留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深层致密砂岩储层可压裂性评价新方法

曾治平 刘震 马骥 张春磊 李静 刘振 孙鲁宁

曾治平, 刘震, 马骥, 等, 2019. 深层致密砂岩储层可压裂性评价新方法. 地质力学学报, 25 (2): 223-232. DOI: 10.12090/j.issn.1006-6616.2019.25.02.021
引用本文: 曾治平, 刘震, 马骥, 等, 2019. 深层致密砂岩储层可压裂性评价新方法. 地质力学学报, 25 (2): 223-232. DOI: 10.12090/j.issn.1006-6616.2019.25.02.021
ZENG Zhiping, LIU Zhen, MA Ji, et al., 2019. A NEW METHOD FOR FRACRABILITY EVALUATION IN DEEP AND TIGHT SANDSTONE RESERVOIRS. Journal of Geomechanics, 25 (2): 223-232. DOI: 10.12090/j.issn.1006-6616.2019.25.02.021
Citation: ZENG Zhiping, LIU Zhen, MA Ji, et al., 2019. A NEW METHOD FOR FRACRABILITY EVALUATION IN DEEP AND TIGHT SANDSTONE RESERVOIRS. Journal of Geomechanics, 25 (2): 223-232. DOI: 10.12090/j.issn.1006-6616.2019.25.02.021

深层致密砂岩储层可压裂性评价新方法

doi: 10.12090/j.issn.1006-6616.2019.25.02.021
基金项目: 

国家科技重大专项 2016ZX05002-002

国家自然科学基金 41272141

详细信息
    作者简介:

    曾治平(1977-), 男, 高级工程师, 博士, 从事石油地质与油气成藏研究。E-mail: zengzhipingupc@163.com

    通讯作者:

    李静(1967-), 女, 博士, 教授, 博士生导师, 主要从事岩石力学与地质力学方面的教学与研究工作。E-mail: lijing0681@163.com

  • 中图分类号: TE349

A NEW METHOD FOR FRACRABILITY EVALUATION IN DEEP AND TIGHT SANDSTONE RESERVOIRS

  • 摘要: 岩石可压性评价是储层压裂改造层位优选、压后产能评估的重要基础工作。准中4区块致密砂岩储层埋藏深、物性差,亟需通过压裂改造提高工业产能。因此,以董2井北三维区侏罗系致密砂岩为例,基于岩石三轴实验建立了致密砂岩断裂能密度—弹性模量的拟合公式,采用矿物成分法和弹模-泊松比法确定了研究区不同深度岩石脆性指数,采用岩石破裂准则确定了研究区不同深度的裂缝发育指数。以断裂能密度表征致密砂岩断裂韧性,以裂缝发育指数表征储层天然裂缝发育程度,综合考虑岩石脆性、断裂韧性、地应力环境和天然裂缝发育程度的影响,采用层次分析法计算了各因素权重,建立了适合深层致密砂岩的可压性评价方法。研究结果表明,可压裂性指数大于0.55时,可压性好;可压裂性指数介于0.50~0.55之间时,可压性一般;可压裂性指数小于0.50时,可压性差;研究区D7井的最佳压裂层位为4145~4160 m、4470~4480 m、5290~5330 m,D8井的最佳压裂层位为5120~5330 m、5350~5365 m,D701井的最佳压裂层位为3900~3910 m、4430~4440 m、4455~4465 m、5125~5135 m。

     

  • 图  1  研究区矿物成分含量图

    Figure  1.  The composition of rock samples in the study area

    图  2  研究区侏罗系成分含量图

    ①-石英砂岩;②-次长石砂岩;③-次岩屑砂岩;④-长石砂岩;⑤-岩屑长石砂岩;⑥-长石岩屑砂岩;⑦-岩屑砂岩

    Figure  2.  The composition of rock samples in the Jurassic reservoir in the study area

    图  3  弹模—泊松比法表征研究区脆性指数

    Figure  3.  Using elastic modulus Poisson's ratio method to characterize the brittleness index of the study area

    图  4  不同围压下致密砂岩应力—应变全曲线

    Figure  4.  Stress-strain curves of tight sandstone under different confining pressures

    图  5  静态弹性模量与断裂能密度拟合曲线

    Figure  5.  Fitting curves of static modulus of elasticity and fracture energy density

    图  6  深层致密砂岩储层可压性层次结构模型

    Figure  6.  The hierarchical structure model of the deep tight sandstone reservoir fracability

    图  7  研究区可压裂性指数

    Figure  7.  Fracrability index of the study area

    图  8  研究区D7井储层可压性综合评价

    Figure  8.  Comprehensive evaluation of reservoir fracrability in Well D7 in the study area

    图  9  研究区D8井储层可压性综合评价

    Figure  9.  Comprehensive evaluation of reservoir fracrability in Well D8 in the study area

    图  10  研究区D701井储层可压性综合评价

    Figure  10.  Comprehensive evaluation of reservoir fracrability in Well D701 in the study area

    图  11  研究区D8井原始微震点图

    Figure  11.  The original microseismic points of the Well D8 in the study area

    表  1  研究区致密砂岩弹性模量及断裂能密度表

    Table  1.   Elastic modulus and fracture energy density table for tight sandstone in the study area

    井号 编号 围压/
    MPa
    峰值强度/
    MPa
    残余应力/
    MPa
    弹性模量/
    GPa
    断裂能密度/
    (N·mm·mm-3)
    D7 1 0 54.5 6.5 9.55 23.35
    2 10 106.7 61.8 12.16 51.94
    3 30 191.5 134.2 19.09 133.99
    4 40 206.4 162.4 19.19 151.86
    D8 5 0 49.9 15.8 8.87 41.75
    6 10 140.7 67.4 16.40 121.78
    7 30 237.3 186.9 22.46 175.04
    8 20 188.9 97.3 19.50 158.31
    D701 9 0 24.4 4.7 4.28 21.06
    10 0 22.4 4.8 4.27 19.26
    11 20 136.0 80.3 15.64 107.52
    12 40 186.3 161.1 17.74 142.94
    下载: 导出CSV

    表  2  判断矩阵标度

    Table  2.   Judgement matrix scale

    标度 含义
    1 表示两影响因素ij相比,重要性相同
    3 表示两影响因素ij相比,一个比另一个稍微重要
    5 表示两影响因素ij相比,一个比另一个重要
    7 表示两影响因素ij相比,一个比另一个明显重要
    9 表示两影响因素ij相比,一个比另一个极其重要
    2、4、6、8 上述两相邻判断中间值
    注:影响因素ij比较判断值为Aij,则ji比较判断值为1/Aij
    下载: 导出CSV

    表  3  可压裂性指标判断矩阵

    Table  3.   Judgment matrix for fracrability index

    A 脆性
    指数
    断裂能
    密度
    水平应力
    差异系数
    裂缝发育
    指数
    脆性指数 1 2 2 3
    断裂能密度 1/2 1 1 2
    水平应力差异系数 1/2 1 1 2
    裂缝发育指数 1/3 1/2 1/2 1
    下载: 导出CSV
  • [1] 张惠良, 张荣虎, 杨海军, 等.超深层裂缝-孔隙型致密砂岩储集层表征与评价——以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J].石油勘探与开发, 2014, 41(2):158~167. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201402004

    ZHANG Huiliang, ZHANG Ronghu, YANG Haijun, et al. Characterization and evaluation of ultra-deep fracture-pore tight sandstone reservoirs:a case study of Cretaceous Bashijiqike Formation in Kelasu tectonic zone in Kuqa foreland basin, Tarim, NW China[J]. Petroleum Exploration and Development, 2014, 41(2):158~167. (in Chinese with English abstract http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201402004
    [2] 张丽辰, 吴孔友, 何文军, 等.准噶尔盆地北三台凸起断裂结构特征及成岩封闭作用[J].地质力学学报, 2018, 24(5):607~616. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180503&journal_id=dzlxxb

    ZHANG Lichen, WU Kongyou, HE Wenjun, et al. Structural characteristics and diagenetic sealing of faults in the Beisantai Swell, Junggar Basin[J]. Journal of Geomechanics, 2018, 24(5):607~616. (in Chinese with English abstract http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180503&journal_id=dzlxxb
    [3] 周汉国, 郭建春, 李静, 等.裂隙特征对岩石渗流特性的影响规律研究[J].地质力学学报, 2017, 23(4):531~539. doi: 10.3969/j.issn.1006-6616.2017.04.004

    ZHOU Hanguo, GUO Jianchun, LI Jing, et al. A study on the influence rule of the fracture characteristics on rock seepage characteristics[J]. Journal of Geomechanics, 2017, 23(4):531~539. (in Chinese with English abstract doi: 10.3969/j.issn.1006-6616.2017.04.004
    [4] 孙建孟, 韩志磊, 秦瑞宝, 等.致密气储层可压裂性测井评价方法[J].石油学报, 2015, 36(1):74~80. http://d.old.wanfangdata.com.cn/Periodical/syxb201501009

    SUN Jianmeng, HAN Zhilei, QIN Ruibao, et al. Log evaluation method of fracturing performance in tight gas reservoir[J]. Acta Petrolei Sinica, 2015, 36(1):74~80. (in Chinese with English abstract http://d.old.wanfangdata.com.cn/Periodical/syxb201501009
    [5] 杜书恒, 关平, 师永民, 等.低渗透砂岩储层可压裂性新判据[J].地学前缘, 2017, 24(2):257~264. http://d.old.wanfangdata.com.cn/Periodical/dxqy201702026

    DU Shuheng, GUAN Ping, SHI Yongmin, et al. New fracturing criteria on low permeability sandstone reservoirs[J]. Earth Science Frontiers, 2017, 24(2):257~264. (in Chinese with English abstract http://d.old.wanfangdata.com.cn/Periodical/dxqy201702026
    [6] 肖苏芸, 张冲, 张杰, 等.基于阵列声波资料评价致密砂岩可压裂性[J].中州煤炭, 2016, (4):125~128. doi: 10.3969/j.issn.1003-0506.2016.04.035

    XIAO Suyun, ZHANG Chong, ZHANG Jie, et al. Fracability evaluation of tight sandstone reservoirs based on array acoustic date[J]. Zhongzhou Coal, 2016, (4):125~128. (in Chinese with English abstract doi: 10.3969/j.issn.1003-0506.2016.04.035
    [7] 李年银, 代金鑫, 刘超, 等.致密碳酸盐岩气藏体积酸压可行性研究及施工效果——以鄂尔多斯盆地下古生界碳酸盐岩气藏为例[J].油气地质与采收率, 2016, 23(3):120~126. doi: 10.3969/j.issn.1009-9603.2016.03.022

    LI Nianyin, DAI Jinxin, LIU Chao, et al. Feasibility research on volume acid fracturing to tight carbonate gas reservoir and its construction effect:a case study of lower Paleozoic carbonate gas reservoir in Ordos basin[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(3):120~126. (in Chinese with English abstract doi: 10.3969/j.issn.1009-9603.2016.03.022
    [8] 隋丽丽, 杨永明, 杨文光, 等.胜利油田东营凹陷区页岩可压裂性评价[J].煤炭学报, 2015, 40(7):1588~1594. http://d.old.wanfangdata.com.cn/Periodical/mtxb201507018

    SUI Lili, YANG Yongming, YANG Wenguang, et al. Comprehensive evaluation of shale fracability in Dongying subsidence zone of Shengli oilfield[J]. Journal of China Coal Society, 2015, 40(7):1588~1594. (in Chinese with English abstract http://d.old.wanfangdata.com.cn/Periodical/mtxb201507018
    [9] 王松, 杨洪志, 赵金洲, 等.页岩气井可压裂性综合评价方法研究及应用[J].油气地质与采收率, 2016, 23(2):121~126. doi: 10.3969/j.issn.1009-9603.2016.02.021

    WANG Song, YANG Hongzhi, ZHAO Jinzhou, et al. Research and application of comprehensive evaluation on fracability of shale gas wells[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(2):121~126. (in Chinese with English abstract doi: 10.3969/j.issn.1009-9603.2016.02.021
    [10] 陈治喜, 陈勉, 金衍.岩石断裂韧性与声波速度相关性的试验研究[J].石油钻采工艺, 1997, 19(5):56~60, 75. http://www.cnki.com.cn/Article/CJFDTOTAL-SYZC199705016.htm

    CHEN Zhixi, CHEN Mian, JIN Yan. Experimental study on the relationship between rock fracture toughness and acoustic velocity[J]. Oil Drilling & Production Technology, 1997, 19(5):56~60, 75. (in Chinese with English abstract http://www.cnki.com.cn/Article/CJFDTOTAL-SYZC199705016.htm
    [11] 李庆辉, 陈勉, 金衍, 等.页岩脆性的室内评价方法及改进[J].岩石力学与工程学报, 2012, 31(8):1680~1685. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201208023

    LI Qinghui, CHEN Mian, JIN Yan, et al. Indoor evaluation method for shale brittleness and improvement[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8):1680~1685. (in Chinese with English abstract http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201208023
    [12] 周辉, 孟凡震, 张传庆, 等.基于应力-应变曲线的岩石脆性特征定量评价方法[J].岩石力学与工程学报, 2014, 33(6):1114~1122. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201406003

    ZHOU Hui, MENG Fanzhen, ZHANG Chuanqing, et al. Quantitative evaluation of rock brittleness based on stress-strain curve[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6):1114~1122. (in Chinese with English abstract http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201406003
    [13] Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems:the mississippian barnett shale of north-central texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4):475~499. doi: 10.1306/12190606068
    [14] 杨秀娟, 张敏, 闫相祯.基于声波测井信息的岩石弹性力学参数研究[J].石油地质与工程, 2008, 22(4):39~42. doi: 10.3969/j.issn.1673-8217.2008.04.013

    YANG Xiujuan, ZHANG Min, YAN Xiangzhen. Study on acoustic logging-based rock elasticity parameters[J]. Petroleum Geology and Engineering, 2008, 22(4):39~42. (in Chinese with English abstract doi: 10.3969/j.issn.1673-8217.2008.04.013
    [15] Rickman R, Mullen M J, Petre J E, et al. A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the barnett shale[A]. Proceedings of SPE Annual Technical Conference and Exhibition[C]. Denver, Colorado, USA: Society of Petroleum Engineers, 2008.
    [16] 张军, 艾池, 李玉伟, 等.基于岩石破坏全过程能量演化的脆性评价指数[J].岩石力学与工程学报, 2017, 36(6):1326~1340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201706003

    ZHANG Jun, AI Chi, LI Yuwei, et al. Brittleness evaluation index based on energy evolution of the whole process of rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6):1326~1340. (in Chinese with English abstract http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201706003
    [17] 彭成勇, 刘书杰, 李扬, 等.砂岩储层可压裂性评价方法研究[J].科学技术与工程, 2014, 14(20):205~209. doi: 10.3969/j.issn.1671-1815.2014.20.039

    PENG Chengyong, LIU Shujie, LI Yang, et al. Fracability evaluation of sandstone reservoirs[J]. Science Technology and Engineering, 2014, 14(20):205~209. (in Chinese with English abstract doi: 10.3969/j.issn.1671-1815.2014.20.039
    [18] 张美玲, 董传雷, 蔺建华.地应力分层技术在压裂设计优化中的应用[J].地质力学学报, 2017, 23(3):467~474. doi: 10.3969/j.issn.1006-6616.2017.03.014

    ZHANG Meiling, DONG Chuanlei, LIN Jianhua. The application of geostress layering technology in fracture design optimization[J]. Journal of Geomechanics, 2017, 23(3):467~474. (in Chinese with English abstract doi: 10.3969/j.issn.1006-6616.2017.03.014
    [19] 陈勉, 周健, 金衍, 等.随机裂缝性储层压裂特征实验研究[J].石油学报, 2008, 29(3):431~434. doi: 10.3321/j.issn:0253-2697.2008.03.023

    CHEN Mian, ZHOU Jian, JIN Yan, et al. Experimental study on fracturing features in naturally fractured reservoir[J]. Acta Petrolei Sinica, 2008, 29(3):431~434. (in Chinese with English abstract doi: 10.3321/j.issn:0253-2697.2008.03.023
    [20] Beugelsdijk L J L, de Pater C J, Sato K. Experimental hydraulic fracture propagation in a multi-fractured medium[A]. Proceedings of SPE Asia Pacific Conference on Integrated Modelling for Asset Management[C]. Yokohama, Japan: Society of Petroleum Engineers, 2000.
    [21] 黄荣樽.地层破裂压力预测模式的探讨[J].华东石油学院学报, 1984, (4):335~347. http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX198404001.htm

    HUANG Rongzun. A model for predicting formation fracture pressure[J]. Journal of the University of Petroleum, China, 1984, (4):335~347. (in Chinese with English abstract http://www.cnki.com.cn/Article/CJFDTOTAL-SYDX198404001.htm
    [22] 郭建春, 尹建, 赵志红.裂缝干扰下页岩储层压裂形成复杂裂缝可行性[J].岩石力学与工程学报, 2014, 33(8):1589~1596. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201408009

    GUO Jianchun, YIN Jian, ZHAO Zhihong. Feasibility of formation of complex fractures under cracks interference in shale reservoir fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8):1589~1596. (in Chinese with English abstract http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201408009
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  520
  • HTML全文浏览量:  125
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-14
  • 修回日期:  2018-12-15
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回