LI Liping, et al. Discussion on relationship between post-peak curves and shear strength parameters of rock subjected to Triaxial compression[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(3):642-646, 657. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxkj201503018
    [15] 陈勉, 金衍, 张广清.石油工程岩石力学[M].北京:科学出版社, 2008.

    CHEN Mian, JIN Yan, ZHANG Guanqing. Rock mechanics in petroleum engineering[M]. Beijing:Science Press, 2008. (in Chinese)
    [16] HUCKA V, DAS B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1974, 11(10):389-392. http://cn.bing.com/academic/profile?id=1df2f0b8e3f7549e5d6a0e58f78e282b&encoded=0&v=paper_preview&mkt=zh-cn
    [17] HAJIABDOLMAJID V, KAISER P. Brittleness of rock and stability assessment in hard rock tunneling[J]. Tunnelling and Underground Space Technology, 2003, 18(1):35-48. doi: 10.1016/S0886-7798(02)00100-1
    [18] 周辉, 孟凡震, 张传庆, 等.基于应力-应变曲线的岩石脆性特征定量评价方法[J].岩石力学与工程学报, 2014, 33(6):1114-1122. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201406003

    ZHOU Hui, MENG Fanzhen, ZHANG Chuanqing, et al. Quantitative evaluation method of rock brittleness based on stress-strain curve[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6):1114-1122. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201406003
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  312
  • HTML全文浏览量:  105
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-22
  • 修回日期:  2018-12-07
  • 刊出日期:  2019-08-28

目录

    /

    返回文章
    返回