留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑土体抗拉强度的边坡永久位移极限分析

刘炎 张迎宾 何毅 夏逍 王新宇

刘炎, 张迎宾, 何毅, 等, 2018. 考虑土体抗拉强度的边坡永久位移极限分析. 地质力学学报, 24 (6): 855-862. DOI: 10.12090/j.issn.1006-6616.2018.24.06.089
引用本文: 刘炎, 张迎宾, 何毅, 等, 2018. 考虑土体抗拉强度的边坡永久位移极限分析. 地质力学学报, 24 (6): 855-862. DOI: 10.12090/j.issn.1006-6616.2018.24.06.089
LIU Yan, ZHANG Yingbin, HE Yi, et al., 2018. LIMIT ANALYSIS OF PERMANENT DISPLACEMENT FOR SLOPE CONSIDERING THE TENSILE STRENGTH OF SOIL. Journal of Geomechanics, 24 (6): 855-862. DOI: 10.12090/j.issn.1006-6616.2018.24.06.089
Citation: LIU Yan, ZHANG Yingbin, HE Yi, et al., 2018. LIMIT ANALYSIS OF PERMANENT DISPLACEMENT FOR SLOPE CONSIDERING THE TENSILE STRENGTH OF SOIL. Journal of Geomechanics, 24 (6): 855-862. DOI: 10.12090/j.issn.1006-6616.2018.24.06.089

考虑土体抗拉强度的边坡永久位移极限分析

doi: 10.12090/j.issn.1006-6616.2018.24.06.089
基金项目: 

国家自然科学基金 51608454

国家自然科学基金 51609204

中央高校基金 2682015CX092

中央高校基金 2682016CX084

详细信息
    作者简介:

    刘炎(1994-), 男, 在读硕士, 主要从事地震边坡稳定性分析。E-mail:lhh@my.swjtu.edu.cn

    通讯作者:

    何毅(1985-), 男, 副教授, 博士, 主要从事滑坡体-结构相互作用机理及边坡三维稳定性分析方法的研究。E-mail:dell811@163.com

  • 中图分类号: TU43

LIMIT ANALYSIS OF PERMANENT DISPLACEMENT FOR SLOPE CONSIDERING THE TENSILE STRENGTH OF SOIL

  • 摘要: 通过野外观测与室内试验发现,边坡后缘往往存在拉应力区。拉应力区的存在会影响边坡的稳定性,而地震荷载的存在会放大这种影响。分析拉应力区对边坡稳定性的影响,当前主要采用的方式为:对强度准则中抗拉强度进行折减(即张拉截断)。文章通过极限分析上限原理和拟静力法,推导出边坡临界加速度计算方程。以边坡在不同参数组合下的位移系数为基础,输入实测地震波,采用改进的Newmark法对边坡进行位移分析。文章算例的结果表明:拉应力区的存在会大大降低边坡临界加速度,土体在完全张拉截断下的临界加速度对边坡可能会产生超过50%的折减。拉应力区的存在也可以使永久位移达到传统的摩尔库伦理论计算值的2倍之多。文中所有的结果皆以图表形式展示,非常便于理解以及读取数据。

     

  • 图  1  不同破坏机制下的土体包络线

    a—经典M-C包络线;b—土体张拉截断包络线;
    c—完全张拉截断包络线;
    $φ$—内摩擦角; c—粘聚力; σ—法向应力; τ—剪应力;
    δ—破裂角; δu—法相速度分量; δw—水平速度分量;
    ftf3t—单轴抗拉强度; f′t—一维的部分折减的抗拉强度; fc—一维抗压强度

    Figure  1.  Soil envelopes under different failure mechanisms

    图  2  土体受张拉截断影响的边坡

    H—坡高;Kh—水平向地震系数;δm—初始破裂角;mg—坡体重力;v—非连续速度

    Figure  2.  The slope with tension strength cut-off

    图  3  不同参数下边坡临界加速度(张拉截断边坡中,抗拉强度系数ξ=0)

    a—内摩擦角$φ$=10°下的坡体临界加速度;b—内摩擦 $φ$=20°下的坡体临界加速度;c—内摩擦角$φ$=30°下的坡体临界加速度

    Figure  3.  The critical accelerations of three slopes under different parameters (ξ=0 for full tension strength cut-off)

    图  4  不同抗拉强度系数ξ对应的边坡临界加速度

    Figure  4.  The critical accelerations of the slope corresponding to different tensile strength coefficient ξ

    图  5  二维张拉截断边坡旋转机制

    a—坡体破坏机制;b—坡体位移原理图

    Figure  5.  The rotation mechanism of the slope with two-dimensional tnsion-cut off

    图  6  不同抗拉强度系数ξ下的地震位移系数

    a—临界加速度kc=0.1;b—临界加速度kc=0.2;c—临界加速度kc=0.3

    Figure  6.  Seismic displacement coefficients under different tensile strength coefficient ξ

    图  7  El Centro Array站台记录Imperial Valley地震的水平分量

    Figure  7.  Horizontal components of Imperial Velley earthquake recorder by EI Centro Array Station

    图  8  Imperial Valley地震的下的边坡永久位移

    Figure  8.  The corresponding earthquake-induced permanent displacements under Imperial Valley earthquake

    图  9  不同抗拉强度系数下的边坡永久位移

    Figure  9.  Pemanent displacements of the slope under different tensile strength cofficients ξ

  • [1] Keefer D K. Statistical analysis of an earthquake-induced landslide distribution-The 1989 Loma Prieta, California event[J]. Engineering Geology, 2000, 58(3~4):231~249. doi: 10.1016/S0013-7952(00)00037-5
    [2] Meehan C L, Vahedifard F. Evaluation of simplified methods for predicting earthquake-induced slope displacements in earth dams and embankments[J]. Engineering Geology, 2013, 152(1):180~193. doi: 10.1016/j.enggeo.2012.10.016
    [3] Baker R, Shukha R, Operstein V, et al. Stability charts for pseudo-static slope stability analysis[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(9):813~823. doi: 10.1016/j.soildyn.2006.01.023
    [4] Zhang K, Cao P. Slope seismic stability analysis on kinematical element method and its application[J]. Soil Dynamics and Earthquake Engineering, 2013, 50:62~71. doi: 10.1016/j.soildyn.2013.03.002
    [5] Zhao L H, Cheng X, Zhang Y B, et al. Stability analysis of seismic slopes with cracks[J]. Computers and Geotechnics, 2016, 77:77~90. doi: 10.1016/j.compgeo.2016.04.007
    [6] Yang C W, Zhang J J, Fu X, et al. Improvement of pseudo-static method for slope stability analysis[J]. Journal of Mountain Science, 2014, 11(3):625~633. doi: 10.1007/s11629-013-2756-8
    [7] Newmark N M. Effects of earthquakes on dams and embankments[J]. Géotechnique, 1965, 15(2):139~160. doi: 10.1680/geot.1965.15.2.139
    [8] Rathje E M, Bray J D. Nonlinear coupled seismic sliding analysis of earth structures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 126(11):1002~1014. http://cn.bing.com/academic/profile?id=c25c5bb2f3233c92363ffd4b9cc9120d&encoded=0&v=paper_preview&mkt=zh-cn
    [9] You L Z, Michalowski R L. Displacement charts for slopes subjected to seismic loads[J]. Computers and Geotechnics, 1999, 25(1):45~55. doi: 10.1016/S0266-352X(99)00016-6
    [10] Utili S, Abd A H. On the stability of fissured slopes subject to seismic action[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(5):785~806. doi: 10.1002/nag.v40.5
    [11] Zhao L H, Cheng X, Dan H C, et al. Effect of the vertical earthquake component on permanent seismic displacement of soil slopes based on the nonlinear Mohr-Coulomb failure criterion[J]. Soils and Foundations, 2017, 57(2):237~251. doi: 10.1016/j.sandf.2016.12.002
    [12] Zhao L H, Cheng X, Li L, et al. Seismic displacement along a log-spiral failure surface with crack using rock Hoek-Brown failure criterion[J]. Soil Dynamics and Earthquake Engineering, 2017, 99:74~85. doi: 10.1016/j.soildyn.2017.04.019
    [13] 尤明庆.均质土坡滑动面的变分法分析[J].岩石力学与工程学报, 2006, 25 http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2006z1021

    S1):2735~2745. YOU Mingqing. Study on landslide of homogeneous soil with calculus of variations[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1):2735~2745. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb2006z1021
    [14] Duncan J M, Wright S G. Soil strength and slope stability[M]. Hoboken:Wiley, 2005.
    [15] Utili S. Investigation by limit analysis on the stability of slopes with cracks[J]. Géotechnique, 2013, 63(2):140~154. doi: 10.1680/geot.11.P.068
    [16] Michalowski R L. Stability of intact slopes with tensile strength cut-off[J]. Géotechnique, 2017, 67(8):720~727. doi: 10.1680/jgeot.16.P.037
    [17] Kaniraj S R, Abdullah H. Effect of berms and tension crack on the stability of embankments on soft soils[J]. Soils and Foundations, 1993, 33(4):99~107. doi: 10.3208/sandf1972.33.4_99
    [18] Baker R. Tensile strength, tension cracks, and stability of slopes[J]. Soils and Foundations, 1981, 21(2):1~17. doi: 10.3208/sandf1972.21.2_1
    [19] Park D, Wang Z J, Michalowski R L. Consequences of seismic excitation on slopes in soils with a tensile strength cutoff[A]. Geotechnical Frontiers 2017[C]. Orlando, Florida: American Society of Civil Engineers, 2017: 304~313.
    [20] Taylor D W. Fundamentals of soil mechanics[J]. Soil Science, 1948, 66(2):161. doi: 10.1227-NEU.0b013e31822b8107/
    [21] Chen W F. Limit analysis and soil plasticity[M]. Amsterdam:Elsevier, 1975.
    [22] Chang C J, Chen W F, Yao J T P. Seismic displacements in slopes by limit analysis[J]. Journal of Geotechnical Engineering, 1984. 110(7):860~874. doi: 10.1061/(ASCE)0733-9410(1984)110:7(860)
    [23] Michalowski R L, You L Z. Displacements of Reinforced Slopes Subjected to Seismic Loads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(8):685~694. doi: 10.1061/(ASCE)1090-0241(2000)126:8(685)
    [24] Li X P, He S M, Wu Y. Seismic displacement of slopes reinforced with piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(6):880~884. doi: 10.1061/(ASCE)GT.1943-5606.0000296
    [25] Nadukuru S S, Michalowski R L. Three-dimensional displacement analysis of slopes subjected to seismic loads[J]. Canadian Geotechnical Journal, 2013, 50(6):650~661. doi: 10.1139/cgj-2012-0223
    [26] He Y, Hazarika H, Yasufuku N, et al. Three-dimensional limit analysis of seismic displacement of slope reinforced with piles[J]. Soil Dynamics and Earthquake Engineering, 2015, 77:446~452. doi: 10.1016/j.soildyn.2015.06.015
    [27] Zhang Y B, Chen G Q, Zheng L, et al. Effects of near-fault seismic loadings on run-out of large-scale landslide:A case study[J]. Engineering Geology, 2013, 166:216~236. doi: 10.1016/j.enggeo.2013.08.002
    [28] Zhang Y B, Wang J M, Xu Q, et al. DDA validation of the mobility of earthquake-induced landslides[J]. Engineering Geology, 2015, 194:38~51. doi: 10.1016/j.enggeo.2014.08.024
    [29] Zhang Y B, Zhang J, Chen G Q, et al. Effects of vertical seismic force on initiation of the Daguangbao landslide induced by the 2008 Wenchuan earthquake[J]. Soil Dynamics and Earthquake Engineering, 2015, 73:91~102. doi: 10.1016/j.soildyn.2014.06.036
  • 加载中
图(9)
计量
  • 文章访问数:  145
  • HTML全文浏览量:  76
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-15
  • 修回日期:  2018-10-08
  • 刊出日期:  2018-12-28

目录

    /

    返回文章
    返回