留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盐溶液的渗透吸力计算方法

李晓月 徐永福

李晓月, 徐永福, 2018. 盐溶液的渗透吸力计算方法. 地质力学学报, 24 (5): 723-729. DOI: 10.12090/j.issn.1006-6616.2018.24.05.074
引用本文: 李晓月, 徐永福, 2018. 盐溶液的渗透吸力计算方法. 地质力学学报, 24 (5): 723-729. DOI: 10.12090/j.issn.1006-6616.2018.24.05.074
LI Xiaoyue, XU Yongfu, 2018. THE CALCULATION METHOD FOR OSMOTIC SUCTION OF SALINE SOLUTION. Journal of Geomechanics, 24 (5): 723-729. DOI: 10.12090/j.issn.1006-6616.2018.24.05.074
Citation: LI Xiaoyue, XU Yongfu, 2018. THE CALCULATION METHOD FOR OSMOTIC SUCTION OF SALINE SOLUTION. Journal of Geomechanics, 24 (5): 723-729. DOI: 10.12090/j.issn.1006-6616.2018.24.05.074

盐溶液的渗透吸力计算方法

doi: 10.12090/j.issn.1006-6616.2018.24.05.074
基金项目: 

国家自然科学基金重点项目 41630633

详细信息
    作者简介:

    李晓月(1994-), 女, 在读博士, 主要从事膨胀性粘土基本性质的研究。E-mail:xiaoyueli@sjtu.edu.cn

    通讯作者:

    徐永福(1967-), 男, 博士, 教授, 主要从事非饱和土力学、分形介质力学和特殊土地基处理研究。E-mail:yongfuxu@sjtu.edu.cn

  • 中图分类号: TU443

THE CALCULATION METHOD FOR OSMOTIC SUCTION OF SALINE SOLUTION

  • 摘要: 膨润土垫层在高放废料处置库环境中与围岩接触,力学性能会受到围岩裂隙中所含盐溶液的影响。盐溶液的渗透吸力会在膨润土上产生类似于竖向荷载作用的附加应力,量化盐溶液对膨润土力学性能的影响对评估地下处置库的安全性具有重要意义。溶液渗透吸力系数作为计算渗透吸力的关键,目前需要通过较为复杂的实验测得,对工程实际应用造成了阻碍。通过引入Debye-Hückel公式,提出含单价离子电解质、2-2型电解质及混合电解质溶液的渗透吸力系数及渗透吸力的计算方法。基于Debye-Hückel公式,分析溶剂种类和温度对渗透吸力系数的影响,结果表明:溶剂极性越大,渗透吸力系数越大;温度越高,渗透吸力系数越小。

     

  • 图  1  钠盐在水溶液中渗透吸力系数与溶质浓度关系

    Figure  1.  Relationship between osmotic suction coefficient and solute concentration for sodium salt in agueous solution

    图  2  NaCl和CaCl2的渗透吸力与溶质浓度的关系

    Figure  2.  Relationship between osmotic suction and solute concentration of NaCl and CaCl2

    图  3  三种硫酸盐水溶液中的渗透吸力系数与溶质浓度的关系

    Figure  3.  Relationship between osmotic suction coefficient and solute concentration for three kinds of sulfate solutions

    图  4  NaCl-KCl混合溶液渗透吸力系数与浓度的关系

    Figure  4.  Relationship between osmotic suction coefficient and concentration for NaCl-KCl mixed solutions

    图  5  渗透吸力系数随温度变化关系

    Figure  5.  Relationship between osmotic suction coefficient and temperature

    表  1  不同种类含单价离子电解质的渗透吸力系数

    Table  1.   Osmotic suction coefficients of different monovalent ionic electrolytes

    c(mol/kg) 1-1型 2-1型 3-1型 1-2型 1-3型 1-4型 1-5型
    KCl Ca(NO3)2 CaCl2 AlCl3 Na2SO4 K3PO4 Na4P2O7 Na5P3O4
    0.01 0.967 0.904 0.907 0.842 0.898 0.819 0.739 0.667
    0.05 0.940 0.850 0.864 0.810 0.828 0.738 0.644 0.576
    0.1 0.926 0.831 0.856 0.819 0.793 0.708 0.589 0.510
    0.2 0.913 0.820 0.862 0.850 0.754 0.680 0.520 0.432
    0.3 0.906 0.818 0.876 0.891 0.728 0.667 0.489 0.397
    0.4 0.902 0.819 0.895 0.942 0.707 0.662 0.483 0.376
    0.5 0.900 0.823 0.916 1.002 0.691 0.661 0.496 -
    0.7 0.898 0.836 0.964 1.143 0.665 0.666 - -
    1 0.898 0.861 1.048 1.390 0.641 - - -
    1.6 0.905 0.917 1.243 1.953 0.622 - - -
    2 0.913 0.951 1.386 - 0.624 - - -
    2.5 0.924 0.904 1.572 - 0.638 - - -
    3 0.937 0.850 - - 0.662 - - -
    4 0.965 0.831 - - 0.734 - - -
    4.8 0.989 0.820 - - - - - -
    下载: 导出CSV

    表  2  不同溶质的渗透吸力系数

    Table  2.   Osmotic suction coefficients of different solutes

    c(mol/kg) MgSO4 ZnSO4 CuSO4 CaSO4
    0.001 0.894 0.895 0.888 0.910
    0.005 0.791 0.793 0.778 0.792
    0.01 0.741 0.741 0.725 -
    0.05 0.635 0.623 0.611 -
    0.1 0.595 0.573 0.560 -
    0.5 0.525 0.482 0.467 -
    1 0.527 0.477 0.463 -
    1.4 0.562 0.510 0.488
    2 0.660 0.606 - -
    3 0.913 0.860 - -
    3.5 - 1.022 -
    下载: 导出CSV

    表  3  不同溶质的Debye-Hückel系数

    Table  3.   Debye-Hückel coefficients of different solvents

    溶剂 εr ρsl(kg/m3) A
    78.4 1000 0.393
    甲醇 32.63 786.6 1.297
    乙醇 24.35 785 2.009
    丙酮 20.7 784.35 2.562
    乙酸乙酯 6.02 894.5 17.447
    2.28 873.6 73.974
    下载: 导出CSV

    表  4  水在不同温度中的D-H系数

    Table  4.   Debye-Hückel coefficients of water under different temperatures

    温度/K 相对介电常数εr 参数A
    273 87.74 0.3781
    278 85.76 0.3808
    283 83.83 0.3836
    288 81.95 0.3866
    293 80.1 0.3899
    294 79.73 0.3906
    296 79.02 0.3918
    298 78.3 0.3933
    300 77.6 0.3946
    303 76.55 0.3968
    308 74.83 0.4006
    313 73.15 0.4046
    318 71.15 0.4119
    323 69.91 0.4131
    下载: 导出CSV
  • [1] 王驹, 陈伟明, 苏锐, 等.高放废物地质处置及其若干关键科学问题[J].岩石力学与工程学报, 2006, 4(25):801~812. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb200604015

    WANG Ju, CHEN Weiming, SU Rui, et al. Geological disposal of high-level radioactive waste and its key scientific issues[J]. Chinese Journal of Rock Mechancis and Engineering, 2006, 4(25):801~812. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb200604015
    [2] 孙德安, 张龙.盐溶液饱和高庙子膨润土膨胀特性及预测[J].岩土力学, 2013, 34(10):2790~2795. http://d.old.wanfangdata.com.cn/Periodical/ytlx201310007

    SUN Dean, ZHANG Long. Swelling characteristics of Gaomiaozi bentonite saturated by salt solution and their prediction[J]. Rock and Soil Mechanics, 2013, 34(10):2790~2795. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ytlx201310007
    [3] Sun Z M, Yu J, Zheng S L, et al. Effect of salt in aqueous solution on the swelling and water-retention capacity of bentonite[J]. Advanced Materials Research, 2011, 194~196:2039~2045. doi: 10.4028/www.scientific.net/AMR.194-196
    [4] Alawaji H A. Swell and compressibility characteristics of sand-bentonite mixtures inundated with liquids[J]. Applied Clay Science, 1999, 15(3/4):411~430. http://cn.bing.com/academic/profile?id=11109b69d94d9eb124098a127c33ed9b&encoded=0&v=paper_preview&mkt=zh-cn
    [5] Zhang L, Sun D A, Jia D. Shear strength of GMZ07 bentonite and its mixture with sand saturated with saline solution[J]. Applied Clay Science, 2016, 132~133:24~32. doi: 10.1016/j.clay.2016.08.004
    [6] Tabiatnejad B, Siddiqua S, Siemens G. Impact of pore fluid salinity on the mechanical behavior of unsaturated bentonite-sand mixture[J]. Environmental Earth Sciences, 2016, 75(22):1434. doi: 10.1007/s12665-016-6246-5
    [7] Maio D C. Shear strength of clays and clayey soils: the influence of pore fluid composition[A]. Loret B, Huyghe J M. Chemo-Mechanical Couplings in Porous Media Geomechanics and Biomechanics[M]. Vienna: Springer, 2004, 45~55.
    [8] Rao S M, Thyagaraj T. Swell-compression behaviour of compacted clays under chemical gradients[J]. Canadian Geotechnical Journal, 2007, 44(5):520~532. doi: 10.1139/t07-002
    [9] Barbour S L, Fredlund D G. Mechanisms of osmotic flow and volume change in clay soils[J]. Canadian Geotechnial Journal, 1989, 26(4):551~562. doi: 10.1139/t89-068
    [10] Xu Y F, Xiang G S, Jiang H, et al. Role of osmotic suction in volume change of clays in salt solution[J]. Applied Clay Science, 2014, 101:354~361. doi: 10.1016/j.clay.2014.09.006
    [11] Miller D J, Nelson J D. Osmotic suction in unsaturated soil mechanics[A]. Proceedings of the Fourth International Conference on Unsaturated Soils[C]. Arizona:American Society of Civil Engineers, 2006, 1382~1393.
    [12] Apelblat A, Dov M, Wisniak J, et al. The vapour pressure of water over saturated aqueous solutions of malic, tartaric, and citric acids, at temperatures from 288 K to 323 K[J]. The Journal of Chemical Thermodynamics, 1995, 27(1):35~41. doi: 10.1006/jcht.1995.0004
    [13] Wijmans J G, Baker R W. The solution-diffusion model:a review[J]. Journal of Membrane Science, 1995, 107(1~2):1~21. doi: 10.1016/0376-7388(95)00102-I
    [14] Fernández D P, Goodwin A R H, Lemmon E W, et al. A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye-Hückel coefficients[J]. Journal of Physical and Chemical Reference Data, 1997, 26(4):1125~1166. doi: 10.1063/1.555997
    [15] Scatchard G. Excess free energy and related properties of solutions containing electrolytes[J]. Journal of the American Chemical Society, 1968, 90(12):3124~3127. doi: 10.1021/ja01014a027
    [16] Pitzer K S, Mayorga G. Thermodynamics of electrolytes. Ⅱ. activity and osmotic coefficients for strong electrolytes with One or both ions univalent[J]. Pitzer, 1973, 77(19):2300~2308. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ026170697/
    [17] Pitzer K S, Mayorga G. Thermodynamics of electrolytes. Ⅲ. activity and osmotic coefficients for 2~2 electrolytes[J]. Journal of Solution Chemistry, 1974, 3(7):539~546. doi: 10.1007/BF00648138
    [18] Hamer W J, Wu Y C. Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25℃[J]. Journal of Physical and Chemical Reference Data, 1972, 1(4):1047~1099. doi: 10.1063/1.3253108
    [19] Clarke E C W, Glew D N. Evaluation of the thermodynamic functions for aqueous sodium chloride from equilibrium and calorimetric measurements below 154℃[J]. Journal of Physical and Chemical Reference Data, 1985, 14(2):489~610. doi: 10.1063/1.555730
    [20] Guendouzi M E L, Mounir A, Dinane A. Water activity, osmotic and activity coefficients of aqueous solutions of Li2SO4, Na2SO4, K2SO4, (NH4)2SO4, MgSO4, MnSO4, NiSO4, CuSO4, and ZnSO4 at T=298.15 K[J]. The Journal of Chemical Thermodynamics, 2003, 35(2):209~220. doi: 10.1016/S0021-9614(02)00315-4
    [21] Castellanos E, Villar M V, Romero E, et al. Chemical impact on the hydro-mechanical behaviour of high-density FEBEX bentonite[J]. Physics and Chemistry of the Earth, 2008, 33(S1):S516-S526. https://www.researchgate.net/publication/223791226_Chemical_impact_on_the_hydro-mechanical_behavior_of_high-density_FEBEX_bentonite
    [22] Pitzer K S, Kim J J. Thermodynamics of electrolytes. Ⅳ. Activity and osmotic coefficients for mixed electrolytes[J]. Journal of the American Chemical Society, 1974, 96(18):5701~5707. doi: 10.1021/ja00825a004
    [23] Dinane A, El Guendouzi M, Mounir A. Hygrometric determination of water activities, osmotic and activity coefficients of (NaCl+KCl)(aq) at T=298.15 K[J]. The Journal of Chemical Thermodynamics, 2002, 34(4):423~441. doi: 10.1006/jcht.2001.0845
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  389
  • HTML全文浏览量:  120
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-08
  • 修回日期:  2018-07-30
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回