留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同围压时含孔洞模型裂缝扩展的连续—非连续数值模拟

白雪元 王学滨 马冰 芦伟男 祝铭泽

白雪元, 王学滨, 马冰, 等, 2019. 不同围压时含孔洞模型裂缝扩展的连续—非连续数值模拟. 地质力学学报, 25 (2): 240-248. DOI: 10.12090/j.issn.1006-6616.2019.25.02.023
引用本文: 白雪元, 王学滨, 马冰, 等, 2019. 不同围压时含孔洞模型裂缝扩展的连续—非连续数值模拟. 地质力学学报, 25 (2): 240-248. DOI: 10.12090/j.issn.1006-6616.2019.25.02.023
BAI Xueyuan, WANG Xuebin, MA Bing, et al., 2019. SIMULATION OF THE CRACK PROPAGATION FOR THE MODEL WITH A HOLE UNDER DIFFERENT CONFINING PRESSURES BASED ON A CONTINUUM-DISCONTINUUM METHOD. Journal of Geomechanics, 25 (2): 240-248. DOI: 10.12090/j.issn.1006-6616.2019.25.02.023
Citation: BAI Xueyuan, WANG Xuebin, MA Bing, et al., 2019. SIMULATION OF THE CRACK PROPAGATION FOR THE MODEL WITH A HOLE UNDER DIFFERENT CONFINING PRESSURES BASED ON A CONTINUUM-DISCONTINUUM METHOD. Journal of Geomechanics, 25 (2): 240-248. DOI: 10.12090/j.issn.1006-6616.2019.25.02.023

不同围压时含孔洞模型裂缝扩展的连续—非连续数值模拟

doi: 10.12090/j.issn.1006-6616.2019.25.02.023
基金项目: 

国家自然科学基金项目 51574144

详细信息
    作者简介:

    白雪元(1991-), 男, 在读博士, 主要从事计算固体力学方面研究。E-mail: xueyuan_bai@126.com

    通讯作者:

    王学滨(1975-), 男, 博士, 教授, 主要从事工程材料变形、破坏及稳定性研究。E-mail:wxbbb@263.net

  • 中图分类号: TU45

SIMULATION OF THE CRACK PROPAGATION FOR THE MODEL WITH A HOLE UNDER DIFFERENT CONFINING PRESSURES BASED ON A CONTINUUM-DISCONTINUUM METHOD

  • 摘要: 为了有效地模拟连续介质向非连续介质的转化,发展了一种拉格朗日元方法、变形体离散元方法及虚拟裂纹模型耦合且考虑四边形单元沿对角线开裂的连续—非连续方法。利用该方法,模拟了不同围压时含孔洞模型的变形—开裂过程,统计了拉裂缝及剪裂缝区段数目,监测了一些单元的最大主应力。研究结果表明:当围压较小时,初始拉裂缝首先出现在孔洞的顶、底部,然后向模型的上、下端扩展,在初始拉裂缝的左、右两侧的拉应力集中区中产生远场拉裂缝,随后在孔洞的左、右两侧出现剪裂缝,最后,剪裂缝贯穿模型;当围压较大时,远场拉裂缝数量较少,未充分发展,远场拉裂缝与剪裂缝的发展阶段的界限不分明。含孔洞模型的最大承载力的下降是由于孔洞左、右两侧的剪裂缝向外扩展造成的。随着围压的增加,开始出现初始拉裂缝的时步数目增大,初始拉裂缝两侧的远场拉裂缝数目变少、出现变晚。

     

  • 图  1  裂缝扩展示意图

    ①-⑥为单元编号

    Figure  1.  Schematic of crack propagation

    图  2  模型的边界条件

    Figure  2.  Boundary conditions of the model

    图  3  方案1的最大主应力及裂缝的时空分布

    Figure  3.  Spatiotemporal distributions of σ3 and cracks in scheme 1

    图  4  方案1的应力、拉裂缝及剪裂缝区段数目—时步数目曲线

    ①-④分别为第1、2、3增加阶段与恒定阶段;
    ①’-③’分别为第1、2增加阶段与恒定阶段

    Figure  4.  Evolution of the stress, the number of tensile crack segments, the number of shear crack segments with timesteps in scheme 1

    图  5  方案1的不同监测单元的最大主应力—时步数目曲线

    Figure  5.  Relationships between σ3 and timesteps indifferent monitored elements in scheme 1

    图  6  方案2的最大主应力及裂缝的时空分布

    Figure  6.  Spatiotemporal distributions of σ3 and cracks in scheme 2

    图  7  方案3的最大主应力及裂缝的时空分布

    Figure  7.  Spatiotemporal distributions of σ3 and cracks in scheme 3

    图  8  方案2的应力、拉裂缝及剪裂缝区段数目—时步数目曲线

    ①-④分别为第1-第3增加阶段与恒定阶段;
    ①’-③’分别为第1-第2个增加阶段及恒定阶段

    Figure  8.  Evolution of the stress, the number of tensile crack segments, the number of shear crack segments with timesteps in scheme 2

    图  9  方案3的应力、拉裂缝及剪裂缝区段数目—时步数目曲线

    ①、②-③及④分别为第1-第2增加阶段及恒定阶段;
    ①’-③’分别为第1-第2个增加阶段及恒定阶段

    Figure  9.  Evolution of the stress, the number of tensile crack segments, the number of shear crack segments with timesteps in scheme 3

    图  10  不同围压时应力—时步数目曲线

    Figure  10.  Evolution of the stresses and timesteps at different confining pressures

    图  11  不同围压时拉裂缝区段数目—时步数目曲线

    Figure  11.  Evolution of the number of tensile crack segments with timesteps at different confining pressures

    图  12  不同围压时剪裂缝区段数目—时步数目曲线

    Figure  12.  Evolution of the number of shear crack segments and timesteps at different confining pressures

    图  13  方案2—方案3的监测单元4、5的最大主应力—时步数目曲线

    Figure  13.  Evolution of σ3 with timesteps for monitored elements 4 and 5 in schemes 2 and 3

  • [1] Carter B J, Lajtai E Z, Yuan Y G. Tensile fracture from circular cavities loaded in compression[J]. International Journal of Fracture, 1992, 57(3):221~236.
    [2] 宋义敏, 潘一山, 章梦涛, 等.洞室围岩三种破坏形式的试验研究[J].岩石力学与工程学报, 2010, 29(S1):2741~2745. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2010z1022

    SONG Yimin, PAN Yishan, ZHANG Mengtao, et al. Experimental investigation on fracture of three types of underground caverns[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S1):2741~2745. (in Chinese with English abstract http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2010z1022
    [3] 郭晓菲, 马念杰, 赵希栋, 等.圆形巷道围岩塑性区的一般形态及其判定准则[J].煤炭学报, 2016, 41(8):1871~1877. http://d.old.wanfangdata.com.cn/Periodical/mtxb201608001

    GUO Xiaofei, MA Nianjie, ZHAO Xidong, et al. General shapes and criterion for surrounding rock mass plastic zone of round roadway[J]. Journal of China Coal Society, 2016, 41(8):1871~1877. (in Chinese with English abstract http://d.old.wanfangdata.com.cn/Periodical/mtxb201608001
    [4] 张纯旺, 宋选民, 王伟, 等.双向不等压圆形巷道围岩塑性区理论分析及数值模拟[J].煤矿安全, 2017, 48(11):217~221. http://d.old.wanfangdata.com.cn/Periodical/mkaq201711058

    ZHANG Chunwang, SONG Xuanmin, WANG Wei, et al. Theoretical analysis and numerical simulation on plastic zone in circular tunnel under bidirectional non-uniform stress field[J]. Safety in Coal Mines, 2017, 48(11):217~221. (in Chinese with English abstract http://d.old.wanfangdata.com.cn/Periodical/mkaq201711058
    [5] 黎崇金, 李夕兵, 李地元.含孔洞大理岩破坏特性的颗粒流分析[J].工程科学学报, 2017, 39(12):1791~1801. http://d.old.wanfangdata.com.cn/Periodical/bjkjdxxb201712003

    LI Chongjin, LI Xibing, LI Diyuan. Particle flow analysis of fracture characteristics of marble with a single hole[J]. Chinese Journal of Engineering, 2017, 39(12):1791~1801. (in Chinese with English abstract http://d.old.wanfangdata.com.cn/Periodical/bjkjdxxb201712003
    [6] Lisjak A, Grasselli G. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(4):301~314. doi: 10.1016/j.jrmge.2013.12.007
    [7] Mahabadi O, Kaifosh P, Marschall P, et al. Three-dimensional FDEM numerical simulation of failure processes observed in Opalinus Clay laboratory samples[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(6):591~606. doi: 10.1016/j.jrmge.2014.10.005
    [8] 王学滨.拉格朗日元方法、变形体离散元方法及虚拟裂纹模型耦合的连续-非连续介质力学分析方法研究[R].北京: 中国矿业大学(北京), 2015.

    WANG Xuebin. A method for continuum-discontinuum medium based on the coupled Lagrangian element method, deformational discrete element method and fictitious crack model[R]. Beijing: China University of Mining and Technology (Beijing), 2015. (in Chinese with English abstract
    [9] 王学滨, 白雪元, 祝铭泽.基于连续-非连续方法的地质体材料变形-拉裂过程模拟——以岩样紧凑拉伸试验为例[J].地质力学学报, 2018, 24(3):332~340. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180305&journal_id=dzlxxb

    WANG Xuebin, BAI Xueyuan, ZHU Mingze. Modeling of deformation-cracking processes of geomaterials based on a continuum-discontinuum method:a case study of compact tension test[J]. Journal of Geomechanics, 2018, 24(3):332~340. (in Chinese with English abstract http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180305&journal_id=dzlxxb
    [10] 王学滨, 陈忠元, 郭瑞, 等.预设V形缺口的单向拉伸岩样变形-开裂过程模拟——基于连续-非连续方法[J].防灾减灾工程学报, 2018, 38(2):209~215. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxk201802002

    WANG Xuebin, CHEN Zhongyuan, GUO Rui, et al. Modeling of deformation-cracking processes of rock specimens with V-shaped notches in uniaxial tension-based on a continuum-discontinuum method[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(2):209~215. (in Chinese with English abstract http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxk201802002
    [11] 郭翔, 王学滨, 白雪元, 等.加载方式及抗拉强度对巴西圆盘试验影响的连续-非连续方法数值模拟[J].岩土力学, 2017, 38(1):214~220. http://d.old.wanfangdata.com.cn/Periodical/ytlx201701027

    GUO Xiang, WANG Xuebin, BAI Xueyuan, et al. Numerical simulation of effects of loading types and tensile strengths on Brazilian disk test by use of a continuum-discontinuum method[J]. Rock and Soil Mechanics, 2017, 38(1):214~220. (in Chinese with English abstract http://d.old.wanfangdata.com.cn/Periodical/ytlx201701027
    [12] 侯艳丽, 张楚汉.用三维离散元实现混凝土Ⅰ型断裂模拟[J].工程力学, 2007, 24(1):37~43. doi: 10.3969/j.issn.1000-4750.2007.01.007

    HOU Yanli, ZHANG Chuhan. Mode Ⅰ-fracture simulation of concrete based on 3D distinct element method[J]. Engineering Mechanics, 2007, 24(1):37~43. (in Chinese with English abstract doi: 10.3969/j.issn.1000-4750.2007.01.007
    [13] 张楚汉, 金峰, 侯艳丽, 等.岩石和混凝土离散-接触-断裂分析[M].北京:清华大学出版社. 2008.
    [14] 郑宏, 葛修润, 李焯芬.脆塑性岩体的分析原理及其应用[J].岩石力学与工程学报, 1997, 16(1):8~21. doi: 10.3321/j.issn:1000-6915.1997.01.002

    ZHENG Hong, GE Xiurun, Lee C F. Analysis principle for rock mass with brittle-plasticity and its applications[J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(1):8~21. (in Chinese with English abstract doi: 10.3321/j.issn:1000-6915.1997.01.002
    [15] Munjiza A. The combined finite-discrete element method[M]. England:John Wiley & Sons Ltd.
  • 加载中
图(13)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  52
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-12
  • 修回日期:  2018-08-03
  • 刊出日期:  2019-04-28

目录

    /

    返回文章
    返回