A NEW METHOD FOR FRACRABILITY EVALUATION IN DEEP AND TIGHT SANDSTONE RESERVOIRS
-
摘要: 岩石可压性评价是储层压裂改造层位优选、压后产能评估的重要基础工作。准中4区块致密砂岩储层埋藏深、物性差,亟需通过压裂改造提高工业产能。因此,以董2井北三维区侏罗系致密砂岩为例,基于岩石三轴实验建立了致密砂岩断裂能密度—弹性模量的拟合公式,采用矿物成分法和弹模-泊松比法确定了研究区不同深度岩石脆性指数,采用岩石破裂准则确定了研究区不同深度的裂缝发育指数。以断裂能密度表征致密砂岩断裂韧性,以裂缝发育指数表征储层天然裂缝发育程度,综合考虑岩石脆性、断裂韧性、地应力环境和天然裂缝发育程度的影响,采用层次分析法计算了各因素权重,建立了适合深层致密砂岩的可压性评价方法。研究结果表明,可压裂性指数大于0.55时,可压性好;可压裂性指数介于0.50~0.55之间时,可压性一般;可压裂性指数小于0.50时,可压性差;研究区D7井的最佳压裂层位为4145~4160 m、4470~4480 m、5290~5330 m,D8井的最佳压裂层位为5120~5330 m、5350~5365 m,D701井的最佳压裂层位为3900~3910 m、4430~4440 m、4455~4465 m、5125~5135 m。Abstract: Fracrability evaluation is the basis for the optimization of fracturing level and the evaluation of productivity after fracturing. The tight sandstone reservoirs in block 4 in central Junggar Basin are buried deep and poor in physical property, and it is urgent to improve the industrial productivity by fracturing. Therefore, the fracture property of the Jurassic tight sandstone of Dong 2 well north area is studied as an example. Based on the experimental data of the rock triaxial test, the fitting formula of fracture energy density and elastic modulus of tight sandstone is established. Brittleness index of rocks at different depths in the study area is determined by mineral composition method and elastic modulus-Poisson ratio method.The fracture development index of different depths in the study area is determined by the criterion of rock fracture. Fracture energy density is used to characterize the fracture toughness of tight sandstone, and the fracture development index is used to characterize the development degree of natural fractures. Considering the influence of rock brittleness, fracture toughness, in-situ stress and development degree of natural fractures, the weight of each parameter is calculated by analytic hierarchy process, and a new quantitative fracrability evaluation of deep and tight sandstone reservoirs is established. The results show that when the fracrability index is greater than 0.55, the reservoir can be fractured well, when the fracrability index is between 0.50~0.55, the fractured reservoir is moderate, and when the fracrability index is less than 0.50, the fractured reservoir is poor. In the study area, the optimal fracturing horizons of Well D7 are 4145~4160 m, 4470~4480 m, 5290~5330 m, Well D8 are 5120~5330 m, 5350~5365 m, and Well D701 are 3900~3910 m, 4430~4440 m, 4455~4465 m, 5125~5135 m.
-
Key words:
- tight sandstone /
- fracrability /
- fracrability index /
- rock brittleness /
- fracture toughness /
- natural fractures
-
表 1 研究区致密砂岩弹性模量及断裂能密度表
Table 1. Elastic modulus and fracture energy density table for tight sandstone in the study area
井号 编号 围压/
MPa峰值强度/
MPa残余应力/
MPa弹性模量/
GPa断裂能密度/
(N·mm·mm-3)D7 1 0 54.5 6.5 9.55 23.35 2 10 106.7 61.8 12.16 51.94 3 30 191.5 134.2 19.09 133.99 4 40 206.4 162.4 19.19 151.86 D8 5 0 49.9 15.8 8.87 41.75 6 10 140.7 67.4 16.40 121.78 7 30 237.3 186.9 22.46 175.04 8 20 188.9 97.3 19.50 158.31 D701 9 0 24.4 4.7 4.28 21.06 10 0 22.4 4.8 4.27 19.26 11 20 136.0 80.3 15.64 107.52 12 40 186.3 161.1 17.74 142.94 表 2 判断矩阵标度
Table 2. Judgement matrix scale
标度 含义 1 表示两影响因素i和j相比,重要性相同 3 表示两影响因素i和j相比,一个比另一个稍微重要 5 表示两影响因素i和j相比,一个比另一个重要 7 表示两影响因素i和j相比,一个比另一个明显重要 9 表示两影响因素i和j相比,一个比另一个极其重要 2、4、6、8 上述两相邻判断中间值 注:影响因素i和j比较判断值为Aij,则j和i比较判断值为1/Aij 表 3 可压裂性指标判断矩阵
Table 3. Judgment matrix for fracrability index
A 脆性
指数断裂能
密度水平应力
差异系数裂缝发育
指数脆性指数 1 2 2 3 断裂能密度 1/2 1 1 2 水平应力差异系数 1/2 1 1 2 裂缝发育指数 1/3 1/2 1/2 1 -
[1] 张惠良, 张荣虎, 杨海军, 等.超深层裂缝-孔隙型致密砂岩储集层表征与评价——以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J].石油勘探与开发, 2014, 41(2):158~167. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201402004ZHANG Huiliang, ZHANG Ronghu, YANG Haijun, et al. Characterization and evaluation of ultra-deep fracture-pore tight sandstone reservoirs:a case study of Cretaceous Bashijiqike Formation in Kelasu tectonic zone in Kuqa foreland basin, Tarim, NW China[J]. Petroleum Exploration and Development, 2014, 41(2):158~167. (in Chinese with English abstract http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201402004 [2] 张丽辰, 吴孔友, 何文军, 等.准噶尔盆地北三台凸起断裂结构特征及成岩封闭作用[J].地质力学学报, 2018, 24(5):607~616. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180503&journal_id=dzlxxbZHANG Lichen, WU Kongyou, HE Wenjun, et al. Structural characteristics and diagenetic sealing of faults in the Beisantai Swell, Junggar Basin[J]. Journal of Geomechanics, 2018, 24(5):607~616. (in Chinese with English abstract http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180503&journal_id=dzlxxb [3] 周汉国, 郭建春, 李静, 等.裂隙特征对岩石渗流特性的影响规律研究[J].地质力学学报, 2017, 23(4):531~539. doi: 10.3969/j.issn.1006-6616.2017.04.004ZHOU Hanguo, GUO Jianchun, LI Jing, et al. A study on the influence rule of the fracture characteristics on rock seepage characteristics[J]. Journal of Geomechanics, 2017, 23(4):531~539. (in Chinese with English abstract doi: 10.3969/j.issn.1006-6616.2017.04.004 [4] 孙建孟, 韩志磊, 秦瑞宝, 等.致密气储层可压裂性测井评价方法[J].石油学报, 2015, 36(1):74~80. http://d.old.wanfangdata.com.cn/Periodical/syxb201501009SUN Jianmeng, HAN Zhilei, QIN Ruibao, et al. Log evaluation method of fracturing performance in tight gas reservoir[J]. Acta Petrolei Sinica, 2015, 36(1):74~80. (in Chinese with English abstract http://d.old.wanfangdata.com.cn/Periodical/syxb201501009 [5] 杜书恒, 关平, 师永民, 等.低渗透砂岩储层可压裂性新判据[J].地学前缘, 2017, 24(2):257~264. http://d.old.wanfangdata.com.cn/Periodical/dxqy201702026DU Shuheng, GUAN Ping, SHI Yongmin, et al. New fracturing criteria on low permeability sandstone reservoirs[J]. Earth Science Frontiers, 2017, 24(2):257~264. (in Chinese with English abstract http://d.old.wanfangdata.com.cn/Periodical/dxqy201702026 [6] 肖苏芸, 张冲, 张杰, 等.基于阵列声波资料评价致密砂岩可压裂性[J].中州煤炭, 2016, (4):125~128. doi: 10.3969/j.issn.1003-0506.2016.04.035XIAO Suyun, ZHANG Chong, ZHANG Jie, et al. Fracability evaluation of tight sandstone reservoirs based on array acoustic date[J]. Zhongzhou Coal, 2016, (4):125~128. (in Chinese with English abstract doi: 10.3969/j.issn.1003-0506.2016.04.035 [7] 李年银, 代金鑫, 刘超, 等.致密碳酸盐岩气藏体积酸压可行性研究及施工效果——以鄂尔多斯盆地下古生界碳酸盐岩气藏为例[J].油气地质与采收率, 2016, 23(3):120~126. doi: 10.3969/j.issn.1009-9603.2016.03.022LI Nianyin, DAI Jinxin, LIU Chao, et al. Feasibility research on volume acid fracturing to tight carbonate gas reservoir and its construction effect:a case study of lower Paleozoic carbonate gas reservoir in Ordos basin[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(3):120~126. (in Chinese with English abstract doi: 10.3969/j.issn.1009-9603.2016.03.022 [8] 隋丽丽, 杨永明, 杨文光, 等.胜利油田东营凹陷区页岩可压裂性评价[J].煤炭学报, 2015, 40(7):1588~1594. http://d.old.wanfangdata.com.cn/Periodical/mtxb201507018SUI Lili, YANG Yongming, YANG Wenguang, et al. Comprehensive evaluation of shale fracability in Dongying subsidence zone of Shengli oilfield[J]. Journal of China Coal Society, 2015, 40(7):1588~1594. (in Chinese with English abstract http://d.old.wanfangdata.com.cn/Periodical/mtxb201507018 [9] 王松, 杨洪志, 赵金洲, 等.页岩气井可压裂性综合评价方法研究及应用[J].油气地质与采收率, 2016, 23(2):121~126. doi: 10.3969/j.issn.1009-9603.2016.02.021WANG Song, YANG Hongzhi, ZHAO Jinzhou, et al. Research and application of comprehensive evaluation on fracability of shale gas wells[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(2):121~126. (in Chinese with English abstract doi: 10.3969/j.issn.1009-9603.2016.02.021 [10] 陈治喜, 陈勉, 金衍.岩石断裂韧性与声波速度相关性的试验研究[J].石油钻采工艺, 1997, 19(5):56~60, 75. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZC199705016.htmCHEN Zhixi, CHEN Mian, JIN Yan. Experimental study on the relationship between rock fracture toughness and acoustic velocity[J]. Oil Drilling & Production Technology, 1997, 19(5):56~60, 75. (in Chinese with English abstract http://www.cnki.com.cn/Article/CJFDTOTAL-SYZC199705016.htm [11] 李庆辉, 陈勉, 金衍, 等.页岩脆性的室内评价方法及改进[J].岩石力学与工程学报, 2012, 31(8):1680~1685. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201208023LI Qinghui, CHEN Mian, JIN Yan, et al. Indoor evaluation method for shale brittleness and improvement[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8):1680~1685. (in Chinese with English abstract http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201208023 [12] 周辉, 孟凡震, 张传庆, 等.基于应力-应变曲线的岩石脆性特征定量评价方法[J].岩石力学与工程学报, 2014, 33(6):1114~1122. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201406003ZHOU Hui, MENG Fanzhen, ZHANG Chuanqing, et al. Quantitative evaluation of rock brittleness based on stress-strain curve[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6):1114~1122. (in Chinese with English abstract http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201406003 [13] Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems:the mississippian barnett shale of north-central texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4):475~499. doi: 10.1306/12190606068 [14] 杨秀娟, 张敏, 闫相祯.基于声波测井信息的岩石弹性力学参数研究[J].石油地质与工程, 2008, 22(4):39~42. doi: 10.3969/j.issn.1673-8217.2008.04.013YANG Xiujuan, ZHANG Min, YAN Xiangzhen. Study on acoustic logging-based rock elasticity parameters[J]. Petroleum Geology and Engineering, 2008, 22(4):39~42. (in Chinese with English abstract doi: 10.3969/j.issn.1673-8217.2008.04.013 [15] Rickman R, Mullen M J, Petre J E, et al. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the barnett shale[A]. Proceedings of SPE Annual Technical Conference and Exhibition[C]. Denver, Colorado, USA: Society of Petroleum Engineers, 2008. [16] 张军, 艾池, 李玉伟, 等.基于岩石破坏全过程能量演化的脆性评价指数[J].岩石力学与工程学报, 2017, 36(6):1326~1340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201706003ZHANG Jun, AI Chi, LI Yuwei, et al. Brittleness evaluation index based on energy evolution of the whole process of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6):1326~1340. (in Chinese with English abstract http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201706003 [17] 彭成勇, 刘书杰, 李扬, 等.砂岩储层可压裂性评价方法研究[J].科学技术与工程, 2014, 14(20):205~209. doi: 10.3969/j.issn.1671-1815.2014.20.039PENG Chengyong, LIU Shujie, LI Yang, et al. Fracability evaluation of sandstone reservoirs[J]. Science Technology and Engineering, 2014, 14(20):205~209. (in Chinese with English abstract doi: 10.3969/j.issn.1671-1815.2014.20.039 [18] 张美玲, 董传雷, 蔺建华.地应力分层技术在压裂设计优化中的应用[J].地质力学学报, 2017, 23(3):467~474. doi: 10.3969/j.issn.1006-6616.2017.03.014ZHANG Meiling, DONG Chuanlei, LIN Jianhua. The application of geostress layering technology in fracture design optimization[J]. Journal of Geomechanics, 2017, 23(3):467~474. (in Chinese with English abstract doi: 10.3969/j.issn.1006-6616.2017.03.014 [19] 陈勉, 周健, 金衍, 等.随机裂缝性储层压裂特征实验研究[J].石油学报, 2008, 29(3):431~434. doi: 10.3321/j.issn:0253-2697.2008.03.023CHEN Mian, ZHOU Jian, JIN Yan, et al. Experimental study on fracturing features in naturally fractured reservoir[J]. Acta Petrolei Sinica, 2008, 29(3):431~434. (in Chinese with English abstract doi: 10.3321/j.issn:0253-2697.2008.03.023 [20] Beugelsdijk L J L, de Pater C J, Sato K. Experimental hydraulic fracture propagation in a multi-fractured medium[A]. Proceedings of SPE Asia Pacific Conference on Integrated Modelling for Asset Management[C]. Yokohama, Japan: Society of Petroleum Engineers, 2000. [21] 黄荣樽.地层破裂压力预测模式的探讨[J].华东石油学院学报, 1984, (4):335~347. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX198404001.htmHUANG Rongzun. A model for predicting formation fracture pressure[J]. Journal of the University of Petroleum, China, 1984, (4):335~347. (in Chinese with English abstract http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX198404001.htm [22] 郭建春, 尹建, 赵志红.裂缝干扰下页岩储层压裂形成复杂裂缝可行性[J].岩石力学与工程学报, 2014, 33(8):1589~1596. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201408009GUO Jianchun, YIN Jian, ZHAO Zhihong. Feasibility of formation of complex fractures under cracks interference in shale reservoir fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8):1589~1596. (in Chinese with English abstract http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201408009