STRESS INDUCED CHANGES IN THE ELECTRICAL-MAGNETIC PROPERTIES OF ROCK CORESHUANG
doi: 10.12090/j.issn.1006-6616.2019.25.04.042
-
Abstract: The Standard Lattice Model predicts that under high stress, the outer most electrons of the Si-O bonds of a rock get ejected into the lattice's interstitial space. This loosely bound exoelectron cloud will, in a battery's electric field, have a direct current (DC) I; it will also absorb electromagnetic (EM) waves which result in an alternating current (AC) component in the induced current. Both effects have been measured. At high stress just before fracture, the DC current shows a slow rise due to electron tunneling followed by a sudden rise due to the breaking bond electrons. The AC current's voltage amplitude shows a drop as the current increases, and returns to normal after fracture when the current decreases to normal. This is the conservation of energy:absorbed wave energy E=V×I, AC current power. This AC fracture result demonstrates that EM waves can be used to actively probe the changes in highly stressed crust zones.摘要: 根据标准晶格模型理论,在高应力作用下,岩石的Si-O键最外层电子将被挤入晶格间隙里,松散外逸的电子云在电场中将产生直流电流(DC),进而吸收电磁波,转换成交流电流(AC)。直流电流来源于量子力学穿隧效应电子和断键电子。穿隧效应电子的形成过程和原理:氧原子的最外电子被束缚在浅位能井(shallow potential well)(0.38 V),当高应力作用时,电子吸收部分能量,增加其动能,虽然这种轻微的动能增加不足以使电子克服并跳出它的位能井(potential well),但它足以增加穿过井壁(well wall)进入晶格空隙间的概率,这个概率乘以可用氧原子的数目即为由于隧穿效应形成电子云的电子数量,其量级通常为微微库伦(picocoulombs)到纳米库伦(nanocoulombs)。断键电子的形成过程和原理:从微裂纹开始断裂键释放电子,并且裂纹成核点极可能开始是平行排列的,每当Si-O键断裂时,就会产生一个+Si悬键,伴随着一个自由电子附着在-O原子上,这个电子将从原子跃迁到原子,这种电子电流与裂纹的表面积和电池电极的收集效率成正比。断键形成的电子云比穿隧效应多很多。两种电子均被试验所证实。在高应力条件下岩石破裂之前,由电子穿隧效应,DC缓慢增加,随着岩石破裂的发生而导致断键电子增多,DC急剧增加;AC的电压振幅(V)随电流(I)增大而减小,当电流减小到正常时,在岩石破裂后电压振幅回归正常;遵守能量守恒原理,吸收的电磁波能量(E)与交流电流功率(V×I)相等,即E=V×I。研究结果表明电磁波监测可用于探测地壳高应力变化和岩石破裂特征,当应力达到岩体断裂的临界强度时,其应变晶体结构开始释放越来越多的外逸电子,最终岩体晶体结构断裂产生一个地震或滑动事件。岩石破裂的电磁性能变化研究可用于研发电磁波地学监测仪器,电磁波监测可以作为地应力监测的一种补充和对比分析方法,两种方法相结合比地应力监测一种方法更可靠。此外,在高应力条件下岩石还有其它现象:应变蠕变辐射、光发射、声发射、静电等,这些现象的观测也是预测地质事件需要考虑的条件。
-
-
-
[1] BRADY B T, ROWEL G A. Laboratory investigation of the electrodynamics of rock fracture[J]. Nature, 1986, 321(6069):488-492. doi: 10.1038/321488a0 [2] CRESS G O, BRADY B T, ROWEL G A. Sources of electromagnetic radiation from fracture of rock samples in the laboratory[J]. Geophysical Research Letters, 1987, 14(4):331-334. doi: 10.1029/GL014i004p00331 [3] LI M, LU J, PARROT M, et al. Review of unprecedented ULF electromagnetic anomalous emissions possibly related to the Wenchuan MS=8.0 earthquake May 12, 2008[J]. Natural Hazards and Earth System Sciences, 2013, 13(2):279-286. [4] ANASTASIADIS et al. Electric and EM signals from rocks under stress[A]. 2nd IASME/WSEAS Geology and Seismology Conference Proceedings (GES 08)[C]. Cambridge, UK: 2008, Feb 23-25. [5] JENSEN E A. A comparison of Short-Circuited Streaming Potentials in Westerly granite from Changes in Rock's Volume, Shape, Saturation and Fracture Under Unconfined Uniaxial Compression[D]. Cambridge: Massachusetts Institute of Technology, 1999. [6] 牛琳琳, 丰成君, 张鹏, 等.鄂尔多斯地块南缘地应力测量研究[J].地质力学学报, 2018, 24(1):25-34, doi: 10.12090/j.issn.1006-6616.2018.24.01.003.NIU Linlin, FENG Chengjun, ZHANG Peng, et al. In-situ measurements in the southern margin of the Ordos block[J]. Journal of Geomechanics, 2018, 24(1):25-34, doi: 10.12090/j.issn.1006-6616.2018.24.01.003.(Chinese with English abstract) [7] CAI M F, PENG H, MA X M, et al. Evolution of the in situ rock strain observed at Shandan monitoring station during the M8.0 earthquake in Wenchuan, China[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(5):952-955. doi: 10.1016/j.ijrmms.2008.12.004 [8] 马秀敏, 彭华, 白金朋, 等.岩石非弹性应变恢复(ASR)地应力测试方法中柔度研究进展评述[J].地质力学学报, 2017, 23(4):526-530. doi: 10.3969/j.issn.1006-6616.2017.04.003MA Xiumin, PENG Hua, BAI Jinpeng, et al. Review on the research progress of the compliance of rocks in in-situ stress measurement methods of anelastic strain recovery (ASR)[J]. Journal of Geomechanics, 2017, 23(4):526-530. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2017.04.003 [9] 姚鑫, 周振凯, 李凌婧, 等. 2017年四川九寨沟MS7.0地震InSAR同震形变场及发震构造探讨[J].地质力学学报, 2017, 23(4):507-514. doi: 10.3969/j.issn.1006-6616.2017.04.001YAO Xin, ZHOU Zhenkai, LI Lingjing, et al. InSAR co-seismic deformation of 2017MS7.0 Jiuzhaigou earthquake and discussions on seismogenic tectonics[J]. Journal of Geomechanics, 2017, 23(4):507-514. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2017.04.001 [10] SCHIFF L I. Quantum mechanics[M]. 3rd ed. New York:McGraw-Hill Companies, 1968:100-104. 期刊类型引用(7)
1. 官大勇,杜晓峰,王启明,王志萍. 渤海海域莱州湾凹陷沙三段水道型湖底扇发育特征与沉积模式. 地球科学. 2023(02): 503-516 . 百度学术
2. 杨海风,涂翔,赵弟江,张丙亮,王雪莲,王波. 渤海湾盆地莱州湾凹陷沙河街组第三、第四段烃源岩有机相特征. 成都理工大学学报(自然科学版). 2021(01): 72-81 . 百度学术
3. 汪晓萌,彭光荣,吴静,柳琼瑶,李振升,蔡国富,袁阳. 珠江口盆地恩平21洼文昌组沉积期原型盆地及其对优质烃源岩的控制. 大地构造与成矿学. 2021(01): 158-167 . 百度学术
4. LIANG Haoran,XU Guosheng,YU Qing,XU Fanghao,WANG Deying,CHEN Zhiyuan. Paleosalinity and Its Association with Organic Matter: A Case Study from the Eocene Shahejie Formation, Laizhou Bay Sag, Bohai Bay Basin(China). Journal of Ocean University of China. 2021(04): 741-754 . 必应学术
5. 王航,杨海风,黄振,白冰,高雁飞. 基于可容纳空间变化的河流相演化新模式及其控藏作用——以莱州湾凹陷垦利A构造为例. 岩性油气藏. 2020(05): 73-83 . 百度学术
6. 王启明,杜晓峰,宛良伟,付鑫,李晓辉. 渤海海域莱南斜坡带沙三下亚段混合沉积发育特征及主控因素. 地球科学. 2020(10): 3645-3662 . 百度学术
7. 冯冲,王清斌,谭忠健,代黎明,刘晓健,赵梦. 富火山碎屑地层复杂岩性测井分类与识别——以KL16油田为例. 石油学报. 2019(S2): 91-101 . 百度学术
其他类型引用(3)
-