CENTRIFUGE MODEL TEST OF SLOPE EXCAVATION AND SUPPORT UNDER RAINFALL
-
摘要: 为研究降雨下高速公路高边坡在开挖及运营过程中的变形规律及稳定性,以柳南公路改扩建工程某处典型高边坡为原型,利用大型土工离心机及自主研发降雨装置,开展12组不同开挖-支护时序边坡模型试验,通过对边坡从变形至破坏全过程监测,分析不同支护时序条件对边坡稳定性的影响。结果表明:实时支护能有效抑制边坡在水平和竖向的变形,在边坡开挖至第1级和第6级后,坡顶水平变形分别降低33.9%和30.4%,竖向变形降低54%和11.6%;实时支护对维持降雨下边坡稳定状态非常有利,边坡开挖至第2、4、6级后遭遇降雨,其稳定系数降低了10.1%、5.4%、6.5%;相同降雨量下,无实时支护边坡的稳定系数要比实时支护至少降低50%,说明了实时支护对降雨下边坡稳定性的意义巨大。Abstract: In order to study the slope stability and deformation characteristics under rainfall during excavation and operation process, the typical high slope of Liu-Nan highway extension project is chosen as the prototype. Using the geotechnical centrifuge of Chang'an University and independently developed rainfall device, 12 groups of centrifuge model tests of different excavation-support sequence were carried out. Through monitoring the whole process of slope from deformation to failure, the effect of different support sequence on the stability of slope was analyzed. The following results are obtained:the horizontal deformation and the vertical deformation of the slope are well restricted by the timely-support method, the horizontal deformations of the 1th and 6th grade excavation are reduced by 33.9% and 30.4%, and vertical deformations are reduced by about 54% and 11.6%; It is extremely favorable to use the timely-support excavation method for the stability of the slope under rainfall condition. The rainfall stability coefficient have a very small drop at 2th, 4th and 6th grade excavation after rainfall and reduce by 10.1%, 5.4% and 6.5% respectively. Under the same rainfall, the stability coefficient of slope without timely-support is at least 50% lower than that of timely-support excavation method, which shows that it is of great significance to slope stability under rainfall.
-
Key words:
- highway /
- slope excavation /
- reconstruction project /
- timely-support /
- model test
-
0. 引言
波龙斑岩铜金矿床位于西藏自治区改则县北西约100 km,班公湖—怒江成矿带西段。班公湖—怒江缝合带呈狭长带状近东西向展布,东西延伸超过2000 km,是一条横贯青藏高原中部的重要缝合带[1~3]。自2002年以来,西藏地质五队在发现地表具有相似的褐铁矿化的基础上,通过持续的地质工程施工控制,陆续发现了多不杂和波龙斑岩铜金矿床[4],而波龙矿床已成为青藏高原中部发现的最大的斑岩铜矿床。
自被确定为独立的斑岩铜矿以来,波龙矿床备受关注,目前开展了波龙矿床的成矿、成岩年龄[4~6]、矿床同位素地球化学[7~9]、矿床岩石学特征[10~11]、成矿构造环境[12]及成矿作用[13~14]等方面的研究。讨论波龙矿床流体方面的文献仅有2篇[15~16],其中李丹[15]虽然已对其进行了研究,但样品数量和统计数据有限,仅仅探讨了流体包裹体的基本特征和温度、盐度、密度、压力等条件;周玉[16]进行了稀有气体同位素研究,结合包裹体气相成分及H-O同位素分析,认为成矿流体属壳幔混源。本文从流体包裹体的气液相成分入手,结合前人的研究成果,进一步分析波龙矿床成矿流体的物理化学条件。
1. 矿床地质概况
波龙斑岩铜金矿床紧邻多不杂矿床,与拿若矿床(点)等组成了班公湖—怒江成矿带西段的多龙矿集区(见图 1)。
图 1 多龙矿集区构造背景简图(a)、地质简图(b)和波龙矿床地质简图(c)[4]Figure 1. Tectonic and geological maps of Duolong metallogenic district and geological map of Bolong porphyry Cu-Au deposit矿区出露的地层主要有下侏罗统曲色组第一岩性段(J1q1)、下白垩统美日切错组第一岩性段(K1m1)和第四系(Q)。区内地层呈单斜构造,未见褶皱和断裂。矿区岩浆岩以中酸性的花岗闪长斑岩为主,其次为脉岩,少量火山岩。矿区变质作用不发育,变质程度较浅,以区域变质作用为主,可见少量变石英砂岩和粉砂质板岩。
波龙斑岩铜矿床矿体以隐伏—半隐伏状产出,平面上呈似椭圆形状,地表未见露头。矿石构造以细脉—浸染状及浸染状构造为主,具结晶结构、交代结构和固溶体分离结构。矿石矿物主要为黄铁矿、黄铜矿,其次为磁黄铁矿、斑铜矿、辉锑矿、辉钼矿、磁铁矿等;脉石矿物以石英、长石、绢云母、硬石膏为主。矿区围岩与矿化蚀变发育,蚀变类型主要为硅化、黑云母化、绢云母化、黏土化等,其次为硬石膏化、碳酸盐化、绿帘石化和绿泥石化等[7, 12]。
根据本矿区野外观察、采样和室内磨片、镜下鉴定等研究,可将波龙铜矿床的形成过程划分为3个成矿期次:岩浆晚期、热液成矿期和表生期,其中热液成矿期又分为磁铁矿-辉钼矿阶段、黄铜矿-黄铁矿阶段和硬石膏-黄铁矿阶段。
2. 包裹体一般特征
波龙斑岩铜金矿床的流体包裹体分布主要呈成群、成带或星散状。形态多样,多为负晶形、椭圆形和不规则形,大小多在5~20 μm之间,最大可达70 μm。流体包裹体类型较复杂,主要为含石盐和硫化物子晶的气-液-固三相(L+V+H)包裹体,其次为气-液两相(L+V)包裹体,还有少量的纯气相(V)和纯液相(L)包裹体,其中气液比多在10%~50%之间[15]。
3. 包裹体温度、盐度、密度与压力特征
包裹体均一温度和冰点温度的测试在成都理工大学资源勘查工程系包裹体实验室进行,所用仪器为英国Linkam THNSG600型冷热台和吉林浑江市光学仪器厂TRL-02型热台。共测试了10件样品96个流体包裹体的均一温度。成矿深度和压力依据邵洁涟[17]提出的经验公式计算。依据测得的冰点温度,采用Hall等[18]的H2O-NaCl体系公式计算了盐度,根据刘斌[19]的密度计算公式得出了密度。测试及计算结果见表 1。
表 1 波龙铜金矿床流体包裹体均一温度、盐度、密度及压力测定结果Table 1. Homogenization temperature, salinity, density and pressure of fluid inclusions in Bolong Cu-Au deposit成矿阶段 主矿物 均一温度/℃ 盐度/% 密度/(g·cm-3) 压力/105Pa 变化范围 平均 变化范围 平均 变化范围 平均 变化范围 平均 岩浆晚期 斑晶石英 334~549 467 38.24~52.16 41.86 1.0683~1.1067 1.0761 58.76~234.41 102.47 磁铁矿-辉钼矿 石英 312~533 429 34.56~50.49 42.34 1.0683~1.0975 1.0771 26.72~212.69 109.59 黄铜矿-黄铁矿 石英 262~502 388 29.47~40.79 35.01 1.0683~1.1494 1.0930 3.14~86.81 33.54 硬石膏-黄铁矿 硬石膏石英 232~471 332 28.65~36.90 32.48 1.0765~1.1598 1.1153 1.40~45.74 17.68 由表 1可以看出,包裹体均一温度在232~549 ℃之间变化。随着成矿过程从岩浆晚期→磁铁矿-辉钼矿阶段→黄铜矿-黄铁矿阶段→硬石膏-黄铁矿阶段发展,均一温度逐渐降低(467→429→388→332 ℃),包裹体盐度(NaCl的质量分数,下同)也逐渐降低(41.86%→42.34%→35.01%→32.48%)。根据波龙矿区包裹体均一温度、盐度计算出的流体密度逐渐增高(1.0761→1.0771→1.0930→1.1153 g/cm3)。该矿床各成矿阶段的成矿压力都不高,平均值在17.68×105~109.59×105 Pa之间,基本呈逐渐降低的特点。矿床主要成矿于地下0.01~0.78 km深度,因此属浅成矿床。
包裹体测试数据显示,从岩浆晚期→磁铁矿-辉钼矿阶段→黄铜矿-黄铁矿阶段→硬石膏-黄铁矿阶段,波龙铜金矿床是在高温、低压、浅成—超浅成环境下形成的,成矿流体属于高盐度、中—高密度流体。
4. 逸度
根据波龙斑岩型铜金矿床脉石矿物石英中包裹体的气相成分与均一温度测试结果,按照有关热力学逸度计算公式[20],计算了不同阶段样品的氧逸度(lgfO2)、二氧化碳逸度(lgfCO2)和硫逸度(lgfS2)(见表 2)。由表 2可得,lgfO2均值的变化为-27.280→-29.631;lgfCO2均值的变化为1.851→1.242;lgfS2均值的变化为-3.284→-4.138,表明从磁铁矿-辉钼矿阶段→黄铜矿-黄铁矿阶段,流体逸度总体呈下降趋势。
表 2 波龙铜金矿床流体逸度Table 2. Fugacity of fluid inclusion in Bolong Cu-Au deposit, Tibet样号 lgfO2 lgfCO2 lgfS2 阶段 BL002 -27.280 1.851 -3.284 磁铁矿-辉钼矿 BL019 -28.778 1.295 -3.865 黄铜矿-黄铁矿 BL045 -30.167 1.177 -4.323 BL058 -29.946 1.254 -4.227 5. pH值和Eh值
根据包裹体气液相成分测试及均一温度,运用Crerar[21]和李葆华等[22]的公式,计算出波龙矿区成矿流体的酸碱度(pH)和氧化还原电位(Eh),结果见表 3。
表 3 波龙铜金矿床流体pH和Eh值Table 3. The values of pH and Eh of the fluid inclusions in Bolong Cu-Au deposit, Tibet样号 pH Eh 阶段 BL002 5.149 0.009 磁铁矿-辉钼矿 BL019 5.427 0.013 黄铜矿-黄铁矿 BL045 5.486 0.018 BL058 5.448 0.016 表 3显示,磁铁矿-辉钼矿阶段pH值为5.149,Eh值为0.009;黄铜矿-黄铁矿阶段pH平均值为5.454,Eh平均值为0.016,表明从磁铁矿-辉钼矿阶段到黄铜矿-黄铁矿阶段,流体pH和Eh值均具有增高的趋势。
6. 总硫活度和总碳活度
根据Helgeson[23]、Crerar[24]和Haymob的lgK值(某些气体元素和盐类平衡常数,转引自李葆华等[22])及已算出的pH、fO2、fS2和fCO2,得到硫和碳的各溶解类型的活度及总硫活度和总碳活度(见表 4)。由表 4可以看出,本矿床成矿流体中总硫活度aS∑为0.536~14.067 mol/L,总碳活度aC∑为0.660~3.121 mol/L。成矿溶液中硫的溶解类型以HSO4-和H2S形式为主,碳的溶解类型以H2CO3和CO2形式为主。从磁铁矿-辉钼矿阶段→黄铜矿-黄铁矿阶段,总硫活度和总碳活度依次降低,说明随着成矿过程的进行,硫化物和碳酸盐矿物的含量依次增加。
表 4 波龙铜金矿床总硫、总碳活度计算结果Table 4. Activity of total sulphur and total carbon in Bolong Cu-Au deposit, Tibetmol/L 样品编号 lgfS2 lgfO2 lgaH2S lgaHS- lgaS2- lgaHSO4- lgaSO42- lgaΣS aΣS lgfCO2 lgaCO2 lgaH2CO3 lgaHCO3- lgaCO32- lga∑C aΣC 阶段 BL002 -3.284 -26.714 -0.785 -4.636 -11.587 1.135 -0.596 1.148 14.067 1.851 0.151 0.231 -3.530 -10.811 0.494 3.121 磁铁矿-辉钼矿 BL019 -3.865 -28.152 -0.357 -3.930 -10.603 -1.033 -2.486 -0.271 0.536 1.295 -0.405 -0.325 -3.808 -10.811 -0.062 0.867 黄铜矿-黄铁矿 BL045 -4.323 -29.691 0.184 -3.330 -9.944 -3.512 -4.906 0.184 1.529 1.177 -0.523 -0.443 -3.867 -10.811 -0.180 0.660 BL058 -4.227 -29.513 0.143 -3.409 -10.062 -3.235 -4.667 0.143 1.391 1.254 -0.446 -0.366 -3.829 -10.811 -0.103 0.788 7. Cu的迁移、沉淀机制分析
热液在流经含矿岩系时活化并萃取了大量铜和其他成矿物质,随后演化成含矿热液。
铜在热液中的迁移形式主要是氯的络合物和硫氢络合物等,如Cu(HS)3-、CuS(HS)33-、CuCl3-等[25~26]。根据公式计算得到各种铜络合物离子活度和铜的总溶解度(见表 5)。
表 5 铜络离子活度及铜的总溶解度Table 5. Activity of Cu complex ion and total solubility样品编号 lgaCu(HS)2- lgaCu(H2S)(HS)2- lgaCu+ lgaCuCl0 lgaCuCl2- lgaCuCl32- lgaCu2+ lgaCuCl+ lgaCuCl20 lgaCuCl3- lgaCuCl42- lgaΣCu 阶段 BL002 -6.674 -7.148 -6.428 -14.607 -20.786 -30.765 -13.955 -18.834 -29.214 -40.093 -51.372 -6.183 磁铁矿-辉钼矿 BL019 -5.753 -5.800 -7.065 -21.923 -34.780 -51.438 -15.230 -26.788 -43.845 -61.403 -79.361 -5.464 黄铜矿-黄铁矿 BL045 -4.883 -4.389 -7.509 -12.438 -15.366 -22.095 -16.117 -17.746 -24.875 -32.504 -40.533 -4.268 BL058 -4.983 -4.530 -7.426 -13.964 -18.502 -26.841 -15.951 -19.190 -27.928 -37.167 -46.805 -4.398 由表 5可知:从磁铁矿-辉钼矿阶段到黄铜矿-黄铁矿阶段,成矿流体中的总铜活度变化为10-6.183~10-4.268 mol/L,显示出由低到高的变化规律。
根据计算出的Cu络离子活度值,可知Cu在热液中主要以Cu(HS)2-、Cu(H2S)(HS)2-、Cu+形式存在。随着流体pH值增大,温度降低,主要成矿元素开始以硫化物的形式沉淀下来。
8. 结论
波龙斑岩铜金矿床流体包裹体类型以含石盐和硫化物子矿物的气-液-固三相包裹体为主,其次为气-液两相包裹体,还有少量的纯气相及纯液相包裹体。
从流体测试分析数据可判断出,波龙斑岩铜金矿床形成于高温(232~549 ℃)、低压(1.40×105~234.41×105 Pa)和浅成—超浅成(0.01~0.78 km)环境;成矿流体表现出高盐度(28.65%~52.16%)和中—高密度(1.0683~1.1598 g/cm3)特征。从岩浆晚期→磁铁矿-辉钼矿阶段→黄铜矿-黄铁矿阶段→硬石膏-黄铁矿阶段,成矿流体的均一温度、成矿压力和盐度逐渐降低,而成矿流体密度逐渐升高。
随着成矿阶段的发展,各阶段流体氧逸度lgfO2均值(-26.714→-29.118)、二氧化碳逸度lgfCO2均值(1.851→1.242) 和硫逸度lgfS2均值(-3.284→-4.138) 逐步降低,pH值(5.149→5.454) 和Eh值(0.009→0.016) 逐步升高;总硫活度a∑S(101.148→100.019)和总碳活度a∑C(100.494→10-0.115)逐渐降低,与矿化具有一致性,说明硫化物和碳酸盐矿物的含量在逐步增加。
在成矿热液中,铜的络离子化合物主要以Cu(H2S)(HS)2-形式存在,其次是Cu(HS)2-,少量为CuCl2-和CuCl32-的形式存在,其余活度很低。
-
表 1 离心机技术指标
Table 1. Technical indexes of geotechnical centrifuge
离心模型箱参数 规格 离心机容量/(g·t) 60 离心加速度/g 1~200 有效半径/m 2.0 启动历时/min ≤20 (从静止到200 g) 模型箱外部尺寸/(m×m×m) 0.7×0.36×0.5/0.5×0.4×0.5 表 2 边坡岩土体工程参数
Table 2. The mechanical parameters of the rock masses
土层 重度/
(kN/m3)粘聚力
c/kPa内摩擦角
/(°)坡高 平均
倾角边坡
分级砾质粘性土 19.1 28.9 21.3 17 39.6 3 砂质粘性土 20.2 30.8 24.2 34 34.9 2 泥质砂岩 24.6 40.2 27.1 6 33.8 1 表 3 离心模型试验相似比
Table 3. Similitude ratios used in centrifuge model tests
类型 物理量 相似比 线位移L/m 1:100 几何尺寸 面积S/m2 1:104 体积V/m3 1:106 弹性模量E/(kN·m-2) 1:1 变形模量E0/(kN·m-2) 1:1 容重γ/(kN·m-3) 100:1 材料特性 应变τ 1:1 泊松比υ 1:1 内摩擦角/(°) 1:1 黏聚力c/(kN·m-2) 1:1 动力特性 固结时间T/h 1:104 表 4 砂岩模拟材料力学参数
Table 4. Mechanical parameters of sandstone simulation material
重晶石:水泥:石膏 重度/(kN/m3) 弹性模量 单轴抗压强度 1:1.21:1.28 23.1~26.3 2.7 16.3 表 5 模型支护与降雨情况
Table 5. Supporting conditions of models and rainfall situation
编号 开挖-支护时序 降雨时间 降雨条件 ES-1 实时支护(边开挖边支护) 第2级边坡开挖结束 ES-2 第4级边坡开挖结束 暴雨(30 mm/h持续7 h) ES-3 第6级边坡开挖结束 ES-4 暴雨(24 h总降雨量50~100 mm) ES-5 全部边坡开挖结束 大暴雨(24 h总降雨量100~200 mm) ES-6 特大暴雨(24 h总降雨量>200 mm) E-1 6级边坡全部开挖完后才支护 第2级边坡开挖结束 E-2 第4级边坡开挖结束 暴雨(30 mm/h持续7 h) E-3 第6级边坡开挖结束 E-4 暴雨(24 h总降雨量50~100 mm) E-5 全部边坡开挖结束 大暴雨(24 h总降雨量100~200 mm) E-6 特大暴雨(24 h总降雨量>200 mm) -
[1] 韩宝睿.高速公路改扩建工程方案研究的关键技术分析[D].南京: 东南大学, 2005.HAN Baorui. Studies on key-technology in freeway reconstruction scheme[D]. Nanjing: Southeast University, 2005. (in Chinese with English abstract) [2] 唐朝生, 刘义怀, 施斌, 等.新老路基拼接中差异沉降的数值模拟[J].中国公路学报, 2007, 20(2):13~17. doi: 10.3321/j.issn:1001-7372.2007.02.003TANG Chaosheng, LIU Yihuai, SHI Bing, et al. Numerical simulation on differential settlement of jointing of new and old roadbed[J]. China Journal of Highway and Transport, 2007, 20(2):13~17. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-7372.2007.02.003 [3] Deschamps R J, Hynes C S, Bourdeau P. Final report: embankment widening design guidelines and construction procedures[R]. West Lafayette: Purdue University, 1990. [4] 刘永涛.降雨入渗对黄土边坡稳定性影响研究[D].杨凌: 西北农林科技大学, 2010.LIU Yongtao. Effect of rainfall infiltration on stability of loess slope[D] Yangling: Northwest Agriculture and Forestry University, 2010. (in Chinese with English abstract) [5] 孙萍, 薛涛, 虞玉诚.下蜀土边坡降雨型滑坡的成因分析[J].水利水电技术, 2016, 47(12):117~120. http://d.old.wanfangdata.com.cn/Periodical/slsdjs201612025SUN Ping, XUE Tao, YU Yucheng. Analysis on causation of rainfall-induced landslide of Xiashu loess slope[J]. Water Resources and Hydropower Engineering, 2016, 47(12):117~120. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/slsdjs201612025 [6] Liu J X, Yang C H, Gan J J, et al. Stability analysis of road embankment slope subjected to rainfall considering runoff-unsaturated seepage and unsaturated fluid-solid coupling[J]. International Journal of Civil Engineering, 2017, 15(6):865~876. doi: 10.1007/s40999-017-0194-7 [7] 邹祖银, 朱占元, 张锋, 等.连续降雨条件下某震后高边坡稳定性分析[J].地震工程学报, 2016, 38(4):541~548. doi: 10.3969/j.issn.1000-0844.2016.04.0541ZOU Zuyin, ZHU Zhanyuan, ZHANG Feng, et al. Stability analysis of post-earthquake high slope under continuous rainfall[J]. China Earthquake Engineering Journal, 2016, 38(4):541~548. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0844.2016.04.0541 [8] 蒲小武, 王兰民, 吴志强, 等.兰州丘陵沟壑区挖方黄土高边坡面临的工程地质问题及稳定性分析[J].地震工程学报, 2016, 38(5):787~794. doi: 10.3969/j.issn.1000-0844.2016.05.0787PU Xiaowu, WANG Lanmin, WU Zhiqiang, et al. Engineering geological problems of loess high excavation slope in loess hilly and gully region of Lanzhou and its stability analysis[J]. China Earthquake Engineering Journal, 2016, 38(5):787~794. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0844.2016.05.0787 [9] 秦凤艳, 杨富莲, 刘洪波, 等.常见边坡支护形式的地震稳定性对比分析[J].地震工程学报, 2017, 39(3):460~466. doi: 10.3969/j.issn.1000-0844.2017.03.0460QIN Fengyan, YANG Fulian, LIU Hongbo, et al. Comparative analysis of seismic stability on a common slope support form[J]. China Earthquake Engineering Journal, 2017, 39(3):460~466. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0844.2017.03.0460 [10] 徐晗, 朱以文, 蔡元奇, 等.降雨入渗条件下非饱和土边坡稳定分析[J].岩土力学, 2005, 26(12):1957~1962. doi: 10.3969/j.issn.1000-7598.2005.12.019XU Han, ZHU Yiwen, CAI Yuanqi, et al. Stability analysis of unsaturated soil slopes under rainfall infiltration[J]. Rock and Soil Mechanics, 2005, 26(12):1957~1962. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2005.12.019 [11] Cai F, Ugai K. Numerical analysis of rainfall effects on slope stability[J]. International Journal of Geomechanics, 2004, 4(2):69~78. doi: 10.1061/(ASCE)1532-3641(2004)4:2(69) [12] Mahmood K, Jin M K, Ashraf M, et al. The effect of soil type on matric suction and stability of unsaturated slope under uniform rainfall[J]. Ksce Journal of Civil Engineering, 2016, 20(4):1294~1299. doi: 10.1007/s12205-015-0796-z [13] 谭新莉, 崔炜.卡拉贝利水利枢纽工程联合进水口软岩高边坡稳定设计[J].水利水电技术, 2017, 48(4):47~51, 57. doi: 10.3969/j.issn.1672-9900.2017.04.017TAN Xinli, CUI Wei. Design of the stability of high soft rock slope at joint-intake of Kalabeili water control project[J]. Water Resources and Hydropower Engineering, 2017, 48(4):47~51, 57. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-9900.2017.04.017 [14] 崔洁.不同库水位升降速度对大坝边坡稳定性的影响研究[J].水利水电技术, 2017, 48(2):155~159. http://d.old.wanfangdata.com.cn/Periodical/slsdjs201702026CUI Jie. Study on impactfrom various reservoir water level fluctuation rates on dam slope stability[J]. Water Resources and Hydropower Engineering, 2017, 48(2):155~159. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/slsdjs201702026 [15] 方景成, 邓华锋, 肖瑶, 等.库水和降雨联合作用下岸坡稳定影响因素敏感性分析[J].水利水电技术, 2017, 48(3):146~152, 157. http://d.old.wanfangdata.com.cn/Periodical/slsdjs201703026FANG Jingcheng, DENG Huafeng, XIAO Yao, et al. Sensitivity analysis on bank -slope stability impacting factors under joint -effect of reservoir water and rainfall[J]. Water Resources and Hydropower Engineering, 2017, 48(3):146~152, 157. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/slsdjs201703026 [16] 冯有亭, 李卓, 周涛.坡脚冲刷作用下近坝库岸边坡滑坡模型试验研究[J].水利水电技术, 2016, 47(12):121~125. http://d.old.wanfangdata.com.cn/Periodical/slsdjs201612026FENG Youting, LI Zhuo, ZHOU Tao. Model experimental study on near-dam reservoir bank slop landslide under slope toe erosion[J]. Water Resources and Hydropower Engineering, 2016, 47(12):121~125. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/slsdjs201612026 [17] 胡庆国, 袁宁, 刘登生, 等.多层结构土质边坡降雨入渗过程及稳定性影响分析[J].中国公路学报, 2018, 31(2):67~74. doi: 10.3969/j.issn.1001-7372.2018.02.007HU Qingguo, YUAN Ning, LIU Dengsheng, et al. Analysis of rainfall infiltration process and stability of soil slope with multilayer structure[J]. Chinese Journal of Highway and Transport, 2018, 31(2):67~74. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-7372.2018.02.007 [18] Wang J, Chen L, Yu Z B. Modeling rainfall infiltration on hillslopes using flux-concentration relation and time compression approximation[J]. Journal of Hydrology, 2018, 557:243~253. doi: 10.1016/j.jhydrol.2017.12.031 [19] 付建新, 谭玉叶, 宋卫东.考虑二维降雨入渗的非饱和土边坡稳定性分析[J].东北大学学报(自然科学版), 2014, 35(11):1646~1649. doi: 10.3969/j.issn.1005-3026.2014.11.028FU Jianxin, TAN Yuye, SONG Weidong. Analysis on stability of unsaturated soil slope considering two dimensional rainfall infiltration[J]. Journal of Northeastern University (Natural Science), 2014, 35(11):1646~1649. (in Chinese with English abstract) doi: 10.3969/j.issn.1005-3026.2014.11.028 [20] 石振明, 沈丹祎, 彭铭, 等.考虑多层非饱和土降雨入渗的边坡稳定性分析[J].水利学报, 2016, 47(8):977~985. http://d.old.wanfangdata.com.cn/Periodical/slxb201608002SHI Zhenming, SHEN Danyi, PENG Ming, et al. Slope stability analysis considering rainfall infiltration of multi-layered unsaturated soils[J]. Journal of Hydraulic Engineering, 2016, 47(8):977~985. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/slxb201608002 [21] 贺凯, 高杨, 王文沛, 等.陡倾煤层开采条件下上覆山体变形破坏物理模型试验研究[J].地质力学学报, 2018, 24(3):399~406. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180311&journal_id=dzlxxbHE Kai, GAO Yang, WANG Wenpei, et al. Physical model experimental study on deformation and failure of overlying rock slope under the condition of steep coal seam mining[J]. Journal of Geomechanics, 2018, 24(3):399~406. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180311&journal_id=dzlxxb [22] 张敏, 吴宏伟.边坡离心模型试验中的降雨模拟研究[J].岩土力学, 2007, 28 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200702452494S1):53~57. ZHANG Min, WU Hongwei. Rainfall simulation techniques in centrifuge modelling of slopes[J]. Rock and Soil Mechanics, 2007, 28(S1):53~57. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200702452494 [23] Allersma H G B, Ravenswaay L, Vos E. Investigation of road widening on soft soils using a small centrifuge[R]. Transportation Research Record 1462, 1994: 47~53. [24] 宋军, 梁炯, 石胜伟, 等.预应力格构锚固结构受力特征模型试验研究[J].地质力学学报, 2018, 24(3):432~438. http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180315&journal_id=dzlxxbSONG Jun, LIANG Jiong, SHI Shengwei, et al. Modelling test on the mechanical properties of pre-stressed lattice framed anchor structure[J]. Journal of Geomechanics, 2018, 24(3):432~438. (in Chinese with English abstract) http://journal.geomech.ac.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20180315&journal_id=dzlxxb [25] 李林昊, 赵宇飞, 汪小刚.预应力锚索边坡加固作用的离心机试验研究[J].水利水电技术, 2018, 49(1):143~148. http://d.old.wanfangdata.com.cn/Periodical/slsdjs201801021LI Linhao, ZHAO Yufei, WANG Xiaogang. Centrifuge experiment based study on slope reinforcing effect of anchor cable[J]. Water Resources and Hydropower Engineering, 2018, 49(1):143~148. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/slsdjs201801021 [26] 赵晓彦, 张京伍, 梁瑶, 等.花岗岩类土质边坡主被动组合锚固设计方法[J].岩石力学与工程学报, 2013, 32(3):633~639. doi: 10.3969/j.issn.1000-6915.2013.03.022ZHAO Xiaoyan, ZHANG Jingwu, LIANG Yao, et al. Design method for combined active/passive anchoring for granitoid soil slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(3):633~639. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6915.2013.03.022 [27] 姚裕春, 姚令侃, 袁碧玉, 等.施工时序对边坡稳定性影响的离心模型试验及数值分析[J].岩石力学与工程学报, 2006, 25(5):1075~1080. doi: 10.3321/j.issn:1000-6915.2006.05.034YAO Yuchun, YAO Lingkan, Yuan Biyu, et al. Centrifuge model test and numerical analysis of effects of excavation and support sequence on slope stability[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5):1075~1079. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2006.05.034 [28] 许湘华, 王强, 方理刚.高速公路路堑边坡施工过程动态稳定性分析[J].中南大学学报(自然科学版), 2006, 37(5):1008~1012. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb200605033XU Xianghua, WANG Qiang, FANG Ligang. Analysis on the stability of Expressway Slope during construction[J]. Journal of Central South University (Science and Technology), 2007, 37(5):1008~1012. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/zngydxxb200605033 期刊类型引用(10)
1. 魏浩,韩文喜,云海浪,马捷,徐洪兵. 加筋高填方边坡稳定性影响因素分析. 甘肃科学学报. 2022(01): 100-110 . 百度学术
2. 冉涛,陈浩,王羽珂,夏晨皓,杨东强,崔炎宗,方甜. 工程开挖活动诱发堆积层滑坡变形机理及加固效果分析. 地质与勘探. 2022(06): 1236-1251 . 百度学术
3. 秦世伟,陈俊,武亚军,赵玮. 降雨条件下不同非饱和参数的数值模拟研究. 三峡大学学报(自然科学版). 2020(03): 29-34 . 百度学术
4. 周嘉伟,于沭,苏安双,梁建辉,李兆宇,李炎隆. 改性分散性土边坡稳定性离心模型试验. 西北农林科技大学学报(自然科学版). 2020(07): 148-154 . 百度学术
5. 彭建兵,王启耀,庄建琦,冷艳秋,范仲杰,王少凯. 黄土高原滑坡灾害形成动力学机制. 地质力学学报. 2020(05): 714-730 . 本站查看
6. 周晔,贾跃东,李霞,李中泽. 桐柏县学堂沟水库工程地质分析. 河南水利与南水北调. 2020(12): 81-82 . 百度学术
7. 张开胜. 江格斯水库工程地质条件分析. 黑龙江水利科技. 2019(06): 35-37 . 百度学术
8. 任杰,李慧. 山东某水库道路开挖软硬互层顺层斜坡稳定性分析. 陕西水利. 2019(07): 30-31 . 百度学术
9. 张修杰,王成中,林少忠. 风化花岗岩地区公路高边坡病害特征及对策研究. 灾害学. 2019(S1): 109-112 . 百度学术
10. 张仓. 不同类型降雨条件下的基坑边坡渗流特性研究. 佳木斯大学学报(自然科学版). 2019(05): 707-710 . 百度学术
其他类型引用(7)
-