THE APPLICATION OF TWO FACTOR METHOD IN QUANTITATIVE PREDICTION OF TECTONIC FRACTURES: A CASE STUDY OF SHALE IN QING-1 MEMBER, SONGLIAO BASIN
-
摘要: 松辽盆地青山口组一段是一套重要的烃源岩层,也是盆地主要的裂缝性油藏和页岩油藏发育层。裂缝不仅是油气运移的主要通道,也是重要的储集空间,裂缝分布规律的评价对盆地今后页岩油和裂缝性油藏的勘探开发具有重要的指导意义。利用ANSYS与Suffer联合建模并采用Petrel软件对研究区岩石力学参数进行三维随机模拟的方法,对松辽盆地古近纪末期的应力场进行了三维数值模拟。结果表明,研究区最大主应力的变化范围为24~147 MPa,最小主应力变化范围为3.8~114.4 MPa;扶余隆起带附近为最大主应力低值区,大庆长垣附近为最大主应力高值区;最小水平主应力的应力低值区和高值区的分布与最大水平主应力大致相同。在此基础上,采用二元法对裂缝密度作了定量的预测,预测值与实测值吻合度较高。预测结果显示,齐家—古龙凹陷、大庆长垣以及梨树—德惠等地裂缝相对较为发育,是下一步勘探的重点。Abstract: Qing-1 member of Qingshankou Formation in the Songliao Basin is an important hydrocarbon source formation and also the main development layer for fractured reservoir and shale oil reservoir. Fractures act not only as major pathways but also as important reservoir space. The evaluation of distribution pattern of fractures is instructive to the exploration and development of shale oil as well as fractured oil reservoirs. With finite element software ANSYS and Suffer to jointly model and by using software Petrel to simulate the rock mechanics parameters in three dimensional stochastically, the 3-D numerical simulation of plaeo stress field in late Paleogene is performed. The results show that the maximum principal stress in the study area varies from 24 to 147 MPa, and the minimum principal stress varies from 3.8 to 114.4 MPa. The area near Fuyu uplift zone is the low maximum principal stress area, while the area near Daqingchangyuan is the high maximum principal stress area. The distribution of the minimum horizontal principal stress in the low and high stress areas is approximately the same as that of the maximum horizontal principal stress. Based on the simulation, fracture density is predicted quantitatively through two factor method, with a relatively high reliability and coincidence rate of the measured one. The results show that the density in the Qijia-Gulong Depression, Daqingchangyuan and the Lishu-Dehui Depression is higher than other areas, which means they are the key exploration areas.
-
图 5 松辽盆地青一段应力场数值模拟结果(图中负值表示压应力)
Ⅰ—西部斜坡区;Ⅱ—中央凹陷区;Ⅲ1—黑鱼泡凹陷;Ⅲ3—龙虎泡—红岗阶地;Ⅲ4—齐家—古龙凹陷;Ⅲ5—大庆长垣;Ⅲ6—三肇凹陷;Ⅲ7—朝阳沟阶地;Ⅲ8—长岭凹陷;Ⅲ9—扶新隆起带;Ⅲ10—双坨子阶地;Ⅳ—东北隆起区;Ⅴ—东南隆起区;Ⅴ1—长春岭背斜带;Ⅴ2—宾县—王府凹陷;Ⅴ3—青山口背斜;Ⅴ4—登楼库背斜;Ⅴ5—钓鱼岛隆起;Ⅴ6—杨大城子背斜;Ⅴ7—梨树—德惠凹陷;Ⅴ8—扶余隆起
Figure 5. The results of the numerical simulation of tectonic stress field of Qing-1 member in the Songliao Basin (the negative values represent the compressive stress)
图 6 松辽盆地青一段张破裂率和剪破裂率分布图
Ⅰ—西部斜坡区;Ⅱ—中央凹陷区;Ⅲ1—黑鱼泡凹陷;Ⅲ3—龙虎泡—红岗阶地;Ⅲ4—齐家—古龙凹陷;Ⅲ5—大庆长垣;Ⅲ6—三肇凹陷;Ⅲ7—朝阳沟阶地;Ⅲ8—长岭凹陷;Ⅲ9—扶新隆起带;Ⅲ10—双坨子阶地;Ⅳ—东北隆起区;Ⅴ—东南隆起区;Ⅴ1—长春岭背斜带;Ⅴ2—宾县—王府凹陷;Ⅴ3—青山口背斜;Ⅴ4—登楼库背斜;Ⅴ5—钓鱼岛隆起;Ⅴ6—杨大城子背斜;Ⅴ7—梨树—德惠凹陷;Ⅴ8—扶余隆起
Figure 6. The contour map of tensile fracture rate and shear fracture rate of Qing-1 member in the Songliao Basin
表 1 不同地质体材料属性数据表
Table 1. Property table for different geological materials
材料编号 模拟对象 岩石模量E/ ×103 MPa 泊松比μ 岩石密度ρ /(g/cm3) 颜色 1 目的层 17.5 0.33 2.3 深紫色 2 30 0.35 2.4 深蓝色 3 30 0.33 2.3 浅蓝色 4 25 0.33 2.4 粉红色 5 20 0.33 2.3 蓝色 6 15 0.32 2.36 紫色 7 7 0.30 2.6 浅紫色 8 40 0.32 2.5 红色 9 35.0 0.33 2.2 深黄色 10 断层 12 0.4 2.3 土黄色 11 边框 20 0.33 2.3 蓝色 表 2 岩心观测密度与预测值之间误差分析
Table 2. Error analysis between the predictive density and that derived from cores
井号 岩心裂缝密度/(条/m) 预测结果/(条/m) 绝对误差/(条/m) 相对误差/% 黑52 0.0849 0.0700 0.0149 17.56 黑57 0.0088 0.0100 0.0012 15.00 黑62 0.0719 0.0500 0.0219 30.42 黑68 0.0408 0.0380 0.0028 6.90 海7 0.0104 0.0130 0.0026 24.80 -
[1] 贾承造, 郑民, 张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发, 2012, 39(2):129~136. http://d.old.wanfangdata.com.cn/Periodical/syktykf201202001JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration & Development, 2012, 39(2):129~136. (in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/syktykf201202001 [2] 孙贻铃, 王秀娟, 周永炳.三肇凹陷扶杨油层岩石力学参数特征[J].大庆石油地质与开发, 2001, 20(4):19~21. doi: 10.3969/j.issn.1000-3754.2001.04.007SUN Yiling, WANG Xiujuan, ZHOU Yongbing. Rock mechanical parameter characteristic of fuyang reservoir in sanz hao depression[J]. Petroleum Geology & Oilfield Development in Daqing, 2001, 20(4):19~21. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3754.2001.04.007 [3] 冯薇澍.松辽盆地齐家-古龙凹陷青一段泥页岩油气资源潜力评价[D].大庆: 东北石油大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10220-1013290079.htmFENG Weishu. Songliao basin Qijia-Gulong section of shale oil and gas resource potential evaluation[D]. Daqing: Northeast Petroleum University, 2013. (in Chinese with English abstract) http://cdmd.cnki.com.cn/Article/CDMD-10220-1013290079.htm [4] Price L C. Basin richness and source rock disruption:a fundamental relationship[J]. Journal of Petroleum Geology, 1994, 17(1):15~38. doi: 10.1111-j.1747-5457.1994.tb00112.x/ [5] 舒良树, 慕玉福, 王伯长.松辽盆地含油气地层及其构造特征[J].地层学杂志, 2003, 27(4):340~347. doi: 10.3969/j.issn.0253-4959.2003.04.014SHU Liangshu, MU Yufu, WANG Baichang. The oil-gas-bearing strata and the structural features in the songliao basin, Ne China[J]. Journal of Stratigraphy, 2003, 27(4):340~347. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4959.2003.04.014 [6] 郭东鑫, 唐书恒, 解慧, 等.松辽盆地油页岩勘探开发有利区预测[J].西安科技大学学报, 2012, 32(1):57~62. doi: 10.3969/j.issn.1672-9315.2012.01.011GUO Dongxin, TANG Shuheng, XIE Hui, et al. Favorable areas prediction for oil shale exploration and exploitation in Songliao basin[J]. Journal of Xi'an University of Science and Technology, 2012, 32(1):57~62. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-9315.2012.01.011 [7] 丁中一, 钱祥麟, 霍红, 等.构造裂缝定量预测的一种新方法——二元法[J].石油与天然气地质, 1998, 19(1):1~7, 14. doi: 10.3321/j.issn:0253-9985.1998.01.001DING Zhongyi, QIAN Xianglin, HUO Hong, et al. A new method for quantitative prediction of tectonic fractures-two-factor method[J]. Oil & Gas Geology, 1998, 19(1):1~7, 14. (in Chinese with English abstract) doi: 10.3321/j.issn:0253-9985.1998.01.001 [8] 陈运平, 赵崇斌, 林舸.深部岩石力学性质及其在大陆构造变形过程研究中的作用[J].大地构造与成矿学, 2008, 32(3):276~284. doi: 10.3969/j.issn.1001-1552.2008.03.003CHEN Yunping, ZHAO Chongbin, LIN Ge. Mechanical properties of deep earth rocks and their roles in the investigation of continental deformation processes[J]. Geotectonica et Metallogenia, 2008, 32(3):276~284. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-1552.2008.03.003 [9] 张晋言, 孙建孟.利用测井资料评价泥页岩油气"五性"指标[J].测井技术, 2012, 36(2):146~153. doi: 10.3969/j.issn.1004-1338.2012.02.008ZHANG Jinyan, SUN Jianmeng. Log evaluation on shale hydrocarbon reservoir[J]. Well Logging Technology, 2012, 36(2):146~153. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-1338.2012.02.008 [10] 周灿灿.柏各庄地区构造样式及储层构造裂缝识别与预测[D].广州: 中国科学院研究生院(广州地球化学研究所), 2003. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y540848ZHOU Cancan. Studies on the structure mode of baigezhuang region and the identification and prediction of structure fracture of reservoirs[D]. Guangzhou: Guangzhou Graduate School of the Chinese Academy of Sciences (Guangzhou Institute of Geochemistry), 2003. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y540848 [11] 刘广峰, 陆红军, 何顺利.有限元法开展油气储层地应力研究综述[J].科学技术与工程, 2009, 9(24):7430~7435. doi: 10.3969/j.issn.1671-1815.2009.24.033LIU Guangfeng, LU Hongjun, HE Shunli. Aplication of finite element analysis in reservoir in-situ stress research[J]. Science Technology and Engineering, 2009, 9(24):7430~7435. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2009.24.033 [12] 穆龙新, 赵国良.储层裂缝预测研究[M].北京:石油工业出版社, 2009.MU Longxin, ZHAO Guoliang. Study on reservoir fracture prediction[M]. Beijing:Petroleum Industry Press, 2009. (in Chinese) [13] 陈志德, 蒙启安, 万天丰, 等.松辽盆地古龙凹陷构造应力场弹-塑性增量法数值模拟[J].地学前缘, 2002, 9(2):483~492. doi: 10.3321/j.issn:1005-2321.2002.02.027CHEN Zhide, MENG Qi'an, WAN Tianfeng, et al. Numerical simulation of tectonic stress field in gulong depression in songliao basin using elastic-plastic increment method[J]. Earth Science Frontiers, 2002, 9(2):483~492. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2002.02.027 [14] 张莉, 岳乐平, 杨亚娟, 等.反转构造盆地裂缝特征-以松辽盆地大庆三肇地区为例[J].石油与天然气地质, 2002, 23(4):361~365, 367. doi: 10.3321/j.issn:0253-9985.2002.04.012ZHANG Li, YUE Leping, YANG Yajuan, et al. Fracture features of reversed basin:taking sanzhao area of songliao basin for example[J]. Oil & Gas Geology, 2002, 23(4):361~365, 367. (in Chinese with English abstract) doi: 10.3321/j.issn:0253-9985.2002.04.012 [15] 罗笃清, 姜贵周.松辽盆地中新生代构造演化[J].大庆石油学院学报, 1993, 17(1):8~16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000262712LUO Duqing, JIANG Guizhou. Tectonic evaluation of mesozoic-cenozoic in Songliao basin northeast China[J]. Journal of Daqing Petroleum Institute, 1993, 17(1):8~16. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000262712 [16] 孙庆和, 陈发景, 李长禄, 等.大庆头台地区扶余油层无效缝的形成与分布[J].地学前缘, 2000, 7(4):391~402. doi: 10.3321/j.issn:1005-2321.2000.04.006SUN Qinghe, CHEN Fajing, LI Changlu, et al. Formation and distribution of invalid fractures in Fuyu reservoir of Toutai area of the Daqing[J]. Earth Science Frontiers, 2000, 7(4):391~402. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2000.04.006 [17] 李娟, 舒良树.松辽盆地中、新生代构造特征及其演化[J].南京大学学报(自然科学版), 2002, 38(4):525~531. doi: 10.3321/j.issn:0469-5097.2002.04.010LI Juan, SHU Liangshu. Mesozoic-cenozoic tectonic features and evolution of the Song-Liao Basin, NE China[J]. Journal of Nanjing University (Natural Sciences), 2002, 38(4):525~531. (in Chinese with English abstract) doi: 10.3321/j.issn:0469-5097.2002.04.010 [18] 王宏图, 鲜学福, 尹光志.声发射凯塞尔效应岩体地应力测试的研究[J].煤炭学报, 1997, 22(5):486~489. doi: 10.3321/j.issn:0253-9993.1997.05.008WANG Hongtu, XIAN Xuefu, YIN Guangzhi. Study on crustal stress measurement of rock mass by the kaiser effect of acoustic emission in rock[J]. Journal of China Coal Society, 1997, 22(5):486~489. (in Chinese with English abstract) doi: 10.3321/j.issn:0253-9993.1997.05.008 [19] 李志明, 张金珠.地应力与油田勘探开发[M].北京:石油工业出版社, 1997.LI Zhiming, ZHANG Jinzhu. Earth stress and oilfield exploration and development[M]. Beijing:Petroleum Industry Press, 1997. (in Chinese) [20] 陈超.边台油田潜山油藏天然裂缝预测方法研究[D].大庆: 大庆石油大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10220-2006172369.htmCHEN Chao. Prediction method for biantai buried hill reservoir fractures[D]. Daqing: Daqing Petroleum University, 2006. (in Chinese with English abstract) http://cdmd.cnki.com.cn/Article/CDMD-10220-2006172369.htm [21] 文世鹏, 李德同.储层构造裂缝数值模拟技术[J].石油大学学报(自然科学版), 1996, 20(5):17~24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600509303WEN Shipeng, LI Detong. Numerical simulation technology of reservoir structural fracture[J]. Journal of the University of Petroleum, China, 1996, 20(5):17~24. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600509303 [22] 陈波, 田崇鲁.储层构造裂缝数值模拟技术的应用实例[J].石油学报, 1998, 19(4):50~54. doi: 10.3321/j.issn:0253-2697.1998.04.009CHEN Bo, TIAN Chonglu. Numerical simulation technique for structural fractures in a reservoir:case studies[J]. Acta Petrolei Sinica, 1998, 19(4):50~54. (in Chinese with English abstract) doi: 10.3321/j.issn:0253-2697.1998.04.009 [23] 王连捷, 王红才, 王薇, 等.油田三维构造应力场、裂缝与油气运移[J].岩石力学与工程学报, 2004, 23(23):4052~4057. doi: 10.3321/j.issn:1000-6915.2004.23.024WANG Lianjie, Wang Hongcai, Wang Wei, et al. Relation among three dimensional tectonic stress field, fracture and migration of oil and gas in oil field[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(23):4052~4057. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2004.23.024 [24] Price N J. Fault and joint development in brittle and semi-brittle rock[M]. London:Pergamon Press, 1966, 176. [25] 尤广芬.储层裂缝预测的三维有限元数值模拟研究[D].成都: 成都理工大学, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D123852YOU Guangfen. Reservoir fracture prediction of three-dimensional finite element numerical simulation[D]. Chengdu: Chengdu University of Technology, 2010. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D123852