留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多场耦合作用下致密储层地应力场变化规律研究——以准噶尔盆地某区为例

孟宪波 徐佑德 张曰静 商丰凯 李静 孙鲁宁 郑海东

孟宪波, 徐佑德, 张曰静, 等, 2019. 多场耦合作用下致密储层地应力场变化规律研究——以准噶尔盆地某区为例. 地质力学学报, 25 (4): 467-474. DOI: 10.12090/j.issn.1006-6616.2019.25.04.044
引用本文: 孟宪波, 徐佑德, 张曰静, 等, 2019. 多场耦合作用下致密储层地应力场变化规律研究——以准噶尔盆地某区为例. 地质力学学报, 25 (4): 467-474. DOI: 10.12090/j.issn.1006-6616.2019.25.04.044
MENG Xianbo, XU Youde, ZHANG Yuejing, et al., 2019. STUDY ON THE VARIATION LAW OF CRUSTAL STRESS FIELD IN TIGHT RESERVOIR UNDER MULTI FIELD COUPLING. Journal of Geomechanics, 25 (4): 467-474. DOI: 10.12090/j.issn.1006-6616.2019.25.04.044
Citation: MENG Xianbo, XU Youde, ZHANG Yuejing, et al., 2019. STUDY ON THE VARIATION LAW OF CRUSTAL STRESS FIELD IN TIGHT RESERVOIR UNDER MULTI FIELD COUPLING. Journal of Geomechanics, 25 (4): 467-474. DOI: 10.12090/j.issn.1006-6616.2019.25.04.044

多场耦合作用下致密储层地应力场变化规律研究——以准噶尔盆地某区为例

doi: 10.12090/j.issn.1006-6616.2019.25.04.044
基金项目: 

国家科技重大专项 2016ZX05002-002

国家自然科学基金项目 41272141

详细信息
    作者简介:

    孟宪波(1977-), 男, 高级工程师、在读博士, 储层勘探研究与管理工作。E-mail:mengxianboupc@163.com

    通讯作者:

    李静(1967-), 女, 博士、教授、博士生导师, 从事地质力学与储层预测的研究与教学工作。E-mail:lijing0681@163.com

  • 中图分类号: TE319

STUDY ON THE VARIATION LAW OF CRUSTAL STRESS FIELD IN TIGHT RESERVOIR UNDER MULTI FIELD COUPLING

  • 摘要: 地应力是储层改造方案设计、提高油气勘探开发效率的重要指标。致密储层所处环境复杂,需要综合考虑温度-应力-渗流多场耦合作用的影响。为此,以准噶尔盆地中部4区块某三维区致密储层为例,基于COMSOL Multiphyics软件,建立了温度-应力-渗流耦合控制方程,研究了多场耦合作用下研究区致密储层地应力场的变化规律。研究结果表明:研究区最大水平主应力范围在113~134 MPa之间,最小水平主应力范围在106~124 MPa之间,均表现为压应力;在油气开采过程中,最大水平主应力先增大后趋于稳定,随着油气开采的深入,应力变化范围逐渐由井口周围向附近断层延展,并且优先沿着断层的开裂方向发展;在断层的破碎过渡区应力值最小,断层核部应力值介于破碎过渡区与连续地层之间;随着油气开采的深入,致密储层会发生竖向变形,储层最大竖向变形出现在井口附近,位移量超过10 cm,随着距离变远,沉降量不断减小。

     

  • 图  1  热流固耦合数值模型应力施加图

    Figure  1.  Stress applied graph using the THM coupling simulation model

    图  2  多场耦合作用下储层水平主应力(Pa)

    Figure  2.  Horizontal principal stress of reservoir under multi-field coupling

    图  3  目标储层最大水平主应力随开采时间变化云图(Pa)

    Figure  3.  The max horizontal stress of the target reservoir varing with the mining time (Pa)

    图  4  D8井附近最大水平主应力变化曲线图

    Figure  4.  The max horizontal principal stress curves of the well D8

    图  5  三场作用前后最大水平主应力方向图

    Figure  5.  The max horizontal principal stress pattern before and after T-H-M action

    图  6  与D8井口不同距离点的竖向位移变化曲线

    Figure  6.  Vertical displacement curves of different distance points from the well D8

    表  1  最优化反演数据表

    Table  1.   Optimized inversion data sheet

    边界荷载 反演最优值/MPa 边界荷载 反演最优值/MPa 边界荷载 反演最优值/MPa 边界荷载 反演最优值/MPa
    P1 149.47 P5 107.61 T1 -93.93 T5 89.08
    P2 91.55 P6 123.66 T2 64.19 T6 -14.19
    P3 77.72 P7 131.6 T3 -58.59 T7 69.59
    P4 138.54 P8 86.51 T4 16.51 T8 -22.67
    下载: 导出CSV

    表  2  计算参数表

    Table  2.   Calculation parameter list

    介质 密度/(kg/m3) 弹性模量/GPa 泊松比 热熔系数/(J·kg-1·K-1) 热传导系数/(W·m-1·K-1) 热膨胀系数/$\frac{1}{{\rm{K}}}$ 孔隙率/%
    连续地层 2700 28 0.22 923 2.47 5.3×10-5 0.06
    过渡区 2100 16.8 0.314 923 2.61 6.2×10-5 0.35
    断层核部 2800 28.8 0.21 923 2.45 5.2×10-5 0.03
    液相 1070 - - 4200 随温度变化 2.08×10-4 -
    下载: 导出CSV

    表  3  模拟结果与计算结果对比表

    Table  3.   Comparison between simulation results and calculation results

    井号 最大水平主应力/MPa
    模拟值 计算值 误差%
    D2 115.34 120.36 4.163
    D7 112.89 123.14 8.323
    D701 127.81 121.02 5.611
    D8 115.80 120.73 4.083
    下载: 导出CSV
  • [1] 曾溅辉, 杨智峰, 冯枭, 等.致密储层油气成藏机理研究现状及其关键科学问题[J].地球科学进展, 2014, 29(6):651-661. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201406001

    ZENG Jianhui, YANG Zhifeng, FENG Xiao, et al. Study status and key scientific issue of tight reservoir oil and gas accumulation mechanism[J]. Advances in Earth Science, 2014, 29(6):651-661. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201406001
    [2] 谷江锐, 刘岩.国外致密砂岩气藏储层研究现状和发展趋势[J].国外油田工程, 2009, 25(7):1-5. doi: 10.3969/j.issn.1002-641X.2009.07.001

    GU Jiangrui, LIU Yan. Present study and development trend of foreign tight gas sandstone reservoirs[J]. Foreign Oil Field Engineering, 2009, 25(7):1-5. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-641X.2009.07.001
    [3] 董晓霞, 梅廉夫, 全永旺.致密砂岩气藏的类型和勘探前景[J].天然气地球科学, 2007, 18(3):351-355. doi: 10.3969/j.issn.1672-1926.2007.03.007

    DONG Xiaoxia, MEI Lianfu, QUAN Yongwang. Types of tight sand gas accumulation and its exploration prospect[J]. Natural Gas Geoscience, 2007, 18(3):351-355. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-1926.2007.03.007
    [4] 徐向荣, 马利成, 唐汝众.地应力及其在致密砂岩气藏压裂开发中的应用[J].钻采工艺, 2000, 23(6):17-21. doi: 10.3969/j.issn.1006-768X.2000.06.006

    XU Xiangrong, MA Licheng, TANG Ruzhong. Application of formation stress in fracturing development for tight sandstone reservoir[J]. Drilling & Production Technology, 2000, 23(6):17-21. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-768X.2000.06.006
    [5] ECKERT A. 3D multi-scale finite element analysis of the crustal state of stress in the Western US and the Eastern California Shear Zone, and implications for stress-fluid flow interactions for the Coso geothermal field[D]. Karlsruhe: Institute of Geophysics, University of Karlsruhe, 2007.
    [6] MATSUKI K, NAKAMA S, SATO T. Estimation of regional stress by FEM for a heterogeneous rock mass with a large fault[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1):31-50. doi: 10.1016/j.ijrmms.2008.03.005
    [7] 丁文龙, 曾维特, 王濡岳, 等.页岩储层构造应力场模拟与裂缝分布预测方法及应用[J].地学前缘, 2016, 23(2):63-74. http://d.old.wanfangdata.com.cn/Periodical/dxqy201602008

    DING Wenlong, ZENG Weite, WANG Ruyue, et al. Method and application of tectonic stress field simulation and fracture distribution prediction in shale reservoir[J]. Earth Science Frontiers, 2016, 23(2):63-74. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/dxqy201602008
    [8] 李春林, 郭鹏, 任德生.大民屯凹陷构造应力场及其与油气运聚关系[J].油气地质与采收率, 2012, 19(6):47-49. doi: 10.3969/j.issn.1009-9603.2012.06.011

    LI Chunlin, GUO Peng, REN Desheng. Relationship between tectonic stress field and migration and accumulation of oil and gas in Damintun depression[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(6):47-49. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-9603.2012.06.011
    [9] 张建良.金湖凹陷卞东油田灰岩-砂岩混积岩储层应力场模拟及裂缝预测研究[J].石油天然气学报, 2012, 34(5):30-34, 48. doi: 10.3969/j.issn.1000-9752.2012.05.006

    ZHANG Jianliang. Stress field simulation and fracture forecast in lime-sandstone Diamictite reservoirs of Biandong oilfield in Jinhu sag[J]. Journal of Oil and Gas Technology, 2012, 34(5):30-34, 48. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-9752.2012.05.006
    [10] 徐珂, 戴俊生, 商琳, 等.高尚堡油田深层油藏南区现今地应力场预测及应用[J].中国石油大学学报(自然科学版), 2018, 42(6):19-29. doi: 10.3969/j.issn.1673-5005.2018.06.003

    XU Ke, DAI Junsheng, SHANG Lin, et al. Prediction of current in-situ stress filed and its application of southern area of deep reservoir in Gaoshangpu Oilfield[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(6):19-29. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-5005.2018.06.003
    [11] 柴军瑞.岩体渗流-应力-温度三场耦合的连续介质模型[J].红水河, 2003, 22(2):18-20. doi: 10.3969/j.issn.1001-408X.2003.02.005

    CHAI Junrui. Continuum model for coupled seepage, stress and temperature fields in rock mass[J]. Hongshui River, 2003, 22(2):18-20. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-408X.2003.02.005
    [12] 刘建军, 冯夏庭.我国油藏渗流-温度-应力耦合的研究进展[J].岩土力学, 2003, 24(S1):645-650. http://d.old.wanfangdata.com.cn/Conference/6735995

    LIU Jianjun, FENG Xiating. Advance of studies on thermo-hydro-mechanical interaction in oil reservoir in China[J]. Rock and Soil Mechanics, 2003, 24(S1):645-650. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Conference/6735995
    [13] 王群嶷.大庆油田三维地应力研究与低渗油气资源经济开发[D].北京: 中国地质大学(北京), 2009.

    WANG Qunyi. Study on 3-D stress field for economical effective development low permeability oil and gas resources in Daqing oil field[D]. Beijing: China University of Geosciences (Beijing), 2009. (in Chinese with English abstract)
    [14] 曾春雷.高温、高压和渗流耦合作用下软岩力学行为的研究[D].青岛: 青岛科技大学, 2007. https://max.book118.com/html/2015/1112/29267217.shtm

    ZENG Chunlei. Study on mechanical behavior of soft rock in coupled effect of high temperature, high pressure and seepage[D]. Qingdao: Qingdao University of Science & Technology, 2007. (in Chinese with English abstract) https://max.book118.com/html/2015/1112/29267217.shtm
    [15] 盛金昌.多孔介质流-固-热三场全耦合数学模型及数值模拟[J].岩石力学与工程学报, 2006, 25(S1):3028-3033. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2006z1066

    SHENG Jinchang. Fully coupled thermo-hydro-mechanical model of saturated porous media and numerical modelling[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1):3028-3033. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2006z1066
    [16] 李娟.复合场作用下的碳酸盐岩裂缝预测研究[D].青岛: 中国石油大学(华东), 2014.

    LI Juan. The prediction of fractures in carbonate rocks in the composite fields[D]. Qingdao: China University of Petroleum (East China), 2014. (in Chinese with English abstract)
    [17] 刘善利.饱和岩体热流固耦合模型研究[D].南京: 河海大学, 2007.

    LIU Shanli. Thermo-hydro-mechanical coupling model research in saturated rock mass[D]. Nanjing: Hohai University, 2007. (in Chinese with English abstract)
    [18] BONACINA C, COMINI G, FASANO A, et al. Numerical solution of phase-change problems[J]. International Journal of Heat and Mass Transfer, 1973, 16(10):1825-1832. doi: 10.1016/0017-9310(73)90202-0
    [19] 张立松, 闫相祯, 杨秀娟, 等.致密碎屑岩裂缝性储层裂缝发育定量预测[J].中南大学学报(自然科学版), 2014, 45(2):501-506. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201402024

    ZHANG Lisong, YAN Xiangzhen, YANG Xiujuan, et al. Quantitative prediction of natural fracture development for tight fractured clastic rock reservoir[J]. Journal of Central South University (Science and Technology), 2014, 45(2):501-506. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201402024
    [20] 刘向君, 罗平亚, 孟英峰.地应力场对井眼轨迹设计及稳定性的影响研究[J].天然气工业, 2004, 24(9):57-59. doi: 10.3321/j.issn:1000-0976.2004.09.017

    LIU Xiangjun, LUO Pingya, MENG Yingfeng. Influence of ground stress field on borehole trajectory design and wellface stability[J]. Natural Gas Industry, 2004, 24(9):57-59. (in Chinese) doi: 10.3321/j.issn:1000-0976.2004.09.017
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  372
  • HTML全文浏览量:  92
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-14
  • 修回日期:  2019-05-22
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回