A NEW METHOD FOR EVALUATING BRITTLENESS INDEX OF DEEP TIGHT SANDSTONE RESERVOIR
-
摘要: 储层岩石脆性评价是储层压裂改造方案设计的重要基础工作,对储层压裂改造效果有着重要影响。以准中地区深层致密砂岩储层为研究对象,开展了0~90 MPa多级围压下的岩石三轴试验,分析了围压变化对于岩石脆性的影响。针对现有脆性指数对目标储层岩石脆性评价效果不理想的情况,基于应力-应变曲线中的能量转化关系建立了新的脆性指数模型,包括岩石峰前峰后脆性指数和综合脆性指数。研究结果表明:试验围压对岩石脆性评价有着显著影响;岩石峰前脆性随围压增大先增加后减小,峰后脆性和综合脆性随围压增大而递减;研究区储层含砾细砂岩的脆性较细砂岩的脆性小,脆性差异主要表现在峰后脆性。Abstract: Reservoir rock brittleness evaluation is important foundation work for the design of reservoir fracturing reconstruction scheme, which has great influence on reservoir fracturing reconstruction effect. Taking the deep tight sandstone reservoir in the central part of the Junggar Basin as the research object, the rock triaxial test under 0~90 MPa multilevel confining pressure was carried out and the influence of confining pressure variation on brittleness rock was analyzed. In view of the unsatisfactory effect of the existing brittleness index on the evaluation of rock brittleness in target reservoirs, based on the energy conversion relationship in the stress-strain curve, a new brittleness index model, which includes the pre-peak brittleness index, post-peak brittleness index and the comprehensive brittleness index, is established. The results show that the confining pressure has a significant influence on the evaluation of rock brittleness; the pre-peak brittleness increases first and then decreases with the increase of confining pressure, while the post-peak brittleness and comprehensive brittleness decrease monotonously with the increase of confining pressure. The study shows that the brittleness of the reservoir gravel fine sandstone is poorer than that of the fine sandstone, and the brittleness difference is mainly manifested in post-peak brittleness.
-
表 1 岩石物理参数及三轴试验结果统计
Table 1. Rock physical parameters and statistics of triaxial axis test results
岩样编号 深度/
m密度/
(g/cm3)取心描述 围压/
MPa泊松比
μ弹性模量/
GPa峰值偏应力/
MPa峰值应力/
MPa1# 4254.42 2.55 细砂岩 0 0.10 13.20 57.13 57.13 2# 4256.80 2.39 含砾细砂岩 80 0.19 25.05 273.20 353.20 3# 4258.05 2.50 细砂岩 70 0.14 26.13 278.98 348.98 4# 4259.85 2.39 含砾细砂岩 20 0.19 16.35 144.27 164.27 5# 4261.40 2.27 含砾细砂岩 80 0.16 20.41 235.40 315.40 6# 4262.70 2.37 含砾细砂岩 60 0.18 24.09 234.40 294.40 7# 4268.30 2.55 细砂岩 60 0.17 23.04 269.85 329.85 8# 4269.95 2.44 细砂岩 40 0.13 21.80 237.24 277.24 9# 4291.70 2.44 细砂岩 90 0.15 28.55 323.33 413.33 10# 4292.30 2.44 细砂岩 80 0.15 26.73 296.14 376.14 11# 4293.98 2.29 含砾细砂岩 80 0.17 23.10 252.80 332.80 13# 4296.15 2.25 含砾细砂岩 90 0.14 22.85 253.39 343.39 表 2 内摩擦角ϕ与粘聚力C计算
Table 2. Calculation of internal friction angle ϕ and cohesive force C
岩样分组 低围压
ϕ/(°)低围压
C/MPa全局围压
ϕ/(°)全局围压
C/MPa细砂岩 43.82 12.20 35.89 21.24 含砾细砂岩 32.06 27.50 26.96 36.45 表 3 基于应力-应变曲线的脆性指数
Table 3. Brittleness index based on stress-strain curve
表 4 脆性指数计算结果
Table 4. Calculation results of brittleness index
岩心
编号围压/
MPaB1 B2 B3 B4 岩心
描述1# 0 0.291 0.664 0.646 0.519 细砂岩 8# 40 0.378 0.582 0.701 0.364 细砂岩 7# 60 0.382 0.646 0.766 0.401 细砂岩 3# 70 0.323 0.447 0.594 0.320 细砂岩 10# 80 0.262 0.398 0.531 0.378 细砂岩 9# 90 0.297 0.365 0.497 0.300 细砂岩 4# 20 0.362 0.650 0.705 0.373 含砾细砂岩 6# 60 0.365 0.539 0.662 0.221 含砾细砂岩 2# 80 0.350 0.417 0.553 0.073 含砾细砂岩 5# 80 0.227 0.426 0.576 0.115 含砾细砂岩 11# 80 0.284 0.485 0.620 0.115 含砾细砂岩 13# 90 0.275 0.379 0.518 0.087 含砾细砂岩 表 5 脆性指数B0计算结果
Table 5. Calculation results of brittleness index B0
岩心
编号围压/
MPaE/
GPa(-M)/
GPaεp τp/
MPaτe/
MPaτc/
MPaBⅠ BⅡ B0 岩心描述 1 0 13.68 66.01 0.65 57.13 44.59 27.49 0.400 4.825 1.932 细砂岩 8 40 22.05 31.24 1.53 237.24 122.18 150.83 1.137 1.417 1.611 细砂岩 7 60 23.02 24.90 1.58 269.85 135.13 156.63 1.239 1.082 1.330 细砂岩 3 70 26.33 20.00 1.78 278.98 101.85 189.64 0.930 0.760 0.707 细砂岩 10 80 26.80 20.56 2.08 296.14 82.13 184.13 0.818 0.767 0.628 细砂岩 9 90 29.55 25.91 2.20 323.33 72.16 226.26 0.766 0.877 0.672 细砂岩 4 20 16.54 19.82 1.24 144.27 99.35 90.41 0.744 1.198 0.892 含砾细砂岩 6 60 24.08 8.57 1.47 234.40 102.22 182.59 1.102 0.356 0.392 含砾细砂岩 2 80 26.00 2.24 1.90 273.20 58.17 253.33 0.973 0.086 0.084 含砾细砂岩 5 80 21.32 1.14 1.92 235.40 79.28 208.24 0.900 0.053 0.048 含砾细砂岩 11 80 23.15 1.78 1.76 252.80 98.08 223.68 0.998 0.077 0.077 含砾细砂岩 13 90 23.08 1.44 2.12 253.39 83.79 231.46 0.718 0.062 0.045 含砾细砂岩 -
[1] 邹才能, 朱如凯, 吴松涛, 等.常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J].石油学报, 2012, 33(2):173-187. http://d.old.wanfangdata.com.cn/Periodical/syxb201202001ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulation:taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2):173-187. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/syxb201202001 [2] RICKMAN R, MULLEN M J, PETRE J E, et al. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett shale[C]//Proceedings of the SPE Annual Technical Conference and Exhibition. Denver, Colorado, USA: Society of Petroleum Engineers, 2008. [3] HONDA H, SANADA Y. Hardness of coal[J]. Fuel, 1956, 35(4):451-461. [4] JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems:the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4):475-499. doi: 10.1306/12190606068 [5] 周雪晴, 张占松, 张超谟, 等.基于矿物组分和成岩作用的致密砂岩储层脆性评价方法:以鄂尔多斯盆地东北部某区块为例[J].油气地质与采收率, 2017, 24(5):10-16, 26. doi: 10.3969/j.issn.1009-9603.2017.05.002ZHOU Xueqing, ZHANG Zhansong, ZHANG Chaomo, et al. A new brittleness evaluation method for tight sandstone reservoir based on mineral compositions and diagenesis:a case study of a certain block in the northeastern Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(5):10-16, 26. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-9603.2017.05.002 [6] BISHOP A W. Progressive failure with special reference to the mechanism causing it[C]//Proceedings of the Geotechnical Conference on Shear Strength Properties of Natural Soils and Rocks. Oslo: [s.n.], 1967: 142-150. [7] 曾治平, 刘震, 马骥, 等.深层致密砂岩储层可压裂性评价新方法[J].地质力学学报, 2019, 25(2):223-232. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20190208&flag=1ZENG Zhiping, LIU Zhen, MA Ji, et al. A new method for fracrability evaluation in deep and tight sandstone reservoirs[J]. Journal of Geomechanics, 2019, 25(2):223-232. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?file_no=20190208&flag=1 [8] 孟召平, 彭苏萍, 张慎河.不同成岩作用程度砂岩物理力学性质三轴试验研究[J].岩土工程学报, 2003, 25(2):140-143. doi: 10.3321/j.issn:1000-4548.2003.02.003MENG Zhaoping, PENG Suping, ZHANG Shenhe. Triaxial test on physical and mechanical properties of sandstone for different diagenesis degree[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2):140-143. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2003.02.003 [9] 张军, 艾池, 李玉伟, 等.基于岩石破坏全过程能量演化的脆性评价指数[J].岩石力学与工程学报, 2017, 36(6):1326-1340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201706003ZHANG Jun, AI Chi, LI Yuwei, et al. Brittleness evaluation index based on energy variation in the whole process of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6):1326-1340. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201706003 [10] 张春会, 赵全胜, 黄鹂, 等.考虑围压影响的岩石峰后应变软化力学模型[J].岩土力学, 2010, 31(S2):193-197. http://d.old.wanfangdata.com.cn/Conference/7415453ZHANG Chunhui, ZHAO Quansheng, HUANG Li, et al. Post-peak strain softening mechanical model of rock considering confining pressure effect[J] Rock and Soil Mechanics, 2010, 31(S2):193-197. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Conference/7415453 [11] 曾立新.深层岩石力学性质的试验方法[J].地质力学学报, 1999, 5(1):71-75. doi: 10.3969/j.issn.1006-6616.1999.01.012ZENG Lixin. Laboratory test method study of deep rock physical mechanics[J]. Journal of Geomechanics, 1999, 5(1):71-75. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.1999.01.012 [12] 尤明庆.围压对杨氏模量的影响与裂隙摩擦的关系[J].岩土力学, 2003, 24(S1):167-170. http://d.old.wanfangdata.com.cn/Conference/6734723YOU Mingqing. Effect of confining pressure on the young's modulus of rock specimen and the friction in fissures[J]. Rock and Soil Mechanics, 2003, 24(S1):167-170. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Conference/6734723 [13] 王佩新, 曹平, 王敏, 等.围压作用下岩石峰后应力-应变关系模型[J].中南大学学报(自然科学版), 2017, 48(10):2753-2758. doi: 10.11817/j.issn.1672-7207.2017.10.027WANG Peixin, CAO Ping, WANG Min, et al. Post-peak stress-strain relationship model of rock considering confining pressure effect[J]. Journal of Central South University (Science and Technology), 2017, 48(10):2753-2758. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2017.10.027 [14] 张骞, 李术才, 李利平, 等.岩石三轴压缩峰后曲线与抗剪强度参数关系探讨[J].地下空间与工程学报, 2015, 11(3):642-646, 657. http://d.old.wanfangdata.com.cn/Periodical/dxkj201503018ZHANG Qian, LI Shucai, LI Liping, et al. Discussion on relationship between post-peak curves and shear strength parameters of rock subjected to Triaxial compression[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(3):642-646, 657. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxkj201503018 [15] 陈勉, 金衍, 张广清.石油工程岩石力学[M].北京:科学出版社, 2008.CHEN Mian, JIN Yan, ZHANG Guanqing. Rock mechanics in petroleum engineering[M]. Beijing:Science Press, 2008. (in Chinese) [16] HUCKA V, DAS B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1974, 11(10):389-392. http://cn.bing.com/academic/profile?id=1df2f0b8e3f7549e5d6a0e58f78e282b&encoded=0&v=paper_preview&mkt=zh-cn [17] HAJIABDOLMAJID V, KAISER P. Brittleness of rock and stability assessment in hard rock tunneling[J]. Tunnelling and Underground Space Technology, 2003, 18(1):35-48. doi: 10.1016/S0886-7798(02)00100-1 [18] 周辉, 孟凡震, 张传庆, 等.基于应力-应变曲线的岩石脆性特征定量评价方法[J].岩石力学与工程学报, 2014, 33(6):1114-1122. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201406003ZHOU Hui, MENG Fanzhen, ZHANG Chuanqing, et al. Quantitative evaluation method of rock brittleness based on stress-strain curve[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6):1114-1122. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201406003 -